JPS59170533A - Torsional vibration absorbing device of driving power transmission system of vehicle - Google Patents

Torsional vibration absorbing device of driving power transmission system of vehicle

Info

Publication number
JPS59170533A
JPS59170533A JP4510683A JP4510683A JPS59170533A JP S59170533 A JPS59170533 A JP S59170533A JP 4510683 A JP4510683 A JP 4510683A JP 4510683 A JP4510683 A JP 4510683A JP S59170533 A JPS59170533 A JP S59170533A
Authority
JP
Japan
Prior art keywords
torque damper
type torque
friction
shaft
torsional vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4510683A
Other languages
Japanese (ja)
Inventor
Naohito Nishida
尚人 西田
Yoshihiro Imai
世志弘 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4510683A priority Critical patent/JPS59170533A/en
Publication of JPS59170533A publication Critical patent/JPS59170533A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/0064Physically guiding or influencing using a cam

Landscapes

  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To contrive to absorb effectively the torsional vibration and transmit effectively the driving power by a method wherein an oil pressure type torque damper and a variable capacity form and friction type torque damper are interposed in series in a power transmitting system connecting an engine and wheels. CONSTITUTION:The third speed driven gear 123 is integrally provided on a pipe-shaped shaft 11 which is rotatably and externally engaged with an output power shaft 5, the first and second speed driven gears 121, 122 are engaged with the shaft 11 via a roller bearing 242, further, the forth speed driven gear 124 is made spline fitting to the output power shaft 5. Then, the pipe-shaped shaft 11 is connected with the output power shaft 5 via a torsional vibration absorbing device D in which an oil pressure type torque damper D1 and a variable capacity form and friction type torque damper D2 are provided in series. The friction type torque damper D2 is composed of the first cam plate 161 which is made spline fitting to the inner surface of a extended part 14 of the gear 123, friction plates 21, 22, the second cam plate 162, springs 41, 42 and the like, and the oil pressure type torque damper D1 is composed of a cylinder 34, a piston 30 and the like which are interposed between both end plates 29, 29' of the second cam plate 162.

Description

【発明の詳細な説明】 本発明は浦動車等の車両においてエンジンと車輪との間
を結ぶ動力伝達系の捩り振動を吸収するだめの動力伝達
系捩り振動吸収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power transmission system torsional vibration absorbing device for absorbing torsional vibration of a power transmission system connecting an engine and wheels in a vehicle such as a motor vehicle.

自動車においては、例えば発進、急加速、急減速または
変速時に、路面からの反動トルクが捩り振動として動力
伝達系に伝えられることがある。
In automobiles, for example, when starting, suddenly accelerating, decelerating, or changing gears, reaction torque from the road surface may be transmitted to the power transmission system as torsional vibrations.

このような捩り振動を吸収するために、動力伝達系に摩
擦式トルクダンパを介装したものが既に提案されている
が、摩擦式l・ルクダンパは、その作動初期には静止摩
擦力が作用するため滑り難く、したがって滑りが発生す
るまでに僅かながら時間遅れを生じ、この間にトルク変
動を多少とも各部に伝達させる欠点がある。
In order to absorb such torsional vibrations, a system in which a friction type torque damper is installed in the power transmission system has already been proposed. It is difficult to slip, so there is a slight time delay before slippage occurs, and during this time, torque fluctuations are transmitted to various parts to some extent.

本発明は、上記欠点を解消して捩り振動を効果的に吸収
し、しかも吸振後は効率良く動力伝達を行い得るように
した動力伝達系捩り振動吸収装置を提供することを目的
とし、その特徴は、エンジンと車輪との間を結ぶ動力伝
達系に油圧式トルクダンパと、伝達トルクの増大に応じ
て減衰力を増犬させる可変容量型の摩擦式トルクダンパ
とを直列に介装したところにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power transmission system torsional vibration absorbing device that eliminates the above-mentioned drawbacks, effectively absorbs torsional vibration, and enables efficient power transmission after vibration absorption. In this system, a hydraulic torque damper and a variable capacity friction torque damper are installed in series in the power transmission system connecting the engine and the wheels, and the damping force increases as the transmitted torque increases.

