JPS59168317A - Method for detecting reference position of internal combustion engine - Google Patents

Method for detecting reference position of internal combustion engine

Info

Publication number
JPS59168317A
JPS59168317A JP58042974A JP4297483A JPS59168317A JP S59168317 A JPS59168317 A JP S59168317A JP 58042974 A JP58042974 A JP 58042974A JP 4297483 A JP4297483 A JP 4297483A JP S59168317 A JPS59168317 A JP S59168317A
Authority
JP
Japan
Prior art keywords
angle
internal combustion
values
signal
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042974A
Other languages
Japanese (ja)
Inventor
Hiroaki Kuraoka
宏明 倉岡
Katsuhiro Oba
大羽 勝広
Toshinori Mizuno
俊範 水野
Katsumasa Matsui
松井 克雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58042974A priority Critical patent/JPS59168317A/en
Priority to US06/587,011 priority patent/US4553427A/en
Publication of JPS59168317A publication Critical patent/JPS59168317A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • F02P7/0775Electronical verniers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/06Testing internal-combustion engines by monitoring positions of pistons or cranks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To detect angles by an inexpensive sensor with few errors, by using a rotary body, wherein one or more teeth are omitted or angle data are not generated at an equal interval, and comparing the continuous angle data by a specified judging means. CONSTITUTION:A rotary angle sensor is constituted of a rotor 10a and a pickup coil 10b. In Figure A, one of teeth with an equal interval is omitted. In Figure B, the intervals between the teeth are partially unequal. The signal, which is detected by the pickup coil of the rotary sensor is shaped by a well known waveform shaping circuit in a control circuit. Then, the waveform shown in the Figure is obtained. The continuous angle data are compared by a judging means, and a reference crank position is detected based on the result. Thus the angle can be detecred by the inexpensive sensor with few errors.

Description

【発明の詳細な説明】 本発明は内燃機関の回転軸の角度および基準位置を検出
する回転位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotational position detection device for detecting the angle and reference position of a rotation shaft of an internal combustion engine.

従来、内燃機関の基準位置を検出する方法として種々の
方法が提案されていた。例えば内燃機関に同期して回転
する円板やローフに角度信号用の歯を刻み、それをフォ
トカブラや’iu磁ピックアップ等のセンサで検出し、
基準信号とし°Cはもう1個別のセンサを用いて基準位
置を検出していた。
Conventionally, various methods have been proposed as methods for detecting the reference position of an internal combustion engine. For example, teeth for angle signals are carved into a disk or loaf that rotates in synchronization with the internal combustion engine, and these are detected by a sensor such as a photocoupler or an 'iu magnetic pickup.
For the reference signal °C, another separate sensor was used to detect the reference position.

また、他の方法としてセンサは1つで行ない、歯の一部
を欠落させて、その欠落部分を検出して基準位置を検出
する方法があった。(例えば特開昭54−163061
号公報) しかしこの方法は始動時や加速時の回転変動が大きい場
合、誤差が大きくなってしまうという欠点があった。
Another method is to use only one sensor, remove a part of the tooth, and detect the missing part to detect the reference position. (For example, JP-A-54-163061
However, this method has the disadvantage that the error increases when the rotational fluctuations during startup or acceleration are large.

そこで、本発明は」二記問題点に鑑み、回転角センサを
構成するロータや回転円板の1遍を1個以上欠落させる
か、又は、歯の角度が等間隔とならないように構成し、
これを電磁ピックアップや光カブラ等により検出する。
Therefore, in view of the above two problems, the present invention is designed so that one or more of the rotors and rotating disks constituting the rotation angle sensor are missing, or the angles of the teeth are not evenly spaced,
This is detected by an electromagnetic pickup, an optical coupler, etc.

そして検出した信号の歯間隔毎の時間を演算処理し、過
渡時等の補正を行なうことにより1つのセンサで安価で
正確な角度検出を行なうことを目的とする。
The purpose of the present invention is to perform accurate angle detection at low cost with one sensor by calculating the time of each tooth interval of the detected signal and making corrections for transient times and the like.

