JPS59169034A - Matrix cathode and its manufacture - Google Patents

Matrix cathode and its manufacture

Info

Publication number
JPS59169034A
JPS59169034A JP58042178A JP4217883A JPS59169034A JP S59169034 A JPS59169034 A JP S59169034A JP 58042178 A JP58042178 A JP 58042178A JP 4217883 A JP4217883 A JP 4217883A JP S59169034 A JPS59169034 A JP S59169034A
Authority
JP
Japan
Prior art keywords
cathode
electron
powder
layer
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042178A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Toshiyuki Aida
会田 敏之
Yoshihiko Yamamoto
山本 恵彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58042178A priority Critical patent/JPS59169034A/en
Publication of JPS59169034A publication Critical patent/JPS59169034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Abstract

PURPOSE:To enable a matrix cathode which is a unified construction including a barrier layer to be massproduced without widely changing the conventional manufacturing process by alternately applying a metallic powder and an electron-discharging matter powder over a heat-resisting thin metallic plate to make a layered construction, then compressing it to stick the plate and powders together, being followed by working the thus formed body into a cathode-like shape. CONSTITUTION:A metallic powder layer 2 principally consisting of Ni is formed on a heat-resisting thin metallic plate 1 working as a barrier layer by either application or spraying carried out with a spray gun. Next, an electron-discharging matter layer 3 composed of an oxide of an alkaline earth metal is formed on the layer 2. Following that, formation of the layers 2 and 3 are repeated to make a multilayer construction 4 which is then compressed or rolled with a pressing machine or a rolling machine to stick the layers 1, 2 and 3 together. The thus formed construction 4 is worked into a cathode-like pellet 5, thereby manufacturing a matrix cathode. Here, the thin plate 1 may consist of either a simple substance chosen from among Ni, W, Mo, Ta and Re or a thin alloy plate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ブラウン管、撮像管、送信管などの電子管用
陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cathode for an electron tube such as a cathode ray tube, an image pickup tube, or a transmitting tube.

〔背景技術〕[Background technology]

従来からの電子管用陰極としては、Ni−Mg。 Ni-Mg is a conventional cathode for electron tubes.

Nt−wなどNKを主成分として、これに少量の還元性
元素を添加した基体金属板上に、Bad。
Bad.

sro、CaOなどからなる電子放出物質を塗布あるい
は吹きつけによって表面を榎った形の塗布形酸化物陰極
が主だった。近年、電子管の高性能化に伴って高電流密
度のエミッションが望まれるようになった。上記酸化物
陰極で高いエミッションを得るには陰極を高温度に加熱
すれば良い。しかし、この場合、基体金属上の酸化物の
蒸発が漱しくなったシして陰極寿命が極端に短かくなっ
たシする。また、大量のエミッションを引き出したシす
ると酸化物の剥離やジュール加熱、時として陽極部とス
パークが生じるなどの欠点がある。しかし、この陰極は
非常に生理性が良く安価に生産出来る特徴も有している
。これら酸化物陰極の欠点を補って長時間に亘って高電
流密度を得る陰極として注目されているのが含浸形隘極
である。含浸形陰極は一般に、多孔51[Wの細孔部に
Ba −Caアルミネートなどの電子放出物質を含浸し
たものである。との含浸形陰極は別名補給形隙極と言わ
れるように電子放出物質が基体金属内部に含有している
ために常に一定量のエミッションを引き出せ、また、高
温度に加熱しても上記塗布形酸化物陰極のような問題が
生じることは少ない。しかし、この陰極は高いエミッシ
ョンを引き出せる反面、動作温度が酸化物陰極に比べて
300〜400Cも高い。したがって低温度動作の研究
も実施されているが禾だ実現していない。また、この陰
極は製造が非常に難しく、生産性が悪く歩留シも低いた
めに、非常に高価で特殊な用途にしか使用していない。
The main type of cathode was a coated oxide cathode, the surface of which was coated or sprayed with an electron-emitting material such as SRO or CaO. In recent years, as the performance of electron tubes has improved, emission with high current density has become desired. In order to obtain high emissions with the above-mentioned oxide cathode, the cathode may be heated to a high temperature. However, in this case, the evaporation of the oxide on the base metal becomes slow and the life of the cathode is extremely shortened. Additionally, if a large amount of emissions are extracted, there are drawbacks such as oxide peeling, Joule heating, and sometimes sparks with the anode. However, this cathode also has the characteristics of very good physiological properties and can be produced at low cost. An impregnated cathode is attracting attention as a cathode that compensates for these drawbacks of oxide cathodes and provides high current density over a long period of time. The impregnated cathode is generally one in which the pores 51 [W] are impregnated with an electron-emitting substance such as Ba--Ca aluminate. The impregnated type cathode is also known as the replenishment type cathode because it contains an electron-emitting substance inside the base metal, so it can always emit a certain amount of emission, and even when heated to high temperatures, the impregnated type cathode mentioned above They are less likely to have the same problems as oxide cathodes. However, although this cathode can produce high emissions, its operating temperature is 300 to 400 C higher than that of an oxide cathode. Therefore, research on low-temperature operation has been carried out, but it has not yet been realized. Furthermore, this cathode is extremely difficult to manufacture, has poor productivity, and has a low yield, so it is very expensive and is only used for special purposes.

