JPS59167625A - Metal melting furnace - Google Patents

Metal melting furnace

Info

Publication number
JPS59167625A
JPS59167625A JP4119883A JP4119883A JPS59167625A JP S59167625 A JPS59167625 A JP S59167625A JP 4119883 A JP4119883 A JP 4119883A JP 4119883 A JP4119883 A JP 4119883A JP S59167625 A JPS59167625 A JP S59167625A
Authority
JP
Japan
Prior art keywords
burner
gas
molten metal
flow passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4119883A
Other languages
Japanese (ja)
Other versions
JPS6310356B2 (en
Inventor
Mitsukane Nakajima
光謙 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEICHIYUU SEIKI KK
Original Assignee
MEICHIYUU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEICHIYUU SEIKI KK filed Critical MEICHIYUU SEIKI KK
Priority to JP4119883A priority Critical patent/JPS59167625A/en
Priority to GB08404884A priority patent/GB2136547B/en
Priority to DE19843408542 priority patent/DE3408542A1/en
Priority to FR8403745A priority patent/FR2542431B1/en
Publication of JPS59167625A publication Critical patent/JPS59167625A/en
Publication of JPS6310356B2 publication Critical patent/JPS6310356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

PURPOSE:To reduce the oxidization of aluminum and suppress the development of hard spot, by using a burner capable of producing a long and low temperature red flame in smelting an alumina and retaining the temperature of molten metal. CONSTITUTION:The flame blow-off port of burner is of construction and comprises an air passage 48 formed between the base 38a of burner tile 38 and a gas guide pipe 41, and a gas passage 49 formed in a space inside the top end 41c of gas guide pipe 41. A gas is delivered from the top end of communication passage 49 and advanced along an axis 30a under the introducing action of tubular air flow. During this flow, the gas is gradually mixed with an air from its periphery and burnt quietly and therefore the length of burner flame is excessively elongated. Besides, a red flame is created having a low temperature (approximately in the range of 1,000-1,100 deg.C) and a great deal of infra-red ray is emitted. By using the burner above-described as a smelting burner 15 and as a retaining burner 17 serving to retain the temperature of molten metal (a) contained in a retaining chamber 2, the metal loss of molten metal (a) and the damage of furnace material can be reduced, and thereby preventing the inclusion of gas into the molten metal (a). Thus, the molten metal (a) can be safely used in casting vital maintenance parts for motor vehicles and the like.

Description

【発明の詳細な説明】 この発明はアルミ等の金属の溶湯を溶融状態に保持した
シあるいはそれらの金属材料を溶解させる為の金属溶解
炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal melting furnace for holding molten metal such as aluminum in a molten state, or for melting such metal materials.

従来の金属溶解炉にあって炉体の側壁に高速燃焼するガ
スバーナーを取付けたものはバーナーのフレームが青色
である為、溶湯表面がメタルミラーとなるとその湯面で
反射されてしまって熱吸収が小さくなってしまい熱効率
が極めて低下する欠点があシ、また上記フレームは極め
て高温(画えば13θ0−/弘Oθ°C)である為、溶
湯あるいは金属材料を酸化させてメタルロスが増大した
りハードスポットを発生させたシする欠点もあった。
Conventional metal melting furnaces with high-speed combustion gas burners attached to the side walls of the furnace body have blue burner frames, so when the molten metal surface becomes a metal mirror, heat is reflected from the surface and absorbed. The disadvantage is that the thermal efficiency is extremely low due to the small size of the frame, and since the temperature of the above frame is extremely high (13θ0-/Hirooθ°C), it may oxidize the molten metal or metal material, increasing metal loss or hardening. It also had the disadvantage of causing spots.

そこで本発明は上述の欠点を除くようにしたもので、熱
効率が高くしかもメタルロスやハードスポットの発生を
低く押え得るようにした金属溶解炉を提供しようとする
ものである。
SUMMARY OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks, and provides a metal melting furnace that has high thermal efficiency and can suppress the occurrence of metal loss and hard spots.

以下本願の実施例を示す図面について説明する。The drawings showing the embodiments of the present application will be described below.

lは炉体で、強固な耐火物で構築された炉壁や、との炉
壁の外側を被覆して熱放散を防止する断熱材や、炉殻を
補強形成する鉄板等の炉材にて周知の如く構成されてい
る。上記炉体1内において、2は溶湯aを蓄え得るよう
に形成された保持室、3は被溶解材料としてのアルミ打
入を溶解する為の溶解室、4は上記アルミ材Aを予熱す
る為の予熱室で、保持室2と溶解室3間、保持室2と予
熱室4間及び溶解室3と予熱室4間は夫々伝熱性の隔壁
5,6.7によって相互に区画されている。
l is the furnace body, which is made of a furnace wall made of strong refractory material, an insulating material that covers the outside of the furnace wall to prevent heat dissipation, and furnace materials such as iron plates that reinforce the furnace shell. It is configured in a well-known manner. In the furnace body 1, 2 is a holding chamber formed to store the molten metal A, 3 is a melting chamber for melting the aluminum injection material as the material to be melted, and 4 is for preheating the aluminum material A. In the preheating chamber, the holding chamber 2 and melting chamber 3, the holding chamber 2 and preheating chamber 4, and the melting chamber 3 and preheating chamber 4 are separated from each other by heat conductive partition walls 5, 6.7, respectively.

2a、3a、4aは各室2,3.4の床面を示す。2a, 3a, and 4a indicate the floor surfaces of each chamber 2, 3.4.