以下本発明を一実施例について説明する。第1図は本発
明を応用した■型2気筒の排気過給器付内燃機関のシス
テム構成図である。1は■型2気筒内燃機関、2はエア
クリーナ、3は気化器、4は過給機、5は点火プラグで
ある。6はス117トル弁、7はフューエルポンプ、8
は圧力制御弁、9はフューエルフィルタ、10は回転角
センサ、11は吸気圧センサである。12は制御回路、
13.14はそれぞれ点火コイルである。エンジン1は
エアクリーナ2から取り込んだ空気を過給機4で気化器
3、スI:1ノ1−ル弁6を経由し”Cシリンダ内に取
り込む。そして吸気圧センサに、にり負荷状態や過給圧
を検出し、一方、回転角センサ10にてクランク角のど
の回転位置にいるか検出する。
The present invention will be described below with reference to one embodiment. FIG. 1 is a system configuration diagram of a type 2 two-cylinder internal combustion engine with an exhaust supercharger to which the present invention is applied. 1 is a ■-type two-cylinder internal combustion engine, 2 is an air cleaner, 3 is a carburetor, 4 is a supercharger, and 5 is a spark plug. 6 is the 117 torque valve, 7 is the fuel pump, 8
9 is a pressure control valve, 9 is a fuel filter, 10 is a rotation angle sensor, and 11 is an intake pressure sensor. 12 is a control circuit;
13 and 14 are ignition coils, respectively. The engine 1 takes air from the air cleaner 2 into the C cylinder via the turbocharger 4, the carburetor 3, and the exhaust valve 6. The supercharging pressure is detected, and the rotation angle sensor 10 detects the rotational position of the crank angle.

これらの信号をもとに制御回路12で内蔵するマツプ等
に基づき最適な点火時期とコイル13,14の通電時間
を41算し、点火プラグ5により点火を行なう。
Based on these signals, the control circuit 12 calculates the optimum ignition timing and energizing time of the coils 13 and 14 based on a built-in map, etc., and ignites the spark plug 5.

次に上記制御回路に用いる回転角信号の検出方法につい
C述べる。第2図は本発明の実施に用いる回転角センサ
であり、ロータ10aとピックアップコイルJobとか
ら構成されている。Aは等間隔の歯の内の1つが欠落し
ているものであり、Bは歯の間隔が一部の個所で不均等
になっているものである。この回転角センサのピックア
ップコイルで検出した信号を制御回路内の周知の波形整
、形回路で整形すると第3図のような波形となる。
Next, a method for detecting a rotation angle signal used in the control circuit will be described. FIG. 2 shows a rotation angle sensor used to implement the present invention, and is composed of a rotor 10a and a pickup coil Job. A is one in which one of the equally spaced teeth is missing, and B is one in which the spacing between the teeth is uneven in some places. When the signal detected by the pickup coil of this rotation angle sensor is shaped by a well-known waveform shaping circuit in the control circuit, it becomes a waveform as shown in FIG.

以下第2図のへの場合のロータを用いた実施例により本
発明の詳細な説明する。
The present invention will be explained in detail below using an example using the rotor shown in FIG.

第4図は、各検出器及び点火コイル13.14と制御回
路12のハードウェアのIN+連を示すブロック図であ
る。回転角センサ1oのピックアップコイルで検出した
信号を波形整形回路21で↑と形した回転角信号と、吸
気圧センサ11で検出した吸気圧をA/Dコンバータ2
2へ入力し、変換されたディジタル値とをマイクロコン
ピュータ25に入力する。マイクロコンピュータ25は
基本的にはCPU26、ROM27、RAM28より構
成され−ζおり、本システムではモトローラ系の680
1t−使用している。マイクロコンピュータ25では、
入力された回転角信号により気筒判別を行なうとともに
回転数を算出する。そして、該回転数と吸気圧力値をパ
ラメータとして内蔵するマツプに基づき気筒毎の最適な
点火時期と通電時間を計算する。そして出カボートJ:
リイグプーイタ23.24に通電点火信号を出力する。
FIG. 4 is a block diagram showing the hardware IN+ connections of each detector, ignition coil 13, 14, and control circuit 12. The signal detected by the pickup coil of the rotation angle sensor 1o is converted into a rotation angle signal shaped like ↑ by the waveform shaping circuit 21, and the intake pressure detected by the intake pressure sensor 11 is converted to the A/D converter 2.
2 and the converted digital value are input to the microcomputer 25. The microcomputer 25 basically consists of a CPU 26, a ROM 27, and a RAM 28.
1t - used. In the microcomputer 25,
Based on the input rotation angle signal, the cylinder is discriminated and the rotation speed is calculated. Then, the optimal ignition timing and energization time for each cylinder are calculated based on a built-in map using the rotational speed and intake pressure value as parameters. And Deka Boat J:
An energizing ignition signal is output to the controllers 23 and 24.

