JPS59168329A - Electrostatic capacity type load measuring device - Google Patents

Electrostatic capacity type load measuring device

Info

Publication number
JPS59168329A
JPS59168329A JP4235983A JP4235983A JPS59168329A JP S59168329 A JPS59168329 A JP S59168329A JP 4235983 A JP4235983 A JP 4235983A JP 4235983 A JP4235983 A JP 4235983A JP S59168329 A JPS59168329 A JP S59168329A
Authority
JP
Japan
Prior art keywords
fixed
electrodes
load
length
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4235983A
Other languages
Japanese (ja)
Inventor
Kimihiro Nakamura
公弘 中村
Mitsuru Tamai
満 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4235983A priority Critical patent/JPS59168329A/en
Publication of JPS59168329A publication Critical patent/JPS59168329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/106Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving electrostatic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To make it possible to perform stable, highly accurate load measurement, by providing the central position of electrodes forming a capacitor at a point, which is separated from a hollow circular cylinder tube, to the one end of which the load is applied, by about 1/2 the length of the beam, in such a way that an external force other than the load to be measured is hard to be applied. CONSTITUTION:A flange 171 forms the movable end of a hollow circular cylindrical beam 11 having a length l. Cross shaped movable electrodes 14 are provided on the flange 171. A pair of fixed electrodes 12 and 13, which form four sets of load measuring capacitors together with the electrodes 14, are provided on a fixed end 172 of the beam 11. The central position of the electrodes 12 and 13 is a half point of a length l. Meanwhile, in order to eliminate the effect in the axial direction, the electrodes 14 are protruded from the electrodes 12 and 13 by a specified amount DELTAl. The hollow part of the beam 11 is a vacuum or filled with an inactive gas. In this constitution, the effects of external forces such as bending moment and torsional moment other than the load are hard to be applied. Bonding agent is not used. The detected outputs of a plurality of the capacitors are differentially processed. Thus the stable, highly accurate load measurement can be performed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は静電容量式荷重測定器、特に測定荷重以外の
力、例えば曲げモーメントまたはねじりモーメント等が
作#Jしてもこれらの影響をキャンセルし得るiW極構
造をも′〕荷重測定器に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a capacitive load measuring device, in particular, to a capacitance type load measuring device, which is particularly designed to overcome the effects of forces other than the measured load, such as bending moments or torsional moments. This invention also relates to a load measuring device with an iW pole structure that can be canceled.

〔従来技術とその問題点〕[Prior art and its problems]

従来、コ(7) l’4j(の測定器としてはストレイ
ン、’f−ジ(5train Gage )式のものが
良く知られている。
Conventionally, the strain and 'f-train Gage type instruments are well known as measuring instruments for K(7)l'4j.

第1図はかかる測定器の概略を示す構造図である。FIG. 1 is a structural diagram showing an outline of such a measuring device.

これは、支持部3に一端を固定された片持梁1の両面に
、それぞれ接着層4を介して金属または半導体ストレイ
ンゲージ2を貼り付けて構成される。
This is constructed by attaching metal or semiconductor strain gauges 2 to both sides of a cantilever beam 1 whose one end is fixed to a support part 3 via an adhesive layer 4, respectively.

架1に図の如き集中荷重Wが作用すると、上側のゲージ
は伸び、下側のゲージは縮むことからその抵抗値が変化
するので、この抵抗変化から荷重Wを測定する。かかる
測定器は、構造が極めて簡単であるため最も多く使用さ
れている反面、次のような欠点を有している◇ 1)ストレインゲージの梁への接着が通常は有機系の接
着剤等によって行なわれるため、いわゆる接着剤のクリ
ープ現象やひ!われ等によるリラグゼーション(ゆるみ
)が測定器の再現性と安定性に悲影響を及ぼすばかりで
なく、接着層の経年変化によって長期安定性が悪くなる
When a concentrated load W as shown in the figure is applied to the frame 1, the upper gauge expands and the lower gauge contracts, resulting in a change in resistance value, and the load W is measured from this resistance change. Although such measuring instruments are most commonly used because of their extremely simple structure, they have the following drawbacks: ◇ 1) The strain gauge is usually attached to the beam using an organic adhesive, etc. Because of this, the so-called adhesive creep phenomenon occurs! Not only does the relaxation (loosening) caused by us have a negative impact on the repeatability and stability of the measuring instrument, but also the long-term stability deteriorates due to aging of the adhesive layer.