上記予熱室4はタワー状に高く形成され、その上部には
材料投入口9が形成されている。この予熱室4の床面4
aは溶解室3の床面3aと同じか、これよシ高くなるよ
うに形成されている。予熱室4の上下長さは作業性を考
えた上でできる限シ高くした方が熱交換効率の点で好ま
しい、1.l〕は側石投入口9を開閉する為の板状の投
入口蓋で、水平方向に移動自在となっている。投入口蓋
11には排気口L3が形成されている。15は上記溶解
室3の側壁3bに具備された溶解用のバーナーで、溶解
室3に置かれる材料Aを加熱し得るように予熱室4側に
向けて横向きにバーナーの軸線IFI aが略水平とな
るように配設されている。この溶解用のバーナー、判と
しては後述の如き構成のバーナーが用いてあり、またそ
の配設位置の高さは床面3aからバーナー拓の軸線迅a
までの高さ寸法が100〜200 mW程度となるよう
にされる。16は隔壁7に設けられた連通孔で、上記溶
解バーナー15の加熱ガス(バーナーフレームも含む)
が予熱室4内に流入して予熱室4の下方に置かれる材料
Aを溶解可能に設けられている。またこの連通孔16は
′予熱室4下部で溶解された溶湯が予熱室4内に溜まる
ことなく溶解室3内に流れ込むように隔壁7の最下部に
設けられている。17は上記保持室2の側壁2bに具備
された保持用のバーナーで、保持室2に蓄えられる溶湯
aの上面が冷却するのを防止して保温し得るように配設
されている。この保持用バーナー■としては後述の如き
構成のバーナーが用いてお9、そのバーナーの軸線17
aは水平(溶湯aの湯面に対し平行)となるようにしで
ある。
The preheating chamber 4 is formed high in the shape of a tower, and a material input port 9 is formed in the upper part of the preheating chamber 4. The floor surface 4 of this preheating chamber 4
a is formed to be the same as or higher than the floor surface 3a of the melting chamber 3. From the viewpoint of heat exchange efficiency, it is preferable to make the vertical length of the preheating chamber 4 as high as possible after considering workability.1. 1] is a plate-shaped input port cover for opening and closing the side stone input port 9, and is movable in the horizontal direction. An exhaust port L3 is formed in the input port cover 11. Reference numeral 15 denotes a melting burner provided on the side wall 3b of the melting chamber 3, and the axis IFIa of the burner is oriented horizontally toward the preheating chamber 4 so as to heat the material A placed in the melting chamber 3. It is arranged so that. The burner used for this melting has a structure as described below, and the height of its installation position is a short distance from the floor surface 3a to the axis of the burner.
The height dimension is set to about 100 to 200 mW. Reference numeral 16 denotes a communication hole provided in the partition wall 7, through which the heating gas of the melting burner 15 (including the burner frame) is communicated.
is provided to be able to flow into the preheating chamber 4 and melt the material A placed below the preheating chamber 4. The communication hole 16 is provided at the lowest part of the partition wall 7 so that the molten metal melted in the lower part of the preheating chamber 4 flows into the melting chamber 3 without accumulating in the preheating chamber 4. Reference numeral 17 denotes a holding burner provided on the side wall 2b of the holding chamber 2, and is arranged to prevent the upper surface of the molten metal a stored in the holding chamber 2 from cooling down and to keep it warm. As this holding burner (2), a burner having a structure as described below is used (9), and the axis of the burner (17)
The point a is horizontal (parallel to the surface of the molten metal a).

またその高さく溶湯aの湯面a′ からバーナー17の
軸線17 Bまでの高さ)は/jθ〜3θQWIR程度
の範囲内で設定される。更にまたこのノ(−ナー17の
向きは、バーナー17の長いフレーム(第3図符号の参
照)が矢印(第7図)で示すように保持室2内の溶湯a
の湯面a′及び保持室2の内側面に沿って延びるように
なっている。また上記保持ノ(−ナー17は保持室2内
の溶湯aの温度を一定に保つ為に後述の汲出室に設けら
れた熱電対から成る温度計(図示省略)の指示によって
点火、消火が自動的に行われるようになっている。摺は
隔壁5に設けられた連通孔で、溶解室3から保持室2に
向けて溶湯が流れ得る゛ように隔壁5の最下部に形成さ
れている−19は汲出室で、上方かの出日田として開放
されている汲出室壁2】によって構成され、上記保持室
2とは炉体1の一部から成、る隔壁ηによって区画され
ている。上記汲出室壁21は上記炉体1と一体に構成さ
れ、かつその炉体lと同じく断熱構造に構成されている
。上記汲出室19の汲出日田は蓋20aによって塞ぎ得
るようになっている0久は保持室2と汲出室19との連
通孔で、保持室2内に蓄えられる溶湯aの常態での上面
よシも下方位置に設けられている。24,25.26は
夫々保持室2、溶解室3、予熱室4の各側壁に形成され
た作業口で、夫々各室σ全域の点検、監視、清掃を容易
に行えるように充分な大きさに形成されておシ、開閉自
在の扉27,28.29によって閉ざされている。
Further, the height (the height from the surface a' of the molten metal a to the axis 17B of the burner 17) is set within a range of about /jθ to 3θQWIR. Furthermore, the direction of the burner 17 is such that the long frame of the burner 17 (see the reference numeral in Figure 3) is aligned with the molten metal a in the holding chamber 2 as shown by the arrow (Figure 7).
It extends along the hot water surface a' and the inner surface of the holding chamber 2. In addition, in order to keep the temperature of the molten metal a in the holding chamber 2 constant, the holding nozzle (-ner 17) is automatically ignited and extinguished according to instructions from a thermometer (not shown) provided in the drawing chamber, which will be described later. The sliding hole is a communication hole provided in the partition wall 5 and is formed at the lowest part of the partition wall 5 so that the molten metal can flow from the melting chamber 3 to the holding chamber 2. Reference numeral 19 denotes a pumping chamber, which is constituted by a pumping chamber wall 2 which is open as an upper part of the pumping chamber, and is separated from the holding chamber 2 by a partition wall η formed from a part of the furnace body 1. The pumping chamber wall 21 is constructed integrally with the furnace body 1, and has a heat-insulating structure like the furnace body 1.The pumping chamber wall 21 of the pumping chamber 19 has an opening that can be closed with a lid 20a. 24, 25, and 26 are communication holes between the holding chamber 2 and the pumping chamber 19, and are provided at a lower position than the upper surface of the molten metal a stored in the holding chamber 2 in the normal state. The work openings formed in the side walls of the melting chamber 3 and the preheating chamber 4 are large enough to allow easy inspection, monitoring, and cleaning of the entire area of each chamber, and the doors can be opened and closed freely. It is closed by 27, 28, and 29.