イグプーイタ23.24はマイクロコンピュータ25よ
り出力された通電点火信号に基づき、点火コイル13゜
14の通電・遮断を行なう。
The ignition coils 23 and 24 energize and cut off the ignition coils 13 and 14 based on the energization ignition signal output from the microcomputer 25.

次に、このマイクロコンピュータを用いて角度を求める
方法を説明する。第5図及び第6図はマイクロコンピュ
ータによるプログラム処理を示すフローチャートである
。また、第7図は各気筒の行程と回転角信号そして夕4
−vと通電点火信号の関係を示している。メインルーチ
ンを示す第5図において、システム起動と同時にメイン
プログラムが起動され、ステップ100,101を実行
し、システムの初期化を行なう。次にステップ102〜
104が2回転に1度実行される。ステ・7ブ102で
吸気圧を入力し、103で2回転に要した時間を計算し
、その時刻での回転数を求める。次に104でm1転数
・吸気圧のマツプより線形補11JIにて点火進角値を
求める。また、通電時間を回転数によるテーブルより補
間を用いて求める。これらのステップ102〜104を
繰返し、各状態に最適な通電点火を行なわせる。
Next, a method for determining angles using this microcomputer will be explained. 5 and 6 are flowcharts showing program processing by the microcomputer. In addition, Figure 7 shows the stroke and rotation angle signals of each cylinder, and
-v and the energization ignition signal are shown. In FIG. 5 showing the main routine, the main program is started at the same time as the system is started, and steps 100 and 101 are executed to initialize the system. Next step 102~
104 is executed once every two revolutions. The intake pressure is input in step 7 102, the time required for two revolutions is calculated in 103, and the number of revolutions at that time is determined. Next, in step 104, the ignition advance value is determined by linear complement 11JI from the m1 rotation speed/intake pressure map. In addition, the energization time is determined using interpolation from a table based on the rotational speed. These steps 102 to 104 are repeated to perform energization and ignition optimal for each state.

第6図は回転角信号の割込みに対する処理プログラムで
ある。第5図のメインルーチンを実行中に割込が入って
このルーチンに飛んでくる。今回、第7図Bのような4
5°クランク角の等間隔パルス8個のうら1パルス分だ
け欠落した回転角信号を用いた。エンジン各気筒の行程
に対し、八に示したような関係をもっている。
FIG. 6 is a processing program for rotation angle signal interruption. While the main routine of FIG. 5 is being executed, an interrupt occurs and the program jumps to this routine. This time, we will use 4 as shown in Figure 7B.
A rotation angle signal was used in which one pulse was missing from the back of eight equally spaced pulses at a crank angle of 5°. There is a relationship as shown in 8 for the stroke of each engine cylinder.

次にこの信号とプログラムの関係を説明する。Next, the relationship between this signal and the program will be explained.