以下、図面により本発明の実施例について説明すると、
第1図はエンジン横置き型の前機関前輪駆動車の動力伝
達系を構成する変速機1とその周辺部分を示すもので、
変速機1はエンジン(図示せず)の−側部に取り付けら
れており、その入力軸2は、エンジンのクランク軸3に
発進クラッチ4を介して接続される。変速機1には、入
力軸2と平行に出力軸5が設けられており、その出力軸
5に一体的に設けられた最終駆動ギヤ6は、差動装置7
の最終被動ギヤ8に噛み合わされる。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.
Figure 1 shows the transmission 1 and its surrounding parts, which constitute the power transmission system of a horizontally mounted front engine front wheel drive vehicle.
A transmission 1 is attached to the negative side of an engine (not shown), and its input shaft 2 is connected to a crankshaft 3 of the engine via a starting clutch 4. The transmission 1 is provided with an output shaft 5 parallel to the input shaft 2, and a final drive gear 6 integrally provided with the output shaft 5 is connected to a differential device 7.
is meshed with the final driven gear 8.

入力軸2には、これと一体に低速の1速及び2速駆動ギ
ヤ91,9□、並びに後進駆動ギヤ9Rが設けられ、更
に、中高速の3速ないし5速駆動ギヤ93.94.9.
が針状ころ軸受243,24424、を介してそれぞれ
回転自在に支持される。
The input shaft 2 is integrally provided with low speed 1st and 2nd speed drive gears 91, 9□, and a reverse drive gear 9R, and is further provided with medium and high speed 3rd to 5th speed drive gears 93.94.9. ..
are rotatably supported via needle roller bearings 243 and 24424, respectively.

とれらの3速ないし5速駆動ギヤ93.94.95は、
切換クラッチ10 、10’によって選択的に入力軸2
と接続されて、それにより駆動されるようになっている
。出力軸5には、管状軸11が平軸受25.25を介し
て回転自在に支持され、この管状軸11には1速及び2
速被動ギヤ12..12□が針状ころ軸受24..24
2を介して回転自在に支持され、また後進被動ギヤ29
Rが切換クラッチ13を介して支持される。この1速及
び2速被動ギヤ12..122は入力軸2の1速及び2
速駆動ギヤ91.9□と、また、後進被動ギヤ12Rは
図示しないアイドルギヤを介して後進駆動ギヤ9Rと、
それぞれ噛み合っており、切換クラッチ13により選択
的に管状軸11に接続されてそれを駆動するようになっ
ている。管状軸11には、またそれと一体的に3速被動
ギヤ123が設けられており、このギヤ123が3速駆
動ギヤ93と噛み合わされる。出力軸5には、更に、4
速及び5速駆動ギヤ94.9.とそれぞれ噛み合う4速
及び5速破動ギヤ12..12.がそれぞれスプライン
結合される。
Tora's 3rd to 5th speed drive gear 93.94.95 is,
The input shaft 2 is selectively switched by the switching clutches 10 and 10'.
It is connected to and is driven by it. A tubular shaft 11 is rotatably supported on the output shaft 5 via plain bearings 25.25.
Fast driven gear 12. .. 12□ is a needle roller bearing 24. .. 24
2, and is rotatably supported via the reverse driven gear 29.
R is supported via a switching clutch 13. These 1st and 2nd speed driven gears 12. .. 122 is the 1st speed and 2nd speed of input shaft 2
The speed drive gear 91.9□, and the reverse driven gear 12R are connected to the reverse drive gear 9R via an idle gear (not shown).
They are in mesh with each other, and are selectively connected to the tubular shaft 11 by a switching clutch 13 to drive it. A third-speed driven gear 123 is also integrally provided on the tubular shaft 11, and this gear 123 meshes with the third-speed drive gear 93. The output shaft 5 further includes 4
speed and 5th speed drive gear 94.9. 4-speed and 5-speed rupture gears 12. .. 12. are connected by splines.