次に上記溶解用或いは保持用のバーナーb、17として
用いられているバーナーの構成を示す第5図について説
明する。(資)はバーナー、31はバーナー(資)が取
付けられるべき炉体の側壁(前記側7’3bあるいは2
b)の存在を示す。上記バーナー(1)に於て、羽はバ
ーナープレートで取付ボルトオによって側壁31に取付
けである。勢は本体で、フランジ34 a 1.(介し
てプレート心に固定しである。部は本体内部に具備され
た空気案内筒を示す。秀は本体勢の周拗の一部に形成さ
れた空気供給口で、ここには周知の如くバルブ等の空気
量調節具を介して図示外の空気供給装置が接続される。
Next, FIG. 5, which shows the structure of the burner used as the melting or holding burner b, 17, will be explained. (Main) is the burner, 31 is the side wall of the furnace body to which the burner (Main) is attached (the side 7'3b or 2
b) indicates the existence of In the burner (1), the blades are attached to the side wall 31 by means of attachment bolts on the burner plate. The force is the main body, and the flange 34a1. (It is fixed to the plate center through the plate core. The part indicates the air guide cylinder provided inside the main body. The part indicates the air supply port formed in a part of the periphery of the main body. An air supply device (not shown) is connected via an air amount regulator such as a valve.

辞は空気案内路で、案内筒あの周囲に環状に形成されて
おシ、環状の連通部37aを介して案内筒あの内部と連
通している。羽はプレート32に取付けられたバ−ナー
タイルで筒状に形成されており、その元部aSaの内径
は案内筒あの内径と同径に形成され、先部38bに至る
程ゆるやかに径が大きくなるように形成しである。尚こ
の径の大きくなる程度は、空気を後述の如く筒状の層流
として流し得るように、元部38aの径あ、るいは流す
空気量に対応して設計されるものである。菊はガス案内
管固定金具で、環状に形成され本体勢に固定しである。
The air guide passage is formed in an annular shape around the guide tube and communicates with the inside of the guide tube via an annular communication portion 37a. The blade is formed into a cylindrical shape by a burner tile attached to the plate 32, and the inner diameter of the base part aSa is formed to be the same as the inner diameter of the guide cylinder, and the diameter gradually increases as it reaches the tip part 38b. It is formed like this. The degree to which this diameter increases is designed in accordance with the diameter of the base portion 38a or the amount of air to be flowed so that air can flow as a cylindrical laminar flow as described later. The chrysanthemum is a gas guide tube fixing fitting, which is formed into an annular shape and is fixed to the main body.

41はガス案内管で筒状に形成され固定金具切に取付け
である。この案内管dは元部41aと、先に至る程ゆる
やかに減径するテーパ一部4]bと、先部41Cとから
成シ、先部4] Cはバーナータイル羽における元部3
8aの平行筒状部分の内側に位置している。
Reference numeral 41 denotes a gas guide tube which is formed into a cylindrical shape and is attached to a fixing fitting. This guide tube d consists of a base part 41a, a tapered part 4b whose diameter gradually decreases toward the tip, and a tip part 41C, where tip part 4C is the base part 3 in the burner tile blade.
It is located inside the parallel cylindrical portion of 8a.

弦は固定金具切に取付けだガス送入部材で、筒状に形成
され、その外周の一部にはガス供給口(−次ガス供給口
)43が備えられている。このガス供給日朝には周知の
如くパルプ等のガス量調節具を介して図示外のガス供給
装置が接続される。弱は案内路で、環状の空間となって
いる。6は部材Cに取付けた二次ガス吹出筒で、その先
部は案内管dの先部41Cにおけるテーパ一部41bと
の境界近くの部分の内側に位置してbる。柘はガス供給
口(二次ガス供給口)で、これは図示外のバルブ等のガ
ス量調節具を介して、上記のガス供給装置(個別のガス
供給装置でも可)に接続される。47はこのバーナーに
おけるフレームの吹出口で2重管構造となっておシ、バ
ーデータ3ルあの元部38aとガス案内管牡との間に形
成された空気の流通絡路と、ガス案内管社における先部
41 c内の空゛間のガス流通路菊とを有している。
The string is a gas supply member attached to a fixed metal fitting, and is formed in a cylindrical shape, and a gas supply port (secondary gas supply port) 43 is provided in a part of its outer periphery. On the day and morning of this gas supply, a gas supply device (not shown) is connected via a gas amount regulator such as pulp, as is well known. The weak part is the guideway, which is a circular space. Reference numeral 6 denotes a secondary gas blow-off tube attached to member C, the tip of which is located inside a portion of the tip 41C of the guide tube d near the boundary with the tapered portion 41b. A gas supply port (secondary gas supply port) is connected to the above gas supply device (an individual gas supply device may also be used) via a gas amount regulator such as a valve (not shown). Reference numeral 47 denotes the air outlet of the frame of this burner, which has a double pipe structure. The tip 41c has a gas flow passage in the space.