イメンプログラムの処理中に」1記回転角信号のパルス
の立下りによりマイクロコンピュータに割込みがかけら
れる。このとき、第6図のステップ110で割込みがか
りられたときの時刻Tiが取り込まれる。次にステップ
111で前回の時刻Ti−1との差より[)i−1が計
算されD1〜D7の7つのレジスタへ順にいれられてい
く。ステップ112でD1〜D7までそろわない時はス
テ、7ブ122へ進み、始動時の1回転口かどうかを判
別し、1回転目でなければ基準フラグが七ノ1−シ゛ζ
あるからステップ118・\進む。l)、−D7までの
レジスタが前部そろうとステップ113で現在の回転数
より、処理時間に余裕がある低速時か、f11速時かを
判別する。低速時であればステップ114へ進み、1つ
前の時間幅との比か置火となっている時刻を求め基準位
置とする。つまり、加速、減速特にスタータ回転時等の
回転変動は、はとんど等加速的に変化するので、時間差
だけでは誤検出となるが、比をとれば確実に検出できる
のである。ただし、比を求めるには割算または2回以上
の用算が必要となるので、多大な処理時間が必要となる
。そこで高速時には、加減速時でも、それ程大きな変′
化はないため、ステップ115の時間だけで歯のぬけた
基準位置を検出するというI]シックで対応できる。
During the processing of the maintenance program, the microcomputer is interrupted by the fall of the pulse of the rotation angle signal (1). At this time, the time Ti at which the interrupt was generated in step 110 of FIG. 6 is taken in. Next, in step 111, [)i-1 is calculated from the difference from the previous time Ti-1, and is sequentially stored in seven registers D1 to D7. If D1 to D7 are not aligned in step 112, the process proceeds to step 7 block 122, where it is determined whether or not it is the 1st rotation opening at the time of starting, and if it is not the 1st rotation, the reference flag is set to
Since there is, proceed to step 118. 1), when the registers up to -D7 are aligned at the front, it is determined in step 113 whether the current rotation speed is low speed with enough processing time or f11 speed. If the speed is low, the process proceeds to step 114, where the time at which the fire is on is determined compared to the previous time period, and is used as the reference position. In other words, since rotational fluctuations such as acceleration and deceleration, especially when the starter rotates, change in a constant acceleration manner, a time difference alone will result in false detection, but if the ratio is taken, detection can be made reliably. However, since finding the ratio requires division or two or more operations, a large amount of processing time is required. Therefore, at high speeds, even when accelerating and decelerating, there are large changes.
Since there is no change, the standard position of the missing tooth can be detected in only the time of step 115.

続いて、ステップ116で基準フラグをセノ]・し、こ
こから後は基準フラグからの絶対位置としてコンビコー
タ12は動作することになる。しかし、ノイズなどの影
響を嵩慮して、毎回転ごと基準位置を確認する必要があ
るため、ステップ117でD1〜D7をクリアして再び
基準位置検出を行なう基準を行なう。ステップ118〜
121では現在の角度位置が通電開始時刻か点火時刻か
を判断し、適当な通電開始又は点火の時刻を計算し、タ
イマに七ソトする。
Subsequently, in step 116, the reference flag is set, and from this point on, the combi coater 12 operates based on the absolute position from the reference flag. However, it is necessary to check the reference position every rotation in consideration of the influence of noise, etc., so in step 117 D1 to D7 are cleared and reference position detection is performed again. Step 118~
At 121, it is determined whether the current angular position is the energization start time or the ignition time, an appropriate energization start time or ignition time is calculated, and the time is set in the timer.

以上述べた方法はステップ113でエンジン回転数によ
り判別していたが、他のやり型として、実際の内燃機関
ではスタータ信号、又はスロットル全閉信号、車速信号
、回転数信号のいずれがまたは同時に使って、低回転時
には第一の手段としてスタータON又はスロットル全閉
信号を、面回転時には、第二の手段としてスタータ回転
時等を判別し、切り替えて、[I!1転基準基準位置出
してもよい。
In the method described above, the determination is made based on the engine speed in step 113, but in an actual internal combustion engine, either the starter signal, the throttle fully closed signal, the vehicle speed signal, or the speed signal is used or simultaneously. When the rotation is low, the first means is to turn on the starter or the throttle is fully closed, and when the rotation is on the surface, the second means is to determine when the starter is rotating, etc., and switch to [I! It is also possible to set the first turn reference position.

また、前述の方法はパルス人力ごとに計算、比較を行な
っているが、一周期分プラス1コ分のパルスがはいるま
で何も−lずに、ただ時間1゛jだけを全てとりこんで
おいてから一周分プラス1コ分のパルスがはいった時に
、比較δ1算を連続的に行ない、角度基準位置を検出す
る方法でもよい。
In addition, in the method described above, calculations and comparisons are made for each pulse force, but only the time 1j is taken in without doing anything until one period plus one pulse is received. A method may also be used in which the comparison δ1 calculation is continuously performed when a pulse corresponding to one rotation plus one pulse is input after the rotation, and the angular reference position is detected.

さらに、点火制御をそっくり燃料噴射におきかえること
は容易である。例えば、通電開始を噴射開始に、点火を
噴射終了に対応さゼればよい。
Furthermore, it is easy to completely replace ignition control with fuel injection. For example, the start of energization may correspond to the start of injection, and the ignition may correspond to the end of injection.