管状軸11と出力軸5とは捩り振動吸収装置りを介して
連結される。以下、この装置りについて第2図ないし第
4図を参照して説明する。
The tubular shaft 11 and the output shaft 5 are connected via a torsional vibration absorber. This apparatus will be explained below with reference to FIGS. 2 to 4.

管状軸11には、3速被動ギヤ123に隣接してその軸
線方向に延びる筒状の延長部14が形成される。この延
長部14の内面にはスプライン15が形成されており、
このスプライン15に第1カム板16.が摺動自在に係
合される。また3速被動ギヤ123から4速被動ギヤ1
24までの間の出力軸5の外周には内筒17が固着され
、この内筒17を囲繞する外筒18が前記延長部14に
隣接して配置される。内筒17の外周面及び外筒18の
内周面にはスプライン19.20がそれぞれ形 5− 成されており、これらスプライン19.20には交互に
重合される複数枚の駆動摩擦板21及び被動摩擦板22
がそれぞれ摺動自在に係合される。
The tubular shaft 11 is formed with a cylindrical extension 14 adjacent to the third speed driven gear 123 and extending in the axial direction thereof. A spline 15 is formed on the inner surface of this extension part 14,
A first cam plate 16 is attached to this spline 15. are slidably engaged. In addition, from the third speed driven gear 123 to the fourth speed driven gear 1
An inner cylinder 17 is fixed to the outer periphery of the output shaft 5 up to 24, and an outer cylinder 18 surrounding the inner cylinder 17 is arranged adjacent to the extension part 14. Splines 19.20 are formed on the outer peripheral surface of the inner cylinder 17 and the inner peripheral surface of the outer cylinder 18, respectively, and a plurality of drive friction plates 21 and Driven friction plate 22
are slidably engaged with each other.

この摩擦板21.22群と第1カム板161との間に第
2カム板162が介装され、これと反対側で摩擦板21
.22群を支承する受圧面23が、軸方向には移動不能
の4速被動ギヤ124の端面に環状に形成される。
A second cam plate 162 is interposed between the friction plates 21 and 22 groups and the first cam plate 161, and the friction plate 21 on the opposite side
.. A pressure receiving surface 23 that supports the 22nd group is formed in an annular shape on the end face of the 4-speed driven gear 124, which is immovable in the axial direction.

第1及び第2カム板16..162の対向面には、環状
配列の複数個の山形カム27.28がそれぞれ一体に形
成されており、これらは互いに噛み合わされる。これら
カム27.28は、第1及び第2カム板161,162
が相対回動を起こしたときに、互いに斜面を滑らせて両
カム板16.。
First and second cam plates 16. .. A plurality of angle-shaped cams 27 and 28 arranged in an annular manner are each integrally formed on the opposing surface of the cam 162, and these cams are engaged with each other. These cams 27, 28 are connected to the first and second cam plates 161, 162.
When the cam plates 16. cause relative rotation, the two cam plates 16. .

162を離反させるようなスラストを発生する。Generates a thrust that causes 162 to separate.

第2カム板162は軸方向に一定間隔を置いて対向する
左右一対の端板29 、29’と、両端板 6− 29 、29’間を一体に連結すると共に環状に配列さ
れる複数のピストン30とを備え、左側の端板29は前
記ノyム28と一体に形成される。この端板29は、外
筒18の内周面に環状スペーサ31を介(〜て回転及び
摺動自在に支承されると共に、外筒18の延長部14側
端部を内方に屈曲して形成した抑圧フランジ32の内側
面に離間可能に当接する。前記環状スペーサ31は外筒
18内周面の環状溝23に装着されるものであって、こ
の装着を容易にするために直径方向に2分割されている
The second cam plate 162 integrally connects a pair of left and right end plates 29, 29' facing each other at a constant interval in the axial direction, and both end plates 6-29, 29', and a plurality of pistons arranged in an annular shape. 30, and the left end plate 29 is integrally formed with the knob 28. The end plate 29 is rotatably and slidably supported on the inner circumferential surface of the outer cylinder 18 via an annular spacer 31, and is bent inward at the end of the outer cylinder 18 on the side of the extension 14. The annular spacer 31 abuts on the inner surface of the formed suppression flange 32 so as to be able to separate from the annular spacer 31. It is divided into two parts.