2)接着剤の吸湿によりその絶縁抵抗が変化し、信頼性
が低下する。
2) Moisture absorption of the adhesive changes its insulation resistance, reducing reliability.

3)ストレインゲージのゲージファクターやゲージ抵抗
値の温度係数が大きく、かつ個々のバラツキも大きい。
3) The temperature coefficient of the strain gauge's gauge factor and gauge resistance value is large, and the individual variations are also large.

4)ストレインゲージの抵抗変化率ΔR/Rが数パーセ
ント程度で小さいため、感度が悪く高精度化が難かしい
4) Since the resistance change rate ΔR/R of the strain gauge is small, on the order of several percent, the sensitivity is poor and it is difficult to achieve high accuracy.

5)ストレインゲージはその機緘的強度が小さいため、
過負荷や衝撃負荷によって破損し易い。また、接着層に
塑性変化が生じ易い。
5) Because strain gauges have low mechanical strength,
Easily damaged by overload or impact load. In addition, plastic changes are likely to occur in the adhesive layer.

6)測定すべき荷重以外の外力、すなわち曲げモーメン
トやねじりモーメントの影響を受は易い。
6) It is easily affected by external forces other than the load to be measured, that is, bending moments and torsional moments.

〔発明の目的〕[Purpose of the invention]

この発明はこれらの諾意に鎚みてなされたもので、測定
荷重以外の外力の影響を受は離<く、安定かつ高精度な
静電容量式荷重測定器を提供することを目的とする。
The present invention has been made with these understandings in mind, and it is an object of the present invention to provide a stable and highly accurate capacitive load measuring instrument that is not affected by external forces other than the measuring load.

〔発明の要点〕[Key points of the invention]

その特徴は、各端部がそれぞれ7ランジによって密閉さ
れた中空円筒状梁内に、断面が十文字状の可動電極の各
々にそれをはさんで1対の固定電極を配置してコンデン
サを形成するととも幌、電極部の中心位置を梁の長さの
略1/2のところにあるようにし、かつ可動電極と固定
電極の重なる部分が梁の長さの略1/3以下となるよう
にフンデ、ンサ電極部を構成することにより、ねじりモ
ーメントや曲げモーメントの影響を受けず、高精度で安
定な荷重測定ができるようにした点にある。
Its feature is that a capacitor is formed by arranging a pair of fixed electrodes between each movable electrode with a cross-shaped cross section in a hollow cylindrical beam whose ends are each sealed by seven flange. Place the hood so that the center position of the electrode part is approximately 1/2 of the length of the beam, and the overlap between the movable electrode and the fixed electrode is approximately 1/3 or less of the length of the beam. By configuring the sensor electrode section, it is possible to perform highly accurate and stable load measurement without being affected by torsional moments or bending moments.

〔発明の実施例〕[Embodiments of the invention]

この発明の詳細な説明する前に、その測定原理について
説明する。
Before explaining the present invention in detail, its measurement principle will be explained.

第2図はこの発明の測定原理を説明するための説明図で
ある。
FIG. 2 is an explanatory diagram for explaining the measurement principle of the present invention.

すなわち、同図(5)はパイプ状の梁11に曲げモーメ
ン)Mが作用する場合であり、原点0およびX、y座標
を同図の如くとったとき、梁11の先端Pにおける中立
軸の接線Qの方程式は、y=に1(x−−)、K、−M
4    ・・・・・・(1)2      2E! の如く表わされる。なお、(1)式において、Eはヤン
グ率、■は梁の断面二次モーメント、lは梁の長さであ
る。つまり、(1)式で示される直線はX−(を中心に
変化することを示している。
In other words, (5) in the same figure shows the case where bending moment ) M acts on the pipe-shaped beam 11. When the origin 0 and the X, y coordinates are taken as shown in the figure, the neutral axis at the tip P of the beam 11 is The equation for the tangent Q is y = 1(x--), K, -M
4 ・・・・・・(1)2 2E! It is expressed as follows. In equation (1), E is Young's modulus, ■ is the moment of inertia of the beam, and l is the length of the beam. In other words, the straight line represented by equation (1) changes around X-(.