動作温度が高いために、現在の酸化物陰極技術をそのま
ま適用出来ない上に、内部に含浸されている電子放出物
質の蒸発が激しいなどの欠点を有している。
Due to the high operating temperature, current oxide cathode technology cannot be applied as is, and the electron emitting material impregnated inside the cathode evaporates rapidly.

含浸形陰極はどの高いエミッションを引き出せないが、
塗布形酸化物隘極と含浸形隘極の中間に位置する陰極と
してマトリックスカソードがある。
Although impregnated cathodes cannot elicit any high emissions,
There is a matrix cathode as a cathode located between a coated oxide pole and an impregnated pole.

これは、一般にNI粉と電子放出物質粉の混合粉を高い
圧力で成型したもので、塗布形酸化物では引き出せない
ようなエミッションを引き出せ、しかも、酸化物陰極の
欠点を補っているカソードである。しかし、このマトリ
ックスカソードの製造方法は、カソード形状にプレス成
型するために量産性に欠ける。また、実装する場合には
カソードの表面から電子放出物質の蒸発がちシ、加熱素
子(ヒータ)に付着し、加熱素子の絶縁性が劣化するな
どの問題があるために、実装の場合には、マトリックス
カソードと加熱素子の間に障壁層を新たに設けなければ
ならない。したがって従来のマトリックスカソードは量
産性に欠ける上に、新たに障壁層を設けなければならな
い。
This cathode is generally made by molding a mixed powder of NI powder and electron-emitting material powder under high pressure, and it is able to extract emissions that cannot be obtained with coated oxides, and it also compensates for the drawbacks of oxide cathodes. . However, this method of manufacturing a matrix cathode lacks mass productivity because the matrix cathode is press-molded into a cathode shape. In addition, when mounting, there are problems such as the electron-emitting substance tends to evaporate from the surface of the cathode and adhere to the heating element (heater), deteriorating the insulation of the heating element. A new barrier layer must be provided between the matrix cathode and the heating element. Therefore, conventional matrix cathodes lack mass productivity and require a new barrier layer to be provided.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マトリックスカソードの特性をそのま
ま有し、塗布形酸化物隘極の製造工程を大巾に変えるこ
となく、量産性に富み、しかも障壁層とマトリックスカ
ソードを一体構造としたマトリックスカソードとその製
造方法を提供することにある。
The object of the present invention is to provide a matrix cathode that has the characteristics of a matrix cathode, is easy to mass-produce without significantly changing the manufacturing process of coated oxide electrodes, and has a barrier layer and matrix cathode in an integrated structure. and its manufacturing method.