両端板29 、29’間には、前記スプライン20に摺
動自在に係合されるシリンダ34が相対回動自在に介装
され、このシリンダ34は前記ピストン30を収容する
複数個のシリンダ孔35を持っている。
A cylinder 34 that is slidably engaged with the spline 20 is relatively rotatably interposed between the end plates 29 and 29', and this cylinder 34 has a plurality of cylinder holes 35 that accommodate the piston 30. have.

各シリンダ孔35は、出力軸5を中心とする扇形の断面
形状を有しており、第2カム板162とシリンダ34と
の相対回動時にピストン3oの摺動を許容する。このピ
ストン30によってシリンダ孔35には第1及び第2油
室a、bが画成され、両油室a、b間を連通ずるオリフ
ィス36がピストン30に穿設される。
Each cylinder hole 35 has a fan-shaped cross-sectional shape centered on the output shaft 5, and allows the piston 3o to slide when the second cam plate 162 and the cylinder 34 rotate relative to each other. First and second oil chambers a and b are defined in the cylinder hole 35 by the piston 30, and an orifice 36 that communicates between the two oil chambers a and b is bored in the piston 30.

内油室a、hは適当な緩衝油によって満される。The inner oil chambers a and h are filled with suitable buffer oil.

これら油室α、bかもの油漏れを防止するために、ピス
トン30及びシリンダ34の各摺動面にシール片37及
びQ IJング38がそれぞれ装着される。
In order to prevent oil leakage from these oil chambers α and b, a seal piece 37 and a Q IJ ring 38 are attached to each sliding surface of the piston 30 and cylinder 34, respectively.

内油室。、hにばばね39.39が収容され、通常これ
らばね39,39は協働してピストン30を、内油室a
、bを同体積に区画する中立位置に保持する。
Inner oil chamber. , h are housed with springs 39, 39, and normally these springs 39, 39 work together to move the piston 30 into the inner oil chamber a.
, b are held in a neutral position partitioning them into the same volume.

延長部14と抑圧フランジ32との間には、この抑圧フ
ランジ32を受圧面23に向って常時一定の弾発力で押
圧する1次ばね41が縮設され、さらに内筒17の3速
被動ギヤ123側端部に設けた支承板43と第1カム板
161との間には、両カム板16.,16□の離反時に
弾発力を発揮する2次ばね42が介装される。これらの
ばね41.42はいずれも複数枚の皿ばねより構成され
るが、ばね定数は2次ばね42よりも1次ばね41の方
を低(設定される。
A primary spring 41 is installed between the extension portion 14 and the suppression flange 32 to press the suppression flange 32 toward the pressure-receiving surface 23 with a constant elastic force, and furthermore, the third-speed driven spring of the inner cylinder 17 Both cam plates 16. , 16□ are interposed, which exert a resilient force when they are separated. These springs 41 and 42 are each composed of a plurality of disc springs, but the spring constant of the primary spring 41 is set lower than that of the secondary spring 42.

以上において、ピストン30、シリンダ34及びオリフ
ィス36は油圧式トルクダンパD1を構成し、第1.第
2カム板161  、162 、内筒17、外筒18、
駆動、被動摩擦板21.22及び1次。
In the above, the piston 30, the cylinder 34, and the orifice 36 constitute the hydraulic torque damper D1, and the first. Second cam plates 161, 162, inner cylinder 17, outer cylinder 18,
Drive, driven friction plate 21, 22 and primary.

2次ばね41,42は可変容量型の摩擦式トルクダンパ
D2を構成する。
The secondary springs 41 and 42 constitute a variable capacity friction type torque damper D2.