次に上記構成のバーナー(資)の作用を説明する。Next, the operation of the burner with the above configuration will be explained.

ガス供給装置及び空気供給装置から夫々燃料ガス(天然
ガス、LPG、都市ガス等)及び空気を各々の供給04
3,36に供給し、それらを夫々流通路オ、48から吹
き出させると共に、上記吹き出されたガスに図示外の周
知の着火装置により着火することによシ、吹出口47か
らバーナー加の軸線30&に沿ってバーナー美から離れ
る方向(第5図における左方向)に吹き出すバーナーフ
レームが形成される。この場合、供給口あに供給された
空気は案内路Jを通って連通部37aの全周から案内筒
部とガス案内管dの元部41aとの間の筒状の流通路卯
に流入し、□この流通路間を通って流通絡路に至る。空
気はこれらの流通路狛、48を流通する過程でその流れ
がバーナー(資)の軸線30&に沿って第5図左方に向
かう一様な流れとなり、流通絡路の先から筒状の空気流
(層流)となって軸線3oaに沿って流出する。一方供
給043に供給されたガスは、案内路利を通ってガス案
内管41内に流入する。このガスは案内管41内を通る
過程で軸線30aに沿って第5図左方に向かう一様な流
れとなり、流通路−の先から前記筒状の空気流の中に送
シ出される。
Supplying fuel gas (natural gas, LPG, city gas, etc.) and air from the gas supply device and air supply device, respectively04
3 and 36, and blow them out from flow passages O and 48, respectively, and ignite the blown gas with a well-known ignition device (not shown). A burner frame is formed along which the air blows out in a direction away from the burner beauty (to the left in FIG. 5). In this case, the air supplied to the supply port passes through the guide path J and flows from the entire circumference of the communication portion 37a into the cylindrical flow path between the guide tube portion and the base portion 41a of the gas guide tube d. , □ passes between these flow paths and reaches the flow linkage path. As the air flows through these flow paths 48, the flow becomes a uniform flow toward the left in FIG. It becomes a flow (laminar flow) and flows out along the axis 3oa. On the other hand, the gas supplied to the supply 043 flows into the gas guide pipe 41 through the guide channel. As this gas passes through the guide tube 41, it becomes a uniform flow toward the left in FIG. 5 along the axis 30a, and is sent into the cylindrical air flow from the end of the flow path.

この送シ出されたガスは上記筒状の空気の流れに引かれ
るようにして軸線30aに沿って進む。その進む過程で
ガスは周囲から少しずつ空気と混合して緩やかに燃焼し
上記バーナーフレームが形成される。ガスの燃焼が上記
のようにして行なわれる為、燃焼状態は完全燃焼でバー
ナーフレームの長さは非常に長くなり、またその温度は
低く(フレームのいずれの箇所においてもlOOθ〜/
100℃程度)で赤火@(黄橙乃至橙赤色)となシ、多
量の赤外線を放出する。更にまた燃焼騒音も静か(例え
ば70〜?IdB)である。
The discharged gas moves along the axis 30a as it is drawn by the cylindrical air flow. During the process, the gas is mixed with air little by little from the surroundings and burns slowly, forming the burner flame. Since the gas is burned as described above, the combustion state is complete combustion, the length of the burner frame is very long, and the temperature is low (lOOθ~// at any point on the flame).
At temperatures around 100℃), it becomes red (yellow-orange to orange-red) and emits a large amount of infrared rays. Furthermore, the combustion noise is also quiet (for example, 70-?IdB).

次に、上記燃焼状態やフレームの長さの微調整を行ない
たい場合には、二次ガス供給口46へのガス供給を行な
ったりあるいはその供給量を調整することによってその
目的を達成できる。この場合、供給口菊に供給されたガ
スは二次ガス吹出筒部を通って流通路49に滑らかに流
出し、前記のガス(−次ガス)と共に流通路49から一
様な流れのガス流となって前記筒状の空気流の中に流出
する。
Next, if it is desired to make fine adjustments to the combustion state or the length of the frame, the purpose can be achieved by supplying gas to the secondary gas supply port 46 or adjusting the amount of gas supplied. In this case, the gas supplied to the supply port smoothly flows out into the flow path 49 through the secondary gas blowout cylinder, and a uniform flow of gas flows from the flow path 49 together with the aforementioned gas (-secondary gas). and flows out into the cylindrical air stream.

次に上記バーナーの容量と、上記空気及びガスの流量あ
るいは流速と、フレーム長との例を示せば第1表の通シ
である。
Next, Table 1 shows an example of the capacity of the burner, the flow rate or velocity of the air and gas, and the frame length.