〔発明の概要〕[Summary of the invention]

上記の目的に従って本発明によるマトリックカソードお
よびその製造方法をつぎに述べる。第1図に本発明の製
造方法を工程順に示した図である。
In accordance with the above objectives, the matrix cathode and method for manufacturing the same according to the present invention will be described below. FIG. 1 is a diagram showing the manufacturing method of the present invention in order of steps.

まず、障壁層となる耐熱金属薄板1を用意(a)シ、次
にこの薄板表面に塗布あるいはスプレーガンによる吹き
付は等で、NIを主成分とする金属粉層2を設けΦ)、
次にアルカリ土類金属酸化物からなる電子放出物質層3
を金属粉層2上に設ける(C)。
First, a heat-resistant metal thin plate 1 that will become a barrier layer is prepared (a), and then a metal powder layer 2 mainly composed of NI is provided on the surface of this thin plate by coating or spraying with a spray gun (Φ),
Next, an electron emitting material layer 3 made of an alkaline earth metal oxide
is provided on the metal powder layer 2 (C).

これを繰シ返し多層構造体4を作る(d)。次にこの多
層構造体4をプレス機械や圧延機で圧縮し固着する。こ
のように圧縮した多層構造体4は、陰極形状のベレット
状5に加工して(e、f)マ) IJラックスソードが
製造される。
This process is repeated to form a multilayer structure 4 (d). Next, this multilayer structure 4 is compressed and fixed using a press machine or a rolling machine. The thus compressed multilayer structure 4 is processed into a cathode-shaped pellet 5 (e, f) to produce an IJ lux sword.

上記製造工程において、電子放出物質層3も金属粉層2
同様に粉末を用いるとともに、層形成には塗布□や吹き
付けで層状にする。耐熱金属薄板1はNt、w、Mo、
’l’a、 Reからなる群から選ばれ、単体でもこれ
らを含む合金薄板でも良い。
In the above manufacturing process, the electron emitting material layer 3 and the metal powder layer 2
Similarly, powder is used, and layers are formed by coating or spraying. The heat-resistant metal thin plate 1 is made of Nt, w, Mo,
It is selected from the group consisting of 'l'a and Re, and may be used alone or as an alloy thin plate containing these.

一般には安価な1IJi−Cr薄板が有利である。第2
図には、マトリックスカソード5をスリーブ6とW線を
芯線とアルミナ等で絶縁した加熱素子7を組み合せた陰
極の断面8を示す。上記、耐熱金属薄板1は、マトリッ
クスカソード4の内部に存在する電子放出物質が加熱素
子7側に蒸発するのを防ぐ障壁層として作用する。した
がって新たに障壁層を設ける必要がないので有利である
。耐熱金属薄板1の厚さは薄いほど良いが、実用的には
10〜100μm程度が良い。金属粉層2はN1粉、N
lと還元性元素との合金粉あるいは混合粉でも良い。還
元性元素は電子放出物質と反応して13aを生成し、エ
ミッション特性を高める役目を果す。還元性元素として
はN1よシも還元力の大きな元素であれば効果が認めら
れる。一般には、Zr、Mg、Hf、Ti、8i、Y、
SC,W。
In general, inexpensive 1IJi-Cr thin plates are advantageous. Second
The figure shows a cross section 8 of a cathode in which a matrix cathode 5 is combined with a sleeve 6 and a heating element 7 in which a W wire is insulated with a core wire and alumina or the like. The heat-resistant metal thin plate 1 described above acts as a barrier layer that prevents the electron-emitting substance present inside the matrix cathode 4 from evaporating toward the heating element 7 side. Therefore, there is no need to newly provide a barrier layer, which is advantageous. The thinner the heat-resistant metal thin plate 1 is, the better, but practically it is preferably about 10 to 100 μm. Metal powder layer 2 is N1 powder, N
An alloy powder or a mixed powder of l and a reducing element may also be used. The reducing element reacts with the electron-emitting substance to produce 13a, which serves to improve the emission characteristics. As a reducing element, any element with a greater reducing power than N1 will be effective. Generally, Zr, Mg, Hf, Ti, 8i, Y,
SC,W.