次にこの実施例について説明すると、通常は1次ばね4
1の弾発力が第2カム板16□及び摩擦板21.22群
を受圧面23に対して抑圧しているので、駆動及び被動
摩擦板21.22間には所 9一 定の摩擦力が与えられ、一方、2次ばね42は殆ど非作
動の状態において第1及び第2カム板16.。
Next, explaining this embodiment, normally the primary spring 4
Since the elastic force of 1 suppresses the second cam plate 16□ and the friction plates 21 and 22 groups against the pressure receiving surface 23, a constant friction force of 9 is generated between the driving and driven friction plates 21 and 22. , while the secondary spring 42 is substantially inactive when the first and second cam plates 16 . .

162のカム27.28を第3図に示すように互いに最
も深く噛み合せている。
The cams 27 and 28 of 162 are most deeply engaged with each other as shown in FIG.

いま、切換クラッチ13の操作によって、l速被動ギヤ
12.が管状軸11に接続されているとすると、クラン
ク軸3から入力軸2に伝達される回転トルクは、1速駆
動ギヤ97.1速被動ギヤ121、管状軸11、第1カ
ム板167、カム27.28、第2カム板162、スプ
ライン20及び外筒18を順次経て駆動摩擦板21へ伝
えられる。そして、駆動摩擦板21の回転トルクは、摩
擦力により被動摩擦板22に伝えられ、内筒17を介し
て出力軸5へ、更に最終駆動ギヤ6を介して差動装置7
へと伝達される。
Now, by operating the switching clutch 13, the L speed driven gear 12. is connected to the tubular shaft 11, the rotational torque transmitted from the crankshaft 3 to the input shaft 2 is transmitted to the first speed drive gear 97, the first speed driven gear 121, the tubular shaft 11, the first cam plate 167, and the cam. 27 and 28, it is transmitted to the drive friction plate 21 through the second cam plate 162, the spline 20, and the outer cylinder 18 in this order. The rotational torque of the driving friction plate 21 is transmitted to the driven friction plate 22 by frictional force, and is transmitted to the output shaft 5 via the inner cylinder 17, and further via the final drive gear 6 to the differential gear 7.
transmitted to.

2速被動ギヤ122あるいは後進被動ギヤ12Rが管状
軸11に接続されているときにも、同様の10− 経路により入力軸2の回転l・ルクが出力軸5に伝達さ
れる。また、3速駆動ギヤ93が切換クラッチ10によ
り入力軸2に接続されているときには、入力軸2の回転
トルクは、3速駆動ギヤ93.3速被動ギヤ123、管
状軸11を経て、その延長部14に伝えられ、以後はl
速の場合と同様にして出力軸5に伝達される。
Even when the second-speed driven gear 122 or the reverse driven gear 12R is connected to the tubular shaft 11, the rotation 1/rook of the input shaft 2 is transmitted to the output shaft 5 through the same 10-path. Furthermore, when the third-speed drive gear 93 is connected to the input shaft 2 by the switching clutch 10, the rotational torque of the input shaft 2 is transmitted through the third-speed drive gear 93, the third-speed driven gear 123, and the tubular shaft 11. 14, and from then on l
It is transmitted to the output shaft 5 in the same manner as in the case of speed.

4速駆動ギヤ9.あるいは5速駆動ギヤ95が入力軸2
に接続されているときには、入力軸2のトルクは、各被
動ギヤ124あるいは12.を通して直接出力軸5に伝
達される。
4-speed drive gear9. Alternatively, the 5th speed drive gear 95 is the input shaft 2
when connected to each driven gear 124 or 12 . It is directly transmitted to the output shaft 5 through.