次に、上記のようなバーナーが装着された前記の金属溶
解保持炉を用いてアルミ材Aを溶解保持する場合の使用
例について説明する。先ず溶解バーナー拓と保持バーナ
ー17に点火して溶解室3と保持室2内を加熱、保温す
る。この溶解バーナーL5の加熱ノノズは連通孔16か
ら予熱室4内に入シ、この予熱室4内を通って排気口招
から排出され、また保持バーナー17の加熱ガスは保持
室2内を一巡した後連通孔おから溶解室3内に入り、そ
め後連通孔16及び予熱室4を通って排気口13から外
に排出される。この状態において、投入口蓋nを横移動
させて材料投入口9を開き、この材料投入口9からアル
ミ材A(冷材)を予熱室4内に節満杯状態になるように
投入し、その後再び材料投入口9を投入口蓋Uで閉じる
。上記のようにアルミ材Aを予熱室4内に投入しても、
予熱室4の内面とアルミ材A間やアルミ打入相互間には
隙間が有シ、上記両バーナー15 、17の加熱ガスは
予熱室4内の上記各隙間を通って外に排出される。従っ
て、予熱室4内に投入されたアルミ材Aは上記加熱ガス
との間で熱交換されて加熱され、加熱ガスはその熱交換
によって温度低下して排出され、熱エネルギーの有効利
用が図られる。上記予熱室4内の下部に投入されたアル
ミ*J Aは溶解バーナー15の加熱カス(バーナーフ
レーム52)によって加熱されて溶解され、この溶解さ
れた溶融、半固溶状態のアルミA′ が連通孔16から
溶解室3内に流れ込む。
Next, an example of use will be described in which aluminum material A is melted and held using the metal melting and holding furnace equipped with the burner as described above. First, the melting burner and the holding burner 17 are ignited to heat and keep warm the melting chamber 3 and the holding chamber 2. The heating nozzle of the melting burner L5 enters the preheating chamber 4 through the communication hole 16, passes through the preheating chamber 4, and is discharged from the exhaust port, and the heating gas of the holding burner 17 circulates inside the holding chamber 2. The bean curd curd enters into the post-soaking communication hole 16 and the preheating chamber 4 and is discharged to the outside from the exhaust port 13. In this state, the input port cover n is moved laterally to open the material input port 9, and the aluminum material A (cold material) is input into the preheating chamber 4 from this material input port 9 until it is fully charged, and then again. The material input port 9 is closed with the input port cover U. Even if aluminum material A is put into the preheating chamber 4 as described above,
There are gaps between the inner surface of the preheating chamber 4 and the aluminum material A and between the aluminum inserts, and the heated gas from the burners 15 and 17 is discharged outside through the gaps inside the preheating chamber 4. Therefore, the aluminum material A put into the preheating chamber 4 is heated by exchanging heat with the heating gas, and the heating gas is discharged after being lowered in temperature by the heat exchange, thereby making effective use of thermal energy. . Aluminum *J A charged into the lower part of the preheating chamber 4 is heated and melted by the heating scum (burner frame 52) of the melting burner 15, and this molten aluminum A' in a semi-solid solution state communicates with each other. It flows into the dissolution chamber 3 through the hole 16.

この溶解室3内に流れ込んだ溶融、半固溶のアルミA′
(符号A′ はその表面(湯面)を示す)はこの溶解室
3内を流下する間に、溶解バーナー15のバーナーフレ
ームシ及び保持バーナー17の刀口熱ガスによって加熱
されて溶融されると共に昇温される。その後この溶解室
3内の溶融アルミは連通札止を通って保持室2内に流れ
込む。この場合、上記連通孔摺には保持バーナー17の
加熱ガスが保持室2から溶解室3に向けて通過している
ので、上記のように溶融アルミが連通孔18を流下する
間もこの溶融アルミは保持バーナー17の加熱ガスで加
熱され、この加熱された溶融アルミが保持室2内に流れ
込む。この保持室2内に流れ込んだ溶融アルミは溶湯a
として保持室2の下部に第2図に示すように蓄えられ、
またその一部は連通孔Zを通って汲出室19内に流れ込
む。上記保持室2内に蓄えられた溶湯aは保持バーナー
17の加熱ガスによって加熱、保温される。この場合保
持バーナー17として前述のようなバーナーを採用して
いるので、バーナーフレームシの温度が約//θO′C
と低く、これにより溶湯aのメタルロスや炉材の損傷を
少なくでき、また溶湯a中へのガス混入も少なくできて
自動車重要保安部品等の鋳造にも安心して利用できる。
Molten, semi-solid aluminum A' that has flowed into the melting chamber 3
(Symbol A' indicates the surface (molten metal level)) While flowing down in the melting chamber 3, it is heated and melted by the burner frame of the melting burner 15 and the hot gas of the holding burner 17, and rises. Be warmed. Thereafter, the molten aluminum in the melting chamber 3 flows into the holding chamber 2 through the communication stop. In this case, since the heated gas from the holding burner 17 is passing through the communicating hole from the holding chamber 2 to the melting chamber 3, the molten aluminum flows down through the communicating hole 18 as described above. is heated by heating gas from the holding burner 17, and this heated molten aluminum flows into the holding chamber 2. The molten aluminum that has flowed into the holding chamber 2 is the molten metal a
As shown in FIG. 2, it is stored in the lower part of the holding chamber 2 as
Moreover, a part of it flows into the pumping chamber 19 through the communication hole Z. The molten metal a stored in the holding chamber 2 is heated and kept warm by the heating gas from the holding burner 17. In this case, since the burner described above is used as the holding burner 17, the temperature of the burner frame is approximately /θO'C.
As a result, metal loss in the molten metal a and damage to the furnace materials can be reduced, and gas contamination in the molten metal a can also be reduced, making it safe to use for casting important safety parts for automobiles.

苔だバーナーフレーム舟の温度が低く、しかも溶湯への
熱伝達が多量の赤外線によって効果的に行われる為、保
持室内雰囲気温度を非常に低くすることができ、その結
果、熱効率を高めることができると共に炉体耐大物の劣
化も少々くその寿命も長くすることができ、更にまた炉
内壁面にアルミナ層が発生することも殆んど生じない。
The temperature of the moss burner frame boat is low, and the heat transfer to the molten metal is effectively carried out by a large amount of infrared rays, so the atmospheric temperature in the holding chamber can be kept extremely low, and as a result, thermal efficiency can be increased. At the same time, the deterioration of large parts of the furnace body can be minimized, and the lifespan can be extended, and furthermore, the formation of an alumina layer on the inner wall surface of the furnace hardly occurs.