稀土類元素が還元力が太きい。これらの元素は単体でも
合金として使用しても良い。電子放出物質)113はB
aOを主成分として8rO,Cab。
Rare earth elements have strong reducing power. These elements may be used alone or as an alloy. electron emitting substance) 113 is B
8rO, Cab with aO as the main component.

At20g等を含むもので、塗布形酸化物陰極と同様の
もので良い。金属粉層2、電子放出物層3の塗布あるい
は吹き付けの際にはバインダーを用いる。バインダーと
してはニトロセルロース+酢酸ブチル等を用いる。また
、金属粉層2と電子放出物質層3の順序はどちらでも良
い。しかし、最衣面は′電子放出物質層3でも良いが、
スパーク防止等を考慮すれば金属粉層2の方が望ましい
。金属粉層2、電子放出物質層3の厚さ及び層数は任意
に選んで艮いが、厚さは金属粉層2と電子放出物質層3
の比率は1〜2:1位の範囲が良い。多層構造体4はプ
レス機や圧延機などで圧縮する。この圧縮圧力は一般に
は1〜10 ton / crA程度が作業性から選ば
れる。圧延機で実施する場合には圧縮だけでなく断面減
少を計って種度良い厚さ調整が可能である。圧縮した多
層構造体4の厚さは、カソード寿命との関係で決められ
る。一般には0.2゛〜1咽の範囲で選ばれることが多
い。この圧縮した多層構造体4は陰極形状のベレット状
に加工する必要がある。この加工には、ダイスを用いた
機械的な打ち抜きや放電加工などの方策が取られる。
It may contain 20 g of At, etc., and may be the same as the coated oxide cathode. A binder is used when coating or spraying the metal powder layer 2 and the electron emitter layer 3. As the binder, nitrocellulose + butyl acetate or the like is used. Moreover, the order of the metal powder layer 2 and the electron emitting material layer 3 may be either. However, the most uniform surface may be 'electron emitting material layer 3,
The metal powder layer 2 is more desirable in consideration of spark prevention and the like. The thickness and number of layers of the metal powder layer 2 and the electron-emitting material layer 3 can be arbitrarily selected, but the thickness of the metal powder layer 2 and the electron-emitting material layer 3
The ratio is preferably in the range of 1 to 2:1. The multilayer structure 4 is compressed using a press machine, a rolling machine, or the like. This compression pressure is generally selected to be about 1 to 10 tons/crA from the viewpoint of workability. When using a rolling mill, it is possible to precisely adjust the thickness not only by compression but also by reducing the cross section. The thickness of the compressed multilayer structure 4 is determined in relation to the cathode life. Generally, it is often selected in the range of 0.2° to 1°. This compressed multilayer structure 4 needs to be processed into a cathode-shaped pellet. For this processing, measures such as mechanical punching using a die or electrical discharge machining are taken.

このように最終的に陰極形状に加工するため、最終製造
工程で、いろんな形状のマトリックスカソードを得るこ
とが出来、しかも量産的である。また、多層構造体4を
製造する前に、障壁層となる耐熱金属薄板1を陰極形状
にしておく方法もある。
In this way, since the matrix cathode is finally processed into a cathode shape, it is possible to obtain matrix cathodes of various shapes in the final manufacturing process, and mass production is possible. There is also a method in which the heat-resistant metal thin plate 1 serving as the barrier layer is made into a cathode shape before manufacturing the multilayer structure 4.