一方、同図0の如く、この梁11に集中荷重Wが作用す
る場合の、梁の先端Pにおける中立軸の接線の方程式Q
は、 13     WI Y =に2.(X −) 、K2−刀、   ・−曲(
2)の如く表わされることが知られている。つまり、こ
の直線はX−百を中心に変化する。以上のことから、曲
げモーメン)Mの影響をできるだけ少なくして集中4η
止Wを測定するためには、本発明者等が柚々の研究を重
ねた結果、第2図(Qの如く梁11の内部に上記点Pと
同様の動きをする可動電極14と、梁11の支持部15
と同様の動きをする1対の固定電極12,13とを設け
、その中心位置が支持部15より7/3のところにある
ようにするとともに、電極部の長さはl/3以下にする
と良いことが確かめられている。このとき、固定電極1
2,13と可動電極14とによってコンデンサが形成さ
れるが、集中荷重Wが作用したときの容′IIkCI、
C2は次の如く表わされる。なお、C1は可動電極14
と固定型a12によって、またC2は司vJ電極14と
固定電極13によってそれぞれ形成されるコンデンサの
容量である。
On the other hand, as shown in Figure 0, when a concentrated load W acts on this beam 11, the equation Q of the tangent to the neutral axis at the tip P of the beam is
is 13 WI Y = 2. (X −), K2-sword, ・-song (
2) is known to be expressed as follows. In other words, this straight line changes around X-100. From the above, we can minimize the influence of bending moment) M and concentrate 4η
In order to measure the stop W, as a result of extensive research by the present inventors, it was found that a movable electrode 14 that moves in the same manner as the above point P is placed inside the beam 11 as shown in FIG. 11 supporting parts 15
A pair of fixed electrodes 12 and 13 that move in the same manner as above are provided, and the center position thereof is located 7/3 from the support part 15, and the length of the electrode part is set to 1/3 or less. It has been confirmed that it is good. At this time, fixed electrode 1
2, 13 and the movable electrode 14 form a capacitor, and when a concentrated load W is applied, the capacitance 'IIkCI,
C2 is expressed as follows. Note that C1 is the movable electrode 14
and fixed type a12, and C2 is the capacitance of the capacitor formed by the conductor vJ electrode 14 and the fixed electrode 13, respectively.

ここに、l)oは可動電極と固定邂極間の間隙、εは電
極間の誘電率、K2は(2)式で示される梁の材料によ
って決まる定数、aは各電極の幅、lは梁の長さである
Here, l)o is the gap between the movable electrode and the fixed electrode, ε is the dielectric constant between the electrodes, K2 is a constant determined by the material of the beam shown in equation (2), a is the width of each electrode, and l is It is the length of the beam.

(3) 、 (4)式から が得られ、集中荷重Wを容量C1,C2の関数として求
めることができる。この場合、同図い〕の如き曲げモー
メントMが作用しても、可動紙814は梁11の支持部
15から1!/3の点を中心にして対称に変位するので
、静電容ffi C11”2はその平均距離が変わらず
一定値C(−C1=C2)となる。
(3) and (4) are obtained, and the concentrated load W can be determined as a function of the capacitances C1 and C2. In this case, even if a bending moment M as shown in FIG. Since the displacement is symmetrical about the point /3, the average distance of the capacitance ffi C11''2 does not change and becomes a constant value C (-C1=C2).

つまり、上記(5)式が零となって曲げモーメン)Mに
対して不感とすることができるO 次に、ねじりモーメン賑に対して不感とするための電極
構造と、その配線方法について説明する。
In other words, the above equation (5) becomes zero, making it insensitive to the bending moment (M).Next, we will explain the electrode structure and its wiring method to make it insensitive to the torsional moment. .

第3図はかかる電極構造とその配線方法を説明するため
の電極断面図である。
FIG. 3 is an electrode cross-sectional view for explaining such an electrode structure and its wiring method.