また多少のアルミ酸化物が生成されても上記フレーム団
の温度が低い為、その酸化物が焼成されて硬質化するこ
とがなく、その除去を容易に行々うことができる。
Further, even if some aluminum oxide is generated, since the temperature of the frame group is low, the oxide will not be fired and hardened, and it can be easily removed.

次に、上記溶解バーナー15によってアルミ材Aを溶解
する場合、溶解バーナー15に上記のようなバーナーを
採用しているので、メタルロスや炉材の損傷を防止でき
、またバーナーフレーム認の温度が低くしかもバーナー
フレーム社が至近距離からアルミ材Aに当たらないよう
にしているので、硬質のαアルミナの生成を少なくでき
、これによシ溶湯の品質を良くし得るはもちろんのこと
、アカ取シ作業を簡単にかつ短時間に行うことができる
Next, when the aluminum material A is melted by the melting burner 15, since the burner described above is adopted as the melting burner 15, metal loss and damage to the furnace material can be prevented, and the temperature of the burner flame is low. Moreover, since Burner Frame prevents the aluminum material A from being hit at close range, the production of hard alpha alumina can be reduced, which not only improves the quality of the molten metal but also improves the redness removal process. can be done easily and in a short time.

また上記のように予熱室4で加熱したアルミi4を溶解
室3においてバーナー15で溶解するようにし、しかも
上記のようなバーナーの採用によってアルミ材Aの吸熱
効掃を高めているので、溶解効率を極めて高くすること
ができ、燃費を低くできてランニングコストを下げるこ
とができる。また炉体lの放熱を低く抑えるようにして
いるので、炉体表面温度を約jθ°C〜7!;”Cと低
くすることができて作業環境をも良好にすることができ
る。
Furthermore, as mentioned above, the aluminum i4 heated in the preheating chamber 4 is melted by the burner 15 in the melting chamber 3, and by employing the burner as described above, the heat absorption effect of the aluminum material A is increased, so that the melting efficiency is improved. can be made extremely high, fuel consumption can be reduced, and running costs can be lowered. In addition, since the heat radiation of the furnace body l is kept low, the furnace body surface temperature can be kept at about jθ°C ~ 7! It can be made as low as ``C'' and the working environment can be improved.

尚前記バーナー15 、17はそれらの軸mlf+ a
 、 17 aが水平から/j°  程度までの範囲内
でやや下方を向くように配置してもよい。
Incidentally, the burners 15 and 17 have their axes mlf+a
, 17a may be arranged so as to face slightly downward within a range of about /j° from the horizontal.

以上のように本発明にあっては、炉体1において炉体内
に設定される湯面a′ あるいはA” よシも上方の炉
体側壁2bあるいは3bにバーナー17あるいは15を
備えさせ、そのバーナーは上記湯面に沿ってバーナーの
フレームを発生させ得る様にした吹出口47を備えてお
り、上記吹出口47は二重管状に形成されて外側流通I
’d aと内側流通路菊とを有しており、しかも上記外
側流通路侶には空気供給口あを連通さ寝る一方、上記内
側流通路豹にはガス供給日朝を連通させ、更に上記外側
流通路路の大きさは、比較的大量の空気を該外側流通路
から筒状の空気流にして長径間に渡シ吹出し得る大きさ
に構成する一方、内側流通路49の大きさは、該内側流
通路から吹出されたガスが前記外周に位置する筒状の空
気流に案内されて長径間に渡って移送され得るよう比較
的少量のガスを吹き出し得る大きさに構成しであるから
、 (イ)上記炉体1内にアルミ等の金属の溶湯が位置する
状態において上記バーナーから吹出されるフレーム8あ
るいは認はその湯面a′ あるいはA“ に沿って移動
し、上記湯面を加温し湯温を高めたシ或いは湯面の温度
降下を防止するに役立たせ得る効果がある。
As described above, in the present invention, the burner 17 or 15 is provided on the side wall 2b or 3b of the furnace body above the hot water level a' or A'' set in the furnace body 1, and the burner is equipped with an air outlet 47 that can generate a flame of the burner along the hot water surface, and the air outlet 47 is formed in a double pipe shape and is connected to the outside flow I.
In addition, an air supply port is connected to the outer flow path, and a gas supply port is connected to the inner flow path, and the outer flow path is connected to the air supply port. The size of the flow passage is such that a relatively large amount of air can be made into a cylindrical air flow from the outer flow passage and blown out over a long span, while the size of the inner flow passage 49 is such that The size is such that a relatively small amount of gas can be blown out so that the gas blown out from the inner flow passage can be guided by the cylindrical air flow located on the outer periphery and transferred over a long span. b) When molten metal such as aluminum is located in the furnace body 1, the flame 8 or molten metal blown out from the burner moves along the molten metal surface a' or A'' and heats the molten metal surface. This has the effect of increasing the temperature of the hot water or preventing a drop in the temperature of the hot water surface.

(ロ)然も上記の場合、上記のバーナーは吹出口から筒
状の長い空気流とその内側に位置するガス流とを吹出す
ものであるから、燃焼状態においては上記ガスが長径間
において空気と緩やかに混合しながら燃焼して赤色の長
い焔が形成され、上記湯面に対する直接伝熱があるは勿
論のこと赤い焔から発する赤外線によっても上記湯面を
加熱して効率のよい熱伝達ができる大きな効果がある。
(b) However, in the above case, the burner blows out a long cylindrical air stream and a gas stream located inside the air outlet from the outlet, so in the combustion state, the above gas flows into the air over the long span. A long red flame is formed by combustion while gently mixing with the hot water, and not only is there direct heat transfer to the hot water surface, but also the infrared rays emitted from the red flame heat the hot water surface for efficient heat transfer. There is a big effect that can be achieved.