しかし、量産性を考えた場合には不利である。このよう
に製造されたマトリックスカソード5は、スリーブ6と
固定し、加熱素子7で加熱し使用される(第2図)。カ
ソード5とスリーブ6の固定は圧着やロー付け、電子や
レーザ溶接等によって接着される。
However, it is disadvantageous when considering mass production. The matrix cathode 5 manufactured in this manner is fixed to a sleeve 6 and heated with a heating element 7 for use (FIG. 2). The cathode 5 and the sleeve 6 are fixed to each other by crimping, brazing, electronic or laser welding, or the like.

以上、述べたマ) IJラックスソードの製造方法は、
従来の塗布形酸化物陰極の製造工程を大巾に替えること
なく、量産性に冨み、しかも障壁層を同時に設けること
が出来るという特徴を有すると言える。
As mentioned above, the manufacturing method of IJ Lux Sword is as follows.
It can be said that this method has the characteristics of being able to be mass-produced without making any major changes to the manufacturing process of the conventional coated oxide cathode, and also being able to provide a barrier layer at the same time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

障壁層としての耐熱金属薄板1として厚さ20μmに圧
延したNl−Cr板を用意し、金属粉としてNi−4チ
W粉(粒径平均5μm)、電子放出物質としては塗布形
酸化物陰極に用いている( Ba565r40 Ca4
 ) COs粉を用意した。アセチルセルロース+酢酸
ブチルをバインダーとして、上記粉末に加えてサスペン
ションとして用いた。
An Nl-Cr plate rolled to a thickness of 20 μm was prepared as the heat-resistant metal thin plate 1 as a barrier layer, Ni-4TW powder (average particle size 5 μm) was used as the metal powder, and a coated oxide cathode was used as the electron emitting material. (Ba565r40 Ca4
) COs powder was prepared. Acetyl cellulose + butyl acetate was used as a binder and added to the above powder to form a suspension.

このサスペンションをスプレーガンのタンクに入れ、そ
れぞれのスプレーガンを少々離してセットした。スプレ
ーガンの前には自動的に左右に往復移動する架台に耐熱
金属薄板1をセットした。スプレーガンから吐出する量
は同じになるようにノズルを調節した。耐熱金属薄板1
がセットされた架台がスプレーガンの前を左右に自動的
に往復す(9) ることによって金属粉2と電子放出物質粉3が交互に層
状となるような装置を用いて、金属粉層2を21層、電
子放出物質層3を20層、スプレーガンによる吹き付け
、多層構造体4を製造した。
This suspension was placed in the tanks of the spray guns, and each spray gun was set a little apart. In front of the spray gun, a heat-resistant metal thin plate 1 was set on a stand that automatically moved back and forth from side to side. The nozzle was adjusted so that the amount discharged from the spray gun was the same. Heat-resistant metal thin plate 1
The metal powder layer 2 is formed by using a device in which the metal powder 2 and the electron-emitting material powder 3 are alternately layered by automatically reciprocating from side to side in front of the spray gun (9). A multilayer structure 4 was manufactured by spraying 21 layers of the electron-emitting material layer 3 and 20 layers of the electron-emitting material layer 3 using a spray gun.

この様にして製造した多層構造体4を熱間圧延機を用い
て、非酸化性雰囲気で多層構造体4の厚さを0.5mに
なるように圧縮成形した。次に打ち抜き機械を用いて、
直径1.4 mのペレット状に打ち抜いて、マトリック
スカソード5を製造した。このように製造したマトリッ
クスカソード5を厚さ30μmのNi−Crからなるス
リーブにレーザビームによってスリーブ6とマトリック
スカソード側面を溶接し、WIRを芯線とし表面をアル
ミナで絶縁被榎した加熱素子(ヒータ)7をセットし、
アノード−カソードの2極管でエミッション特性をパル
ス電源を用いて飽和エミッションを測定した結果、85
0Cで6 A / cr/lの電流密度を有していた。
The thus produced multilayer structure 4 was compression-molded using a hot rolling mill in a non-oxidizing atmosphere so that the thickness of the multilayer structure 4 was 0.5 m. Next, using a punching machine,
The matrix cathode 5 was manufactured by punching out a pellet having a diameter of 1.4 m. The matrix cathode 5 manufactured in this manner is welded to the sleeve 6 and the side surface of the matrix cathode using a laser beam to a sleeve made of Ni-Cr having a thickness of 30 μm, and a heating element (heater) is made by using WIR as a core wire and insulating the surface with alumina. set 7,
As a result of measuring the emission characteristics of an anode-cathode diode tube using a pulsed power supply, the saturated emission was found to be 85.
It had a current density of 6 A/cr/l at 0C.