また本実施例は、2気筒■型エンジンでの実施例を示し
たが、4〜8気筒エンジンにても本発明の技術的思想は
実施できる。
Further, although the present embodiment has been described using a two-cylinder ■ type engine, the technical idea of the present invention can also be implemented with a four- to eight-cylinder engine.

以上述べたように、本発明はクランク角に連動して回転
し、角度信号を発生ずる角度信号発生手段と、その角度
信号に基づいて点火時期や燃料噴射制御を行なう7L子
制御装置とを有する内燃機関において、前記角度信号発
生手段は多数有する角度情報の内、1つ以上欠落してい
るが、又は角度情報が等間隔ではない回転体を用い、連
続する角度情報を所定の判別手段により比較し、その結
果に基づき基準クランク位置を検出するので、センサも
安価で誤差も少なく角度検出ができるという優れた効果
を有する。
As described above, the present invention includes an angle signal generating means that rotates in conjunction with the crank angle and generates an angle signal, and a 7L slave control device that controls ignition timing and fuel injection based on the angle signal. In an internal combustion engine, the angle signal generating means uses a rotating body in which one or more of the many pieces of angle information is missing or the angle information is not equidistant, and compares successive pieces of angle information using a predetermined discrimination means. However, since the reference crank position is detected based on the result, the sensor is inexpensive and has the excellent effect of being able to detect angles with less error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例のシステム構成図、第2図
は回転角センサの模式図、第3図は第2図のセンサの波
形を波形整形したタイミング図、第4図は制御回路12
のブロック図、第5図のメインルーチンの流れ図の概略
図、第6図は割込ルーチンの流れ図の概要図、第7図は
システムの作動タイミング図である。 1・・・エンジン、2・・・エアクリーナ、3・・・気
化器、4・・過給機、5・・・点火プラグ、6・・・ス
ロットル弁、7・・・フューエルポンプ、10・・・回
転角センサ、11・・・吸気圧センサ、12・・制御回
路、13.14・・・点火コイル。 代理人ブ)゛埋土 岡 部   隆 第1図 第2図 第3図 第5図
Fig. 1 is a system configuration diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram of a rotation angle sensor, Fig. 3 is a timing diagram obtained by shaping the sensor waveform of Fig. 2, and Fig. 4 is a control circuit. 12
FIG. 5 is a schematic flowchart of the main routine, FIG. 6 is a schematic flowchart of the interrupt routine, and FIG. 7 is a system operation timing diagram. 1... Engine, 2... Air cleaner, 3... Carburetor, 4... Supercharger, 5... Spark plug, 6... Throttle valve, 7... Fuel pump, 10... - Rotation angle sensor, 11... Intake pressure sensor, 12... Control circuit, 13.14... Ignition coil. Agent b) Buried soil Takashi Okabe Figure 1 Figure 2 Figure 3 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)クランク角に連動して回転し、角度信号を発生ず
る角度信号発生手段と、前記角度信号に基づいて点火時
期や燃料噴射制御を行なう電子制御装置とを有する内燃
機関において、前記角度信号発生手段は多数有する角度
情報の内、1つ以上欠落しているか、又は角度情報が等
間隔ではない回転体を用い、連続する角度情報を所定の
判別手段により比較し、その結果に基づき基準クランク
位置を検出することを特徴とする内燃機関の基準位置検
出力7去。
(1) In an internal combustion engine having an angle signal generating means that rotates in conjunction with a crank angle and generates an angle signal, and an electronic control device that controls ignition timing and fuel injection based on the angle signal, the angle signal The generation means uses a rotating body in which one or more of the many angle information is missing or the angle information is not at regular intervals, and successive angle information is compared by a predetermined discrimination means, and based on the result, a reference crank is determined. Reference position detection force for an internal combustion engine characterized by detecting a position.
(2)前記所定の判別手段は、連続する角度情報に基づ
き各角度間の回転数を抽出し、前記各角度間の回転数に
基づき機関が高速回転時か否かを判別し、低速時には前
記各角度間の値の比に基づき、高速時には前記各角度間
の値の差に基づき基準クランク位置を検出することを特
徴とする特許請求の範囲第1項記載の内燃機関の基準位
置検出方法。
(2) The predetermined determining means extracts the number of revolutions between each angle based on the continuous angle information, determines whether the engine is rotating at high speed or not based on the number of revolutions between each angle, and when the engine is at low speed, 2. The reference position detection method for an internal combustion engine according to claim 1, wherein the reference crank position is detected based on the ratio of values between each angle, and the reference crank position is detected based on the difference between the values between the respective angles at high speed.
(3)前記所定の判別手段は、スタータのオン・オフを
検出し、スタータのオン時には前記角度間の値の比に基
づき、スタータのオフ時には前記角度間の値の差に基づ
き基準クランク位置を検出することを特徴とする特許請
求の範囲第1項記載の内燃機関の基準位置検出方法。
(3) The predetermined determination means detects whether the starter is on or off, and determines the reference crank position based on the ratio of the values between the angles when the starter is on, and based on the difference between the values between the angles when the starter is off. A method for detecting a reference position of an internal combustion engine according to claim 1, characterized in that:
(4)前記所定の判別手段は、スロットル弁全開信号、
及び車速信号に基づき、機関の低速時と高速時を判別し
、低速時には前記角度間の値の比に基づき、低速時には
前記角度間の値の差に基づき基準クランク位置を検出す
ることを特徴とする特許請求の範囲第1項記載の内il
A機関の基準位置検出方法。
(4) The predetermined determination means includes a throttle valve fully open signal;
and a vehicle speed signal to determine whether the engine is running at low speed or high speed, and at low speed, the reference crank position is detected based on the ratio of the values between the angles, and at low speed, the reference crank position is detected based on the difference between the values between the angles. In the scope of claim 1,
Reference position detection method for engine A.
JP58042974A 1983-03-08 1983-03-14 Method for detecting reference position of internal combustion engine Pending JPS59168317A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58042974A JPS59168317A (en) 1983-03-14 1983-03-14 Method for detecting reference position of internal combustion engine
US06/587,011 US4553427A (en) 1983-03-08 1984-03-07 Rotational reference position detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042974A JPS59168317A (en) 1983-03-14 1983-03-14 Method for detecting reference position of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS59168317A true JPS59168317A (en) 1984-09-22