同図からも明らかなように、可動電極14は4枚の電極
板をその断面が十文字形に形成されるとともに、そのv
tt極中心軸は梁11の中立軸と一致する如く図示され
ない梁の一端に取り付けられる。
As is clear from the figure, the movable electrode 14 is formed of four electrode plates having a cross-shaped cross section, and
The tt pole central axis is attached to one end of the beam (not shown) so as to coincide with the neutral axis of the beam 11.

また、梁の他端には、該中文字形可動電極14の4枚の
電極板に各々1対の、計8枚の固定電極12.13が可
動電極14と所定の間隙boをもって対向配置されてい
る。そし−C1可動直極を挾んで隣り合うもの同志が互
いに結線され、4つの端子21〜24へ接続されている
。こ\で、梁11に同図の如きねじりモーメン)Tが作
用すると、可動tit極14のみが点線の如く回転する
。いま、例えば端子23に〕いて着目すると、ここには
可動電極14と固定電極12.12によって形成される
2つのコンデンサが存在し、上記の回転に伴ってその一
方の容量は増加するのに対し他方は減少するが、その和
は一定である。同様のことが端子21,22および24
についても当てはまり、結局は、ねじりモーメン)Tに
対して見かけ上の容M変化がなく、シたがって先の(5
)式は零となり、この測定器はねじりモーメントTに対
して不感とすることができる。
Further, at the other end of the beam, a total of eight fixed electrodes 12.13, one pair for each of the four electrode plates of the middle letter-shaped movable electrode 14, are arranged facing the movable electrode 14 with a predetermined gap bo. There is. Then, those adjacent to each other with the movable straight pole C1 in between are connected to each other and connected to four terminals 21 to 24. Now, when a torsional moment (T) as shown in the figure acts on the beam 11, only the movable tit pole 14 rotates as shown by the dotted line. For example, if we focus on the terminal 23, there are two capacitors formed by the movable electrode 14 and the fixed electrode 12.12, and the capacitance of one of them increases with the rotation described above. The other decreases, but the sum remains constant. The same applies to terminals 21, 22 and 24.
This also applies to the torsional moment)T, so there is no apparent change in the shape
) becomes zero, and this measuring device can be made insensitive to the torsional moment T.

次に、集中荷重Wが第4図の如く、図の水平方向に対し
てθの角度をもって作用した場合について考える。なお
、第4図はかかる場合を説明するための説明図である。
Next, consider the case where the concentrated load W acts at an angle θ with respect to the horizontal direction in the figure, as shown in FIG. Note that FIG. 4 is an explanatory diagram for explaining such a case.

任意方向の荷重Wは、同図の如く水平方向成分Wyと垂
直方向成分WXとに分けて考えることができる。そこで
、可動電極14と端子24,23゜22および21との
間の静畦容量をそれぞれCIX。
The load W in any direction can be divided into a horizontal component Wy and a vertical component WX as shown in the figure. Therefore, the static ridge capacitance between the movable electrode 14 and the terminals 24, 23, 22, and 21 is expressed as CIX.

C2X + cl、およびC2,とすると、Wx、W、
ニョル静電容量の変化は、先の(5)式と同様に、WX
に関して W、に関して の如く表わされ、これを合成した値Sは、一    W
   ・・・・・・(8)12gl恥 と1.仁って集中荷fiWの測定が行なわれる。また、
SXとSyとの比をとれば、 となって荷重Wがか\つている方向を判別することも可
能である。
If C2X + cl and C2, then Wx, W,
The change in Nyol capacitance is expressed as WX as in equation (5) above.
is expressed as W with respect to
・・・・・・(8) 12gl shame and 1. At the same time, the concentrated load fiW is measured. Also,
By taking the ratio of SX and Sy, it becomes possible to determine the direction in which the load W is being applied.