850Cで寿命テストを実施した結果10.000時間
を経過してもエミッションの劣化は見られなかった。ま
た、加熱素子(ヒータ)7の(10) 電気的絶縁性の劣化は観測されなかった。
As a result of carrying out a life test at 850C, no deterioration in emissions was observed even after 10,000 hours. Furthermore, no deterioration of the electrical insulation properties of the heating element (heater) 7 (10) was observed.

〔発明の効果〕〔Effect of the invention〕

以上、本実施例で説明したように、本発明のマトリック
スカソードとその製造方法は、従来の塗布形酸化物隘極
製造工程を大巾に変えることなく、量産性に富み、かつ
同時に障壁層を有することが出来る特徴を持っている。
As described above in this example, the matrix cathode of the present invention and its manufacturing method are highly suitable for mass production without making any major changes to the conventional coated oxide electrode manufacturing process, and at the same time, the matrix cathode and its manufacturing method can form a barrier layer. It has characteristics that can be possessed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程図、第2図は本発明に
よる傍熱形陰極構造を示す断面図である。 1・・・耐熱金属薄板、2・・・金属粉層、3・・・電
子放出物質層、4・・・多層構造体、5・・・マトリッ
クスカソード、6・・・スリーブ、7・・・加熱素子、
8・・・傍熱形(11) 第 1 図 、。、□1  聞Z図
FIG. 1 is a process diagram of an embodiment of the present invention, and FIG. 2 is a sectional view showing an indirectly heated cathode structure according to the present invention. DESCRIPTION OF SYMBOLS 1... Heat-resistant metal thin plate, 2... Metal powder layer, 3... Electron-emitting material layer, 4... Multilayer structure, 5... Matrix cathode, 6... Sleeve, 7... heating element,
8...Indirectly heated type (11) Fig. 1. , □1 Z map

Claims (1)

【特許請求の範囲】 1、Ni、W、MO,TaおよびBeからなる群から選
ばれた少なくとも一種の元素を含む耐熱金属薄板上に、
金属粉層と電子放出物質層とからなる層状構造を有する
ことを特徴とするマトリックスカソード。 λ 上記金属粉層はNi粉あるいはNiと還元性元素か
らなる合金粉もしくは混合粉からなシ、電子放出物質層
はアルカリ土類金属酸化物を含む粉末からなる特許請求
の範囲第1項記載のマトリックスカソード。 3、上記還元性元素はZr 、 Mg、 S i+ A
t+ Th+Ht、 Ti、sc、wおよび稀土類元素
からなる群から選ばれた少なくとも一種の元素である特
許請求の範囲第2項記載のマトリックスカソード。 4、耐熱金属薄板上に金属粉と電子放出物質粉を塗布も
しくは吹き付けによって交互に層状構造体を作る工程と
、圧縮もしくは圧延で層状構造体を固着する工程と、該
層状構造体を陰極形状に加工する工程からなることを特
徴とするマトリックスカソードの製造方法。
[Claims] 1. On a heat-resistant metal thin plate containing at least one element selected from the group consisting of Ni, W, MO, Ta and Be,
A matrix cathode characterized by having a layered structure consisting of a metal powder layer and an electron-emitting material layer. λ The metal powder layer is made of Ni powder or an alloy powder or mixed powder made of Ni and a reducing element, and the electron emitting material layer is made of powder containing an alkaline earth metal oxide. matrix cathode. 3. The above reducing elements are Zr, Mg, Si+A
The matrix cathode according to claim 2, wherein the matrix cathode is at least one element selected from the group consisting of t+Th+Ht, Ti, sc, w, and rare earth elements. 4. Steps of forming a layered structure by alternately coating or spraying metal powder and electron-emitting substance powder on a heat-resistant metal thin plate, fixing the layered structure by compression or rolling, and shaping the layered structure into a cathode shape. A method for manufacturing a matrix cathode, comprising a processing step.
JP58042178A 1983-03-16 1983-03-16 Matrix cathode and its manufacture Pending JPS59169034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042178A JPS59169034A (en) 1983-03-16 1983-03-16 Matrix cathode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042178A JPS59169034A (en) 1983-03-16 1983-03-16 Matrix cathode and its manufacture