Family

ID=12651008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042974A Pending JPS59168317A (en) 1983-03-08 1983-03-14 Method for detecting reference position of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS59168317A (en)

Similar Documents

Publication Publication Date Title
US6016789A (en) Apparatus for control of an internal combustion engine, especially for control of fuel injection and ignition
JP2927600B2 (en) Single sensor device and method for determining engine speed and position
US4553427A (en) Rotational reference position detection apparatus
JPH07180565A (en) Method and equipment for detecting angular position of cam shaft at variable position
JPH0781935B2 (en) Misfire detection device for multi-cylinder internal combustion engine
US5758625A (en) Method of synchronizing an internal-combustion engine without a cam position sensor
US4229793A (en) Method and apparatus for controlling internal combustion engines
JP2657862B2 (en) Crank angle and cylinder determination method for internal combustion engine
US7886584B2 (en) Method and apparatus for detecting a stroke of a 4-cycle internal combustion engine, based on changes in rotary engine speed
JP3976322B2 (en) Engine control device
US5638278A (en) Apparatus for detecting an occurence of misfiring in an engine cylinder
JPH11132089A (en) Method and device for detecting combustion cycle of given cylinder in starting of internal combustion engine
JPS59168317A (en) Method for detecting reference position of internal combustion engine
US20020120423A1 (en) Engine speed calculating apparatus
JP4137045B2 (en) Acceleration / deceleration detection apparatus and method for 4-cycle engine
JPS6125017A (en) Reference-position detecting method for crankshaft of engine
JPS59163516A (en) Reference position detecting method of internal combustion engine
JPH02233837A (en) Reverse preventer for internal combustion engine
JP4389805B2 (en) Engine cylinder determination device
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
JPH11311148A (en) Cylinder judging device for engine
JPH05231294A (en) Cylinder discriminating device for internal combustion engine, control device for internal combustion engine using said device, and sensor device
JPH0625649Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0799108B2 (en) Fuel injection control method for internal combustion engine
JP2917198B2 (en) Device for detecting combustion state of internal combustion engine