上式にもとづいて荷重Wおよびその方向(tanθ)を
求めるには、例えば第5図の如くする。なお、第5#A
は任意方向に加わる荷重の測定方式を示すブロック図で
ある。すなわち、L述の如き容量C1x、C2□C1y
l#C2yをセンサ3’ll、312ニJ:’)測定し
、上記(6) 、 (7)式の演算をアナログ演算器3
21.322においてそれぞれ行ない、これらをA/D
i侯に331p33zを介してそれぞれディジタルfd
に変換した後、例えばマイクロコンピュータの如きディ
ジタル演算装置34にて(8) 、 (9)の演算をす
ることにより求めることができる。なお、35は演算結
果を表示する表示装置である〇第6図はこの発明の実施
例を示す側断面図である。同図において、11は中空円
筒状の梁、12゜13は固定電極、14は可動電極、1
61,162は絶縁体、171,172は7ランジであ
る。
The load W and its direction (tan θ) can be determined based on the above equation as shown in FIG. 5, for example. In addition, No. 5 #A
2 is a block diagram showing a method for measuring a load applied in an arbitrary direction. FIG. That is, the capacitance C1x, C2□C1y as described in L
l#C2y is measured by the sensor 3'll, 312niJ:'), and the above equations (6) and (7) are calculated using the analog calculator 3.
21 and 322 respectively, and these are A/D
Digital FD via 331p33z to I Hou respectively
It can be obtained by performing the calculations (8) and (9) in a digital calculation device 34 such as a microcomputer. Note that 35 is a display device for displaying the calculation results. FIG. 6 is a side sectional view showing an embodiment of the present invention. In the figure, 11 is a hollow cylindrical beam, 12°, 13 is a fixed electrode, 14 is a movable electrode, 1
61 and 162 are insulators, and 171 and 172 are 7 lunges.

中空円筒状の梁11の各端部には、それぞれ7ランジ1
71,172がチグ(TIG)溶接や電子ビーム溶接等
の周知の溶接法により取り付けられており、これによっ
て架内を密閉状態にする。そして、7ランジ171には
第3図で説明した如く、その断面が十文字形に形成され
た可動厩8ii14が溶接等によって取り付けられる一
方、7ランジ172には絶縁体j6. 、162を介し
て固定電極12 、13が可動電極14の4つの電極を
それぞ1し挾むように取り付けられる。司vJ電極14
の長さldは梁11の長ざをeとするとき 2z≦ld
<lの如く設J1され、また、固定電極12,13の長
さはそれぞれl/3以下で、その中心位置は梁11の長
さ方向の中心位置と一致するところに置かれる。
Each end of the hollow cylindrical beam 11 has 7 flange 1.
71 and 172 are attached by a well-known welding method such as TIG welding or electron beam welding, thereby sealing the inside of the rack. As explained in FIG. 3, the movable stable 8ii14 whose cross section is formed in the shape of a cross is attached to the 7 flange 171 by welding or the like, while the insulator j6. , 162, the fixed electrodes 12 and 13 are attached so as to sandwich the four electrodes of the movable electrode 14, respectively. Tsukasa vJ electrode 14
The length ld is when the length of the beam 11 is e, 2z≦ld
The fixed electrodes 12 and 13 each have a length of 1/3 or less, and their center positions match the center position of the beam 11 in the length direction.

絶縁体161,162は例えばマイラ、セラミックス等
からなり、固定電極12 、.13との固定はメタライ
ズ、ネジ止め等によって強固に行なわれるが1人u等の
金属を蒸着して電極を形成するようにしてもよい。また
、可動屯&14と固定電極12 、 I3との間VdA
 boは、最大曲げモーメントが加わったとき、平均変
位Δdとの比(Δd/bo)が03程度となるように設
計される。この値は、上記(5)式または(8)式に比
例するLよとなるから、これが大きいということは測定
感度が大きく、シたがって高精度の測定が可能であるこ
とを表わしている。なお、気密にされた架内は真空にす
るか、または乾燥空気、不活性ガスもしくはオイル等に
よって充たすことにより、誌駐率の変化を極力抑えるこ
とが高精度の測定を行なう上からも望ましい。また、上
記の可動電極14は固定に極12,13と重なる部分よ
りわずかにはみ出す如く、つまり固定電極12.13よ
りallだけ長く形成される0こうすることにより、同
図の、AE右方向に軸力が作用しても転極部の実効面積
は変わらず、したがって軸力による影響を受けないよう
にすることが可能となる。
The insulators 161, 162 are made of mylar, ceramics, etc., and the fixed electrodes 12, . 13 is firmly fixed by metallization, screwing, etc., but the electrodes may also be formed by vapor depositing a metal such as a metal. In addition, VdA between the movable tube &14 and the fixed electrode 12, I3
bo is designed so that when the maximum bending moment is applied, the ratio (Δd/bo) to the average displacement Δd is about 03. Since this value is L, which is proportional to the above equation (5) or (8), a large value indicates that the measurement sensitivity is large and therefore highly accurate measurement is possible. In order to perform highly accurate measurements, it is desirable to evacuate the airtight rack or fill it with dry air, inert gas, oil, etc. to suppress changes in the parking rate as much as possible. In addition, the above-mentioned movable electrode 14 is formed so as to slightly protrude from the portion overlapping with the fixed poles 12 and 13, that is, to be longer than the fixed electrodes 12 and 13 by all. Even if an axial force acts, the effective area of the pole reversing portion does not change, and therefore it is possible to avoid being affected by the axial force.