(ハ)またその熱の伝達を行なう場合、周知の如く赤外
線はアルミ合金の湯面に反射されることなく(メタルミ
ラー効果の妨害を受けることなく)、極めて高効率でも
って溶湯に熱吸収される効果もある。
(c) When transferring heat, as is well known, infrared rays are absorbed by the molten metal with extremely high efficiency without being reflected by the surface of the aluminum alloy (without being interfered with by the metal mirror effect). It also has the effect of

に)然も上記赤火焔はアルミの溶融温度に比較して温度
差が小さいという効果がある。即ち一般にアルミの溶湯
の温度は7jθ°Cを越えないのが望ましいものである
が、上記赤火焔の温度はそれに比較して僅かに高いlθ
θO′Cとか//θO’Cぐらいに維持することができ
る特長があシ、仮に上記バーナーの赤火焔が直接に湯面
に触れる様なことがあっても、アルミの酸化を極めて少
なくし得る効果があシ、メタルロスを少なくしたりハー
ドスポットの発生を防止するうえに大きな効果がある。
However, the red flame has the effect of having a smaller temperature difference than the melting temperature of aluminum. In other words, it is generally desirable that the temperature of molten aluminum does not exceed 7jθ°C, but the temperature of the red flame is slightly higher than 7jθ°C.
It has the advantage of being able to maintain θO'C at around θO'C, and even if the red flame of the burner comes into direct contact with the hot water surface, oxidation of the aluminum can be extremely reduced. It is highly effective and has great effects in reducing metal loss and preventing the occurrence of hard spots.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第7図は水平断面図
、第2図ホト」線断面図、第3図は■−I線断面図(拡
大図)、第を図はIV−IV線断面図(拡大図)、第5
図はバーナーの縦断面図。 1・・・炉体、加・・・バーナー、47・・・吹出口、
槌・・・外側流通路、49・・・内側流通路。 第1図 第5図 第3図 第4図
The drawings show an embodiment of the present application, and FIG. 7 is a horizontal sectional view, FIG. 2 is a sectional view taken along the line "Photo", FIG. Line cross-sectional view (enlarged view), 5th
The figure is a vertical cross-sectional view of the burner. 1...furnace body, addition...burner, 47...outlet,
Hammer: outer flow path, 49: inner flow path. Figure 1 Figure 5 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 炉体において炉体内に設定される!よりも上方の炉体側
壁にバーナーを備えさせ、そのバーナーは上記湯面に沿
ってバーナーのフレームを発生させ得る様にした吹出口
(を備えておシ、上記吹出口は二重管状に形成されて外
側流通路と内側流通路とを有しておシ、しかも上記外側
流通路には空気供給口を連通させる一方、上記内側流通
路にはガス供給口を連通させ、更に上記外側流通路の大
きさは、比較的大量の空気を該外側流通路から筒状の空
気流にして長径間に渡り吹出し得る大きさに構成するニ
ガ、内側流通路の大きさは、該内側流通路から吹出され
たガスが前記外周に位置する筒状の空気流に案内されて
長径間に渡って移送され得る−よう比較的少量のガスを
吹き出し得る大きさに構成しであることを特徴とする金
属溶解炉。
Set inside the furnace body! A burner is provided on the side wall of the furnace body above the molten metal, and the burner is equipped with an outlet (which is configured to generate a flame of the burner along the above-mentioned hot water surface, and the above-mentioned outlet is formed in a double pipe shape). and has an outer flow passage and an inner flow passage, and an air supply port is communicated with the outer flow passage, a gas supply port is communicated with the inner flow passage, and the outer flow passage is connected with an air supply port. The size of the inner flow passage is such that a relatively large amount of air can be blown out from the outer flow passage into a cylindrical air flow over a long span, and the inner flow passage is large enough to be blown out from the inner flow passage. The metal melting method is configured to have a size that allows a relatively small amount of gas to be blown out so that the gas can be guided by the cylindrical air flow located on the outer periphery and transported over a long span. Furnace.
JP4119883A 1983-03-11 1983-03-11 Metal melting furnace Granted JPS59167625A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4119883A JPS59167625A (en) 1983-03-11 1983-03-11 Metal melting furnace
GB08404884A GB2136547B (en) 1983-03-11 1984-02-24 Metal melting furnace
DE19843408542 DE3408542A1 (en) 1983-03-11 1984-03-08 METAL MELTING STOVE
FR8403745A FR2542431B1 (en) 1983-03-11 1984-03-12 METAL MELTING OVEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119883A JPS59167625A (en) 1983-03-11 1983-03-11 Metal melting furnace

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP33194988A Division JPH02192587A (en) 1988-12-29 1988-12-29 Metal smelting and retaining furnace
JP33195088A Division JPH01260287A (en) 1988-12-29 1988-12-29 Metal melting and retaining furnace

Publications (2)

Publication Number Publication Date
JPS59167625A true JPS59167625A (en) 1984-09-21
JPS6310356B2 JPS6310356B2 (en) 1988-03-05

Family

ID=12601719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119883A Granted JPS59167625A (en) 1983-03-11 1983-03-11 Metal melting furnace

Country Status (4)

Country Link
JP (1) JPS59167625A (en)
DE (1) DE3408542A1 (en)
FR (1) FR2542431B1 (en)
GB (1) GB2136547B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279014A (en) * 1987-03-18 1988-11-16 ル・エール・リクイツド・ソシエテ・アノニム・プール・ル・エチユド・エ・ル・エクスプルワテシヨン・デ・プロセデ・ジエオルジエ・クロード Method and device for decomposing noxious outflow gas
JPH01260287A (en) * 1988-12-29 1989-10-17 Meichiyuu Seiki Kk Metal melting and retaining furnace
JPH02192587A (en) * 1988-12-29 1990-07-30 Meichiyuu Seiki Kk Metal smelting and retaining furnace
JP2007017129A (en) * 2005-07-11 2007-01-25 Denso Corp Combustion control method for molten metal holding furnace

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582479A (en) * 1984-12-31 1986-04-15 The Cadre Corporation Fuel cooled oxy-fuel burner
US5500033A (en) * 1995-01-23 1996-03-19 The Boc Group, Inc. Melt heating method
US5563903A (en) * 1995-06-13 1996-10-08 Praxair Technology, Inc. Aluminum melting with reduced dross formation
US5743723A (en) * 1995-09-15 1998-04-28 American Air Liquide, Inc. Oxy-fuel burner having coaxial fuel and oxidant outlets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572877U (en) * 1980-06-04 1982-01-08
JPS57155004A (en) * 1981-03-20 1982-09-25 Sanree Reinetsu Kk Fuel hole in internal combustion burner of small diameter combustion cylinder
JPS5913998U (en) * 1982-07-20 1984-01-27 株式会社広築 Non-ferrous metal melting furnace

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1314025A (en) * 1969-10-08 1973-04-18 East Midlands Gas Board Fuel burners
US3813209A (en) * 1973-02-26 1974-05-28 H Venetta Preheating of metal scrap
DE2530170B2 (en) * 1975-07-05 1977-05-18 Ludwig-Ofag-Indugas Industrieofenanlagen Gmbh, 4300 Essen INDUSTRIAL BURNER
JPS5913998B2 (en) * 1976-11-15 1984-04-02 エプソン株式会社 printer
US4095929A (en) * 1977-03-14 1978-06-20 Combustion Engineering, Inc. Low BTU gas horizontal burner
IT7923456V0 (en) * 1979-12-21 1979-12-21 Forcesi G O MELTING FURNACE FOR NON-FERROUS METALS WITH PRE-HEATING CHAMBER.
DE3005152A1 (en) * 1980-02-08 1981-08-13 W. Strikfeldt & Koch Gmbh, 5276 Wiehl Metal melting and storage furnace - has wall tapering towards cover and forming reflective radiation faces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572877U (en) * 1980-06-04 1982-01-08
JPS57155004A (en) * 1981-03-20 1982-09-25 Sanree Reinetsu Kk Fuel hole in internal combustion burner of small diameter combustion cylinder
JPS5913998U (en) * 1982-07-20 1984-01-27 株式会社広築 Non-ferrous metal melting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279014A (en) * 1987-03-18 1988-11-16 ル・エール・リクイツド・ソシエテ・アノニム・プール・ル・エチユド・エ・ル・エクスプルワテシヨン・デ・プロセデ・ジエオルジエ・クロード Method and device for decomposing noxious outflow gas
JPH01260287A (en) * 1988-12-29 1989-10-17 Meichiyuu Seiki Kk Metal melting and retaining furnace
JPH02192587A (en) * 1988-12-29 1990-07-30 Meichiyuu Seiki Kk Metal smelting and retaining furnace
JPH0331993B2 (en) * 1988-12-29 1991-05-09 Meichu Seiki Kk
JP2007017129A (en) * 2005-07-11 2007-01-25 Denso Corp Combustion control method for molten metal holding furnace

Also Published As

Publication number Publication date
FR2542431A1 (en) 1984-09-14
FR2542431B1 (en) 1988-05-27
GB8404884D0 (en) 1984-03-28
DE3408542A1 (en) 1984-09-13
GB2136547A (en) 1984-09-19
DE3408542C2 (en) 1992-07-30
GB2136547B (en) 1986-07-30
JPS6310356B2 (en) 1988-03-05

Similar Documents

Publication Publication Date Title
JPS59167625A (en) Metal melting furnace
JPS63282484A (en) Non-ferrous metal melting furnace
CN108826971A (en) Novel energy-conserving Hearth Furnace melting furnace
JPH064171Y2 (en) Radiant chives
CN208505005U (en) Novel energy-conserving Hearth Furnace melting furnace
CN208296639U (en) Combustion chamber Quick temperature adjustment
JPS61199007A (en) Hot air valve
US4132394A (en) Furnaces
JP2000129366A (en) Method for melting non-ferrous metal and apparatus used for this method
JPH01222102A (en) Heat recuperative-type combustor
JPS6035040Y2 (en) melting furnace
CN112212689A (en) Heat accumulating type gas crucible furnace
JPS6160261A (en) Ladle heating device
JPH0368319B2 (en)
JPS59161673A (en) Metal melting retaining furnace
JP7174467B1 (en) melting furnace
CN214108770U (en) Ladle baking device and ladle baking device system
CN217131273U (en) Water-cooling full-premixing gas low-nitrogen plane burner
CN216482200U (en) Kiln tail cooling device for tunnel kiln
CN107192278A (en) High temperature resistant shoe last tube core heat exchanger
KR200327910Y1 (en) the air scoop structure for a briquet boiler
JPH0121972Y2 (en)
JPS594631B2 (en) aluminum melting furnace
JPS5910089Y2 (en) Joint kiln type glass melting furnace
JPS5926237Y2 (en) Furnace wall structure