1速ないし3速あるいは後進運転中にエンジンを加速さ
せると、入力軸2の回転速度は上昇しようとするのに対
し、出力軸5は、車輪の慣性によりそのま\の速度を維
持しようとする。そのため、管状軸11と出力軸5との
間には回転速度差が生じる。その結果、先ず第2カム板
162とシリンダ34とが相対的に回動し、これに伴い
ピストン30がシリンダ34に対して例えば第4図で矢
印R方向に回動すれば、第1油室aの緩衝油がピストン
30のオリフィス36を通過して第2油室りに流動し、
このときのオリフィス36の絞り抵抗によって減衰力が
発生する。この減衰力が一定値を超えると、次に駆動及
び被動摩擦板21.22の間に滑りが生じて摩擦による
減衰力が発生する。
When the engine is accelerated during 1st to 3rd gear or reverse operation, the rotational speed of the input shaft 2 tends to increase, whereas the output shaft 5 tries to maintain the same speed due to the inertia of the wheels. . Therefore, a difference in rotational speed occurs between the tubular shaft 11 and the output shaft 5. As a result, first, the second cam plate 162 and the cylinder 34 rotate relative to each other, and accordingly, if the piston 30 rotates relative to the cylinder 34, for example in the direction of arrow R in FIG. The buffer oil a passes through the orifice 36 of the piston 30 and flows into the second oil chamber,
At this time, a damping force is generated by the throttle resistance of the orifice 36. When this damping force exceeds a certain value, a slip occurs between the driving and driven friction plates 21, 22, and a damping force due to friction is generated.

これと同時に第1及び第2カム板16..16□の間に
も相対的な回動が生じ、カム27.28が互いに斜面を
滑らせることによって両カム板16.。
At the same time, the first and second cam plates 16. .. Relative rotation also occurs between the cam plates 16. .

162を離反方向に変位させ、第1カム板161が2次
ばね42を圧縮して作動状態にする。
162 in the direction of separation, the first cam plate 161 compresses the secondary spring 42 and puts it into an operating state.

こうして、入力軸2のトルク変動は、オリフィス36に
よる減衰力、並びに摩擦板21.22群の摩擦による減
衰力によって吸収されるが、特に前者の減衰力は後者と
は異なり、略零より立上るので、これによって初期のト
ルク変動を効果的に吸収することができる。
In this way, the torque fluctuation of the input shaft 2 is absorbed by the damping force caused by the orifice 36 and the damping force caused by the friction of the friction plates 21 and 22, but the former damping force is different from the latter and rises from approximately zero. Therefore, initial torque fluctuations can be effectively absorbed.

両カム板16.,16□の離反作用により2次ばね42
が作動されると、このばね42の弾発力は第2カム板1
6□を介して摩擦板21.22群を受圧面23に対して
押圧するので、両摩擦板21.22間の摩擦力が増大さ
れ、したがってそれらの摩擦による減衰力も増大され、
出力軸5の回転速度は滑らかに上昇する。そして、両摩
擦板21.22間の摩擦トルクが伝達トルクの値まで増
大したとき両摩擦板21.22間の滑りは止まり、入力
軸2のトルクが出力軸5に確実に伝達されるようになる
・。
Both cam plates 16. , 16□, the secondary spring 42
When the spring 42 is actuated, the elastic force of the spring 42 is applied to the second cam plate 1.
Since the groups of friction plates 21 and 22 are pressed against the pressure-receiving surface 23 through 6□, the frictional force between both friction plates 21 and 22 is increased, and therefore the damping force due to those frictions is also increased,
The rotational speed of the output shaft 5 increases smoothly. When the friction torque between the two friction plates 21 and 22 increases to the value of the transmission torque, the sliding between the two friction plates 21 and 22 stops, and the torque of the input shaft 2 is reliably transmitted to the output shaft 5. Become·.

この間、摩擦板21.22間には、給油路44を通して
ミッションケース内の潤滑油が供給され、摩擦板21.
22間に発生する摩擦熱を冷却する。
During this time, lubricating oil in the transmission case is supplied between the friction plates 21 and 22 through the oil supply path 44, and the friction plates 21 and 22 are supplied with lubricating oil in the transmission case.
22 to cool down the frictional heat generated between the two.