第7図はこの発明の他の実施例を示す構造シミ面図であ
る。すなわぢ、この実施例は、電極の中心位置が梁11
の長さの中心と一致する点は第6図の場合と同様である
が、固定電極の12.13の長さが第6図の場合よりも
長くなっていて(嬉6図の場合はl/3、第7図の場合
は21/3よりも若干短い程度)、可動電極14と重な
る部分が略e/3となっている点が特徴である。したが
って、固定電極12,13および可動電極14の自由端
は、それぞれの固定端から略21/3の位置にあるとい
うことができる。
FIG. 7 is a structural sectional view showing another embodiment of the present invention. In other words, in this embodiment, the center position of the electrode is at the beam 11.
The point that coincides with the center of the length of /3, which in the case of FIG. 7 is slightly shorter than 21/3), and the portion overlapping with the movable electrode 14 is approximately e/3. Therefore, it can be said that the free ends of the fixed electrodes 12, 13 and the movable electrode 14 are located approximately 21/3 from the respective fixed ends.

第8図は第6図および第7図に示される電極構造をフラ
ンジの方向から見た断面図、第9図はその電気的な等価
回路を示す回路図である。すなわち、拍8図は笥3図を
より具体的に示したもので、絶縁体161,162およ
び7ランジ171,172を除いて考えれば全く同様で
あるので、その説明は省略する。また、第9図は第6,
7図に共通な電気的等価回路であり、同図の破線で囲ま
れた容量値をペアにして測定することにより、それぞれ
の方向の荷重を求めることができる。
FIG. 8 is a sectional view of the electrode structure shown in FIGS. 6 and 7, viewed from the flange direction, and FIG. 9 is a circuit diagram showing its electrical equivalent circuit. That is, the 8th figure shows the 3rd figure more specifically, and since it is completely the same except for the insulators 161, 162 and the 7 lunges 171, 172, the explanation thereof will be omitted. Also, Figure 9 shows the 6th,
This is an electrical equivalent circuit common to FIG. 7, and by measuring the capacitance values surrounded by broken lines in the figure in pairs, the load in each direction can be determined.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によねば、次の如き種々の利点
を得ることができる。
As described above, according to the present invention, the following various advantages can be obtained.

1)検出部に有θ3(系の接着剤を使用していないので
、再現性および短・長期安定性を改善することができる
1) Since no θ3 type adhesive is used in the detection part, reproducibility and short- and long-term stability can be improved.

2)検出方式を“差動的な静電容量検出方式′にしたた
め、温度による誤差が相殺され、温度特性が改善される
2) Since the detection method is a "differential capacitance detection method," errors due to temperature are canceled out, and temperature characteristics are improved.

3)ば極変化率(Δd/bo)を03程度に大きくする
ことができるので、感度か向−ヒし高精度化が実現され
る。
3) Since the polarity change rate (Δd/bo) can be increased to about 0.03, the sensitivity is improved and high accuracy is achieved.

4)検出部を完全な密閉構造にした\め、湿度による誘
電率の変化がない。。
4) Since the detection part has a completely sealed structure, there is no change in dielectric constant due to humidity. .