Publications (1)

Publication Number Publication Date
JPS59169034A true JPS59169034A (en) 1984-09-22

Family

ID=12628727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042178A Pending JPS59169034A (en) 1983-03-16 1983-03-16 Matrix cathode and its manufacture

Country Status (1)

Country Link
JP (1) JPS59169034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251328A2 (en) * 1986-07-04 1988-01-07 Canon Kabushiki Kaisha Electron emitting device and process for producing the same
US5327050A (en) * 1986-07-04 1994-07-05 Canon Kabushiki Kaisha Electron emitting device and process for producing the same
USRE39633E1 (en) 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40062E1 (en) 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
JP2008205130A (en) * 2007-02-19 2008-09-04 Nichicon Corp Chip-type solid electrolytic capacitor and manufacturing method thereof
USRE40566E1 (en) 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251328A2 (en) * 1986-07-04 1988-01-07 Canon Kabushiki Kaisha Electron emitting device and process for producing the same
US5327050A (en) * 1986-07-04 1994-07-05 Canon Kabushiki Kaisha Electron emitting device and process for producing the same
USRE39633E1 (en) 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40062E1 (en) 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40566E1 (en) 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device
JP2008205130A (en) * 2007-02-19 2008-09-04 Nichicon Corp Chip-type solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0179513B1 (en) Method of manufacturing a scandate dispenser cathode and dispenser cathode manufactured by means of the method
JPS58154131A (en) Impregnation type cathode
JPS58177484A (en) Manufacture of dispenser cathode
US3615901A (en) Method of making a plastically shapeable cathode material
US3879830A (en) Cathode for electron discharge device having highly adherent emissive coating of nickel and nickel coated carbonates
KR100229555B1 (en) Cathode member and electronic tube using it
JPS59169034A (en) Matrix cathode and its manufacture
JPH02186525A (en) Storage type dispenser cathode and manufacture thereof
US4837480A (en) Simplified process for fabricating dispenser cathodes
JP2685232B2 (en) Method for manufacturing scandium-based cathode
US2677873A (en) Method of making nickel sponge cathodes
KR920003185B1 (en) Dispensor cathode and the manufacturing method of the same
US3722045A (en) Methods of improving adherence of emissive material in thermionic cathodes
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
JPS5814017B2 (en) Directly heated cathode for electron tubes
US3720985A (en) Method of improving adherence of emissive material in thermionic cathodes
JPS59169035A (en) Manufacture of matrix cathode
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
JPS6062034A (en) Hot-cathode frame body
CN115101395A (en) Preparation method and application of directly-heated nickel sponge oxide cathode
JPS6255256B2 (en)
KR950013862B1 (en) Cathod manufacture method
KR100235995B1 (en) Impregnation treatment type cathode
JP2685835B2 (en) Manufacturing method of impregnated cathode
KR920004896B1 (en) Impregnated type cathode and manufacturing method the same