これとは反対に急減速運転を行うと、出力軸513− から入力軸2が駆動されろ逆負荷状態となるので、管状
軸11と出力軸5との間には、前記加速運転時とは反対
方向の回転速度差が生じる。その結果、ピストン30及
びシリンダ34間に相対回動が生じ、続いて駆動及び被
動摩擦板21.22間に滑りが生じると同時に第1及び
第2カム板161 。
On the contrary, when a sudden deceleration operation is performed, the input shaft 2 is driven from the output shaft 513-, resulting in a reverse load state, so that there is a gap between the tubular shaft 11 and the output shaft 5 that is different from that during the acceleration operation. A difference in rotational speed occurs in opposite directions. As a result, a relative rotation occurs between the piston 30 and the cylinder 34, and a subsequent slippage occurs between the driving and driven friction plates 21, 22, as well as the first and second cam plates 161.

162間にも相対回動が生じ、それらの相対回動方向が
前記加速運転時と反対となるだけで、同様の吸振作用が
行われ、出力軸5の逆負荷は緩衝されて入力軸2に伝達
される。
Relative rotation also occurs between 162 and 162, and the direction of their relative rotation is opposite to that during the acceleration operation, and a similar vibration absorption effect is performed, and the reverse load on the output shaft 5 is buffered and the input shaft 2 is communicated.

走行中、切換クラッチ10 、10’あるいは13の切
換えによって発生する人、出力軸2,5間のトルク変動
、即ち変速ショックも、上記と同様に吸収される。
During driving, torque fluctuations between the driver and the output shafts 2 and 5, that is, shift shocks, which occur due to switching of the switching clutches 10, 10', or 13, are also absorbed in the same manner as described above.

以上のように本発明によれば、エンジンと車輪との間を
結ぶ動力伝達系に油圧式トルクダンパと、伝達トルクの
増大に応じて減衰力を増大させる可14− 変容量型の摩擦式)・ルクダンパとを直列に介装したの
で、急加速、急減速等に伴い生じるl・ルク変動を、初
期には油圧式l・ルクダンパが作動し、続いて摩擦式ト
ルクダンパが作動するごとによって、時間遅れなく滑ら
かに吸収することができ、したがってl・ルク変動に起
因する動力伝達系の捩り振動を効果的に防止して動力伝
達系の耐久性並びに乗心地の向−にに寄与することがで
きる。しかも、伝達トルクの増大時には摩擦式トルクダ
ンパの減衰力が増大するから、吸振後は該トルクダンパ
は滑り難くなり、動力伝達を効率良く行うことかできる
As described above, according to the present invention, a hydraulic torque damper is provided in the power transmission system connecting the engine and the wheels, and a hydraulic torque damper is provided in the power transmission system that connects the engine and the wheels. Since the torque damper and the torque damper are installed in series, the hydraulic torque damper operates initially, and then the friction torque damper operates with a time delay to compensate for l/lux fluctuations that occur due to sudden acceleration, sudden deceleration, etc. Therefore, it is possible to effectively prevent torsional vibration of the power transmission system caused by l/lux fluctuations, contributing to the durability of the power transmission system and ride comfort. Moreover, since the damping force of the friction type torque damper increases when the transmitted torque increases, the torque damper becomes difficult to slip after vibration absorption, and power can be transmitted efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による捩り振動吸収装置を備える変速機
の一実施例を示す縦断平面図、第2図はその捩り振動吸
収装置の拡大縦断面図、第3図は第2図のIn−Tl1
線断面図、第4図はその捩り振動吸収装置におけろ第2
カム板の一部破続端面図である。 1・・・動力伝達系を構成する変速機、2・・・入力軸
、3・・エンジンのクランク軸、5・・・出力軸、7・
・・差動装置、16..162・・・第1.第2カム板
、17・・・内筒、18・・・外筒、21・・駆動摩擦
板、22・・・被動摩擦板、27・・・カム(i6+)
、28・・・カム(162)、30・・・ピストン、3
4・・・シリンダ、35・・・シリンダ孔、36・・・
オリフィス、41.42・・・1次、2次ばね、
FIG. 1 is a longitudinal sectional plan view showing an embodiment of a transmission equipped with a torsional vibration absorbing device according to the present invention, FIG. 2 is an enlarged longitudinal sectional view of the torsional vibration absorbing device, and FIG. Tl1
The line cross-sectional view, Figure 4, shows the second part of the torsional vibration absorbing device.
FIG. 3 is a partially broken end view of the cam plate. DESCRIPTION OF SYMBOLS 1... Transmission that constitutes a power transmission system, 2... Input shaft, 3... Engine crankshaft, 5... Output shaft, 7...
... Differential device, 16. .. 162...1st. Second cam plate, 17... Inner cylinder, 18... Outer cylinder, 21... Drive friction plate, 22... Driven friction plate, 27... Cam (i6+)
, 28... cam (162), 30... piston, 3
4...Cylinder, 35...Cylinder hole, 36...
Orifice, 41.42...primary, secondary spring,