5)電極構造を工夫することにより、測定荷重以外の曲
げモーメントまたはねじりモーメントの影響をキャンセ
ルすることができる。
5) By devising the electrode structure, it is possible to cancel the effects of bending or torsion moments other than the measurement load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は荷重測定器の従来例を示す概略図、第2図はこ
の発明の測定原理を説明するための原理図、第3図はね
じりモーメントの影響を除去するだめの電極構造を示す
構造断面図、第4図は任意方向の荷重が作用する場合を
説明するための説明図、第5図は任意方向に作用する荷
重測定方式を示すブロック図、第6図はこの発明の実施
例を示す構造断面図、第7図はこの発明の他の実施例を
示す構造断面図、#t’!:8図は第6図および第7図
の電極構造を別の方向から見た構造断面図、第9図はそ
の電気的な等価回路を示す回路図である。 符号説明 1.11・・・・・・梁、2・・・・・・ストレインゲ
ージ、3゜15・・・・・・葉の支持部、4・・・・・
−wM層1.12 *、13・−・・・・固定酊極、1
4・・・・・・可動電極、161,162・・・・・・
絶縁体、1711172・・川・7ランジ、21〜24
・・・・・・端子、311,312・・・・・・容鍬セ
ンサ、321,322・・・・・・アナログ演算器、’
331 、332・・・・・・A/D変換器、34・−
・・−・ディジタル演算器、35・・・・−・表示2g
代)」1人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 面 1 因 第 3 図 第4図 92図 第5図 第6図 /1 第9図 第 7 図
Fig. 1 is a schematic diagram showing a conventional example of a load measuring device, Fig. 2 is a principle diagram for explaining the measurement principle of the present invention, and Fig. 3 is a structure showing an electrode structure to eliminate the influence of torsional moment. 4 is an explanatory diagram for explaining the case where a load is applied in an arbitrary direction, FIG. 5 is a block diagram showing a method for measuring a load acting in an arbitrary direction, and FIG. 6 is an example of the present invention. FIG. 7 is a structural sectional view showing another embodiment of the present invention, #t'! 8 is a structural sectional view of the electrode structure shown in FIGS. 6 and 7 viewed from another direction, and FIG. 9 is a circuit diagram showing its electrical equivalent circuit. Symbol explanation 1.11... Beam, 2... Strain gauge, 3゜15... Leaf support, 4...
-wM layer 1.12 *, 13 --- Fixed drunkenness, 1
4...Movable electrode, 161, 162...
Insulator, 1711172...kawa 7 lunge, 21-24
...Terminal, 311, 312 ... Capacity hoe sensor, 321, 322 ... Analog computing unit, '
331, 332...A/D converter, 34...
...--Digital calculator, 35...--Display 2g
1 person Patent attorney Akio Namiki Agent Patent attorney Kiyomen Matsuzaki 1 Cause 3 Figure 4 Figure 92 Figure 5 Figure 6/1 Figure 9 Figure 7

Claims (1)

【特許請求の範囲】 ■)中空円筒状の梁の各端部にそれぞれ第1゜第27ラ
ンジを固着して該架内を密閉し、密閉された架内にその
長さ方向に延びる4枚の電極板をそめ断面形状が十文字
形となるように組み合わせかつその中心軸が前記梁の中
心軸と一致するように前記第17ランジに固定してなる
可動電極板と、該4枚の可動電極板の各々にこれを所定
の間隙をもって挾み前記第2の7ランジに固定されてな
る1対の固定電極板とを配置し、該可動電極板と1対の
固定車極板とが重なる電極部の中心位置が前記梁の長ざ
の略1/2のところにあるようにしてなることを特徴と
する静電容量式荷重測定器。 2、特許請求の範囲第1項に記載の静電容量式荷重測定
器において、前記可動電極板と固定車極板とが重なる電
極部の長さを梁の長さの略1/3以下とすることを特徴
とする静電容量式荷重測定器0 3)特if”l’ l’(求の範囲第1項または蛤2項
に記載の*pm容M式荷重測定器において、前記可動電
極板の固定電極板と重なる811分が固定電極板よりや
や長目に形成されてなることを特徴とする静電容量式荷
重測定器。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載の静電容量式荷重測定器において、前記密閉された架
内を真空にするが、または乾燥空気、不活性ガスもしく
はオイルを充填してなることを特徴とする静電容量式荷
重測定器。
[Scope of Claims] (1) A 1° 27th flange is fixed to each end of a hollow cylindrical beam to seal the inside of the rack, and four plates extending in the length direction of the hollow cylindrical beam are installed. a movable electrode plate formed by combining the electrode plates so that the cross-sectional shape thereof is cross-shaped and fixed to the seventeenth flange so that the central axis thereof coincides with the central axis of the beam; and the four movable electrodes. A pair of fixed electrode plates are arranged on each of the plates with a predetermined gap between them and fixed to the second seven lunges, and the movable electrode plate and the pair of fixed car electrode plates overlap each other. A capacitance type load measuring instrument, characterized in that the center position of the section is located at approximately 1/2 of the length of the beam. 2. In the capacitive load measuring device according to claim 1, the length of the electrode portion where the movable electrode plate and the fixed vehicle electrode plate overlap is approximately 1/3 or less of the length of the beam. 3) In the *pm capacitance type load measuring device described in item 1 or item 2, if the movable electrode A capacitive load measuring device characterized in that the 811 minutes of the plate overlapping with the fixed electrode plate are formed to be slightly longer than the fixed electrode plate. 4) Any one of claims 1 to 3. The capacitive load measuring device according to any one of the above, wherein the sealed rack is evacuated or filled with dry air, inert gas, or oil. vessel.
JP4235983A 1983-03-16 1983-03-16 Electrostatic capacity type load measuring device Pending JPS59168329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235983A JPS59168329A (en) 1983-03-16 1983-03-16 Electrostatic capacity type load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235983A JPS59168329A (en) 1983-03-16 1983-03-16 Electrostatic capacity type load measuring device

Publications (1)

Publication Number Publication Date
JPS59168329A true JPS59168329A (en) 1984-09-22

Family

ID=12633834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235983A Pending JPS59168329A (en) 1983-03-16 1983-03-16 Electrostatic capacity type load measuring device

Country Status (1)

Country Link
JP (1) JPS59168329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165920A (en) * 1987-12-23 1989-06-29 Tokyo Electric Co Ltd Electrostatic capacity type electronic balance
JP2009020006A (en) * 2007-07-12 2009-01-29 Tokai Rubber Ind Ltd Capacitance-type sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165920A (en) * 1987-12-23 1989-06-29 Tokyo Electric Co Ltd Electrostatic capacity type electronic balance
JP2009020006A (en) * 2007-07-12 2009-01-29 Tokai Rubber Ind Ltd Capacitance-type sensor

Similar Documents

Publication Publication Date Title
US4064744A (en) Strain sensorextensiometer
KR100486322B1 (en) Semiconductor pressure sensor
US5205171A (en) Miniature silicon accelerometer and method
EP1072865B1 (en) Sensor signal processing apparatus
EP3346248B1 (en) An improved pressure sensor structure
US4030347A (en) Biaxial capacitance strain transducer
CN106597016A (en) Capacitive MEMS dual-axis accelerometer
EP0198018A1 (en) Capacitive sensing cell made of brittle material
CN206321662U (en) A kind of MEMS twin-axis accelerometers
KR0135591B1 (en) Semiconductor sensor for sensing a physical quantity
JP3399688B2 (en) Pressure sensor
JPS59168329A (en) Electrostatic capacity type load measuring device
CN111521304B (en) Micro-pressure sensor chip and preparation method thereof
JP3385392B2 (en) Vacuum sensor
JPS59168330A (en) Electrostatic capacity type bending-moment measuring device
JPS59111028A (en) Electrostatic capacitance type torque measuring apparatus
JPS59163530A (en) Electrostatic capacity type torque measuring instrument
JP2000121475A (en) Electrostatic capacity type pressure detector
JP3366733B2 (en) Capacitive acceleration sensor
JP2015017819A (en) Acceleration sensor
JPH1138038A (en) Acceleration sensor
JP3036675B2 (en) Method for correcting nonlinearity of capacitance type acceleration sensor
JP4059306B2 (en) Servo capacitive vacuum sensor
JP3071932B2 (en) Semiconductor pressure sensor
JPH03176612A (en) Electrostatic capacity type length measuring instrument