JPS5916623A - Method for estimating material tension of continuous rolling mill - Google Patents

Method for estimating material tension of continuous rolling mill

Info

Publication number
JPS5916623A
JPS5916623A JP57124131A JP12413182A JPS5916623A JP S5916623 A JPS5916623 A JP S5916623A JP 57124131 A JP57124131 A JP 57124131A JP 12413182 A JP12413182 A JP 12413182A JP S5916623 A JPS5916623 A JP S5916623A
Authority
JP
Japan
Prior art keywords
tension
roll
stand
equation
torque arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124131A
Other languages
Japanese (ja)
Inventor
Sunao Tanimoto
直 谷本
Yoshitaka Hayashi
林 美孝
Morio Saito
斉藤 森生
Toshifumi Yabuuchi
薮内 捷文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57124131A priority Critical patent/JPS5916623A/en
Publication of JPS5916623A publication Critical patent/JPS5916623A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To estimate material tension with high accuracy, by correcting a load distributing variation in a roll cutting tool, which is caused by a tension variation, when the material tension is estimated by utilizing a torque arm. CONSTITUTION:A torque arm coefficient in each stand roll cutting tool is generated at each stand by use of an equation introducing a normal torque arm coefficient a0 which is not varied so much by a variation of tension, the first stand inlet-side tension is set to zero, and tension between stands is derived successively. In this regard, in the equation, G: rolling torque (upper roll portion), R': a radius of a flat roll, DELTAh: a difference of plate thickness (H-h), P: total rolling load, B: material width, beta: a tension influence coefficient, (tf): front tension (per unit area), (tb): back tension (per unit area), R: a radius of a roll, H: material thickness at the inlet side, alpha: biting angle, and (h): material thickness at the outlet side.

Description

【発明の詳細な説明】 この発明は連続的に配置された圧延機において、スタン
ド間の材料張力を圧延荷重及び圧延トルクを測定するこ
とにより推定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for estimating material tension between stands in a continuously arranged rolling mill by measuring rolling load and rolling torque.

連続式圧延機において材料張力を圧延荷重及び圧延トル
クを測定してトルクアームを利用して推定することは、
特公昭49−18538に述べられている如く公知とな
っている。
Estimating material tension in a continuous rolling mill by measuring rolling load and rolling torque and using a torque arm is as follows:
It is well known as described in Japanese Patent Publication No. 49-18538.

これでは、圧延トルクと圧延荷重、前方張力、後方張力
との関係を第iスタンドにおいて次式%式% (1) G;圧延トルク(土ロール分) P;圧延荷重 tfs前方張力(単位面積当り) tb客後方張力(#) 8f:材料出側断面積 sb:材料入側断面積 Jp:圧延トルクアーム ノtf:前方張力トルクアーム ノtb:後方張力トルクアーム である。
In this case, the relationship between rolling torque, rolling load, front tension, and rear tension at the i-th stand is expressed by the following formula (1) G: Rolling torque (earth roll) P: Rolling load tfs Front tension (per unit area) ) tb Customer rear tension (#) 8f: Material outlet cross-sectional area sb: Material input cross-sectional area Jp: Rolling torque arm TF: Front tension torque arm TB: Rear tension torque arm.

そして、第1スタンド入側の張力を零と仮定し、かつ tflifl;tbl+t abl なる性質を利用して、上流スタンドから順次代入法で張
力を求める方法である。
This method assumes that the tension on the entrance side of the first stand is zero, and uses the property tflifl;tbl+tabl to calculate the tension from the upstream stand by sequential substitution.

さて、上記(1)式は公知の次のH1llO式をもとに
している。
Now, the above equation (1) is based on the following well-known H1llO equation.

−〇。5(R’−R)αP   ・・・・・・・・・・
・・(2)ここで、 G;圧延トルク(土ロール分) R;ロール半径 R′:偏平ロール半径 B:材料中 θ:ロールバイト内角度 p(の:ロールバイト内荷重分布 α:噛み込み角 tf+前方張力(単位面積当9) tb:後方張力(単位面積当り) h:材料出側厚 H;材料入側厚 P:全圧延荷重 である。
−〇. 5(R'-R)αP・・・・・・・・・・・・
...(2) Here, G: Rolling torque (earth roll portion) R: Roll radius R': Flat roll radius B: Inside the material θ: Angle p inside the roll bite (of: Load distribution inside the roll bite α: Biting Angle tf + Front tension (9 per unit area) tb: Back tension (per unit area) h: Material exit thickness H; Material entry thickness P: Total rolling load.

右辺第1項はロールバイト内荷重分布の材料出口廻りの
1次モーメントであp1解析的に解くことは難しく、従
って次式で近似する。
The first term on the right side is the first moment around the material exit of the load distribution in the roll bite, and it is difficult to solve p1 analytically, so it is approximated by the following equation.

ここで a;トルクアーム係数(中0.5) Δh;板厚差(H−h) 即ち、ロールバイト内接触弧長(α石)の中心付近に集
中荷重Pが作用するとしている(第1図)。
Here, a: Torque arm coefficient (medium 0.5) Δh: Plate thickness difference (H-h) In other words, it is assumed that the concentrated load P acts near the center of the contact arc length (α stone) in the roll bite (first figure).

また、(2)式右辺第3項のロール偏平環を微小として
無視した場合、最終的に次式が得られ、(1)式と構造
が一致する。
Furthermore, when the roll oblate ring in the third term on the right side of equation (2) is ignored as being minute, the following equation is finally obtained, which matches the structure of equation (1).

G中aρ石圧p−o、5Rn(ifh−tbn)   
・・・−四−曲−−−−−<4)ところで、(1) 、
 (4)式を用いて張力を推定する方法では、圧延中に
トルクアーム係数aが余力変動しないことを利用してい
る。
G medium aρ stone pressure p-o, 5Rn (ifh-tbn)
...-4-songs-----<4) By the way, (1),
The method of estimating tension using equation (4) utilizes the fact that the torque arm coefficient a does not vary in residual force during rolling.

しかし、本方式の最大の欠点は変動する張力を推定しよ
う止しながら、張力変化によるロールバイト内荷重分布
の変化を無視して腟る点にある。即ち圧延理論に依れば
、例えq後方張力がΔtb程増加すると、ロールバイト
内荷重分布の重心は材料出口に近づく(第2図)。従っ
て(4)式では見かけ上トルクアーム係数aが変化した
事になる。
However, the biggest drawback of this method is that while it fails to estimate the varying tension, it ignores changes in the load distribution within the roll bite due to changes in tension. That is, according to rolling theory, if the q rear tension increases by Δtb, the center of gravity of the load distribution within the roll bite approaches the material exit (FIG. 2). Therefore, in equation (4), the torque arm coefficient a appears to have changed.

ところで、近年材料張力制御の筒精度化のために、張力
推定精度を向上することが要求され、 ている。
Incidentally, in recent years, in order to improve the accuracy of material tension control, there has been a demand for improved tension estimation accuracy.

この発明は、上記従来技術の問題点を解消することを目
的とするものである。
This invention aims to solve the problems of the above-mentioned prior art.

この発明方法の特徴は、トルクアーム係数を求める際に
、張力変動に伴うロールバイト内荷重分布変動を補正す
ることにより連続圧延機の材料張力を高精度で推定する
ものである。
The feature of this invention method is that when determining the torque arm coefficient, the material tension of the continuous rolling mill is estimated with high accuracy by correcting the load distribution variation in the roll bite caused by the tension variation.

以下に、この発明の考え方を詳細に説明する。The concept of this invention will be explained in detail below.

張力変動によるロールバイト内荷重分布変化を無視した
場合の張力推定誤差は以下のようになる。
The tension estimation error when ignoring changes in the load distribution within the roll bite due to tension fluctuations is as follows.

圧延荷重式は次式で表わせる。The rolling load formula can be expressed by the following formula.

キB(Y、耳(kp Qp−βtf−(1−β)tbl
   ・・・・・・・・・・・・・・・(5)5− ここで、 kpSロールバイト内材料変形抵抗 一方、 β中 0.5f]==7(l+t)         
・・・・・・・・・・・・・・・・・・・・・・・・(
6)ここで、 r  i  (Hh)/)I f;先進率 である。
KiB(Y, ear(kp Qp-βtf-(1-β)tbl
・・・・・・・・・・・・・・・(5) 5− Here, kpS roll bite material deformation resistance, β inside