Claims (1)

【特許請求の範囲】[Claims] エンジンと車輪との間を結ぶ動力伝達系に油圧式トルク
ダンパと、伝達トルクの増大に応じて減衰力を増大させ
る可変容量型の摩擦式トルクダンパとを直列に介装した
ことを特徴とする、車両の動力伝達系捩り振動吸収装置
A vehicle characterized in that a hydraulic torque damper and a variable capacity friction torque damper that increase damping force in accordance with an increase in transmitted torque are installed in series in a power transmission system connecting an engine and wheels. Power transmission system torsional vibration absorption device.
JP4510683A 1983-03-17 1983-03-17 Torsional vibration absorbing device of driving power transmission system of vehicle Pending JPS59170533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4510683A JPS59170533A (en) 1983-03-17 1983-03-17 Torsional vibration absorbing device of driving power transmission system of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4510683A JPS59170533A (en) 1983-03-17 1983-03-17 Torsional vibration absorbing device of driving power transmission system of vehicle

Publications (1)

Publication Number Publication Date
JPS59170533A true JPS59170533A (en) 1984-09-26

Family

ID=12710018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4510683A Pending JPS59170533A (en) 1983-03-17 1983-03-17 Torsional vibration absorbing device of driving power transmission system of vehicle

Country Status (1)

Country Link
JP (1) JPS59170533A (en)

Similar Documents

Publication Publication Date Title
US5846153A (en) Clutch apparatus having planetary gear mechanism
US6401894B1 (en) Multiple-clutch assembly
US4777843A (en) Two mass flywheel assembly with viscous damping assembly
JPS6316609B2 (en)
CN201129396Y (en) Dual mass flywheel torsional vibration damper
JP2546637B2 (en) Torsion damping mechanism
JPH05215197A (en) Power-train for car
US5146804A (en) Mechanism incorporating a vibration damper, in particular for an automative vehicle
US4674347A (en) Torsional vibration absorbing system for vehicular power transmission
EP3532743B1 (en) Power take off including a torsional vibration damping assembly
JPH0236823B2 (en)
EP0086335A1 (en) Clutch disc having damper springs
JP4599155B2 (en) Double clutch device
JPS59151624A (en) Absorbing device for torsional vibration in power transmission system of vehicle
US4534236A (en) Vibration and noise reduction means for a transmission vehicle
JPS648219B2 (en)
JPS59170533A (en) Torsional vibration absorbing device of driving power transmission system of vehicle
JPS59151631A (en) Power transmission system torsional vibration absorber for vehicle
JPS59155630A (en) Tortional-vibration absorbing apparatus in power transmission system for vehicle
JPS59170534A (en) Torsional vibration absorbing device of change gear
JPH0276946A (en) Power transmission gear
JPS59179421A (en) Device for absorbing torsional vibration in power transfer system for vehicle
KR20050046398A (en) Damper for clutch disc
JPS59151632A (en) Power transmission system torsional vibration absorber for vehicle
JPS59151633A (en) Power transmission system torsional vibration absorber for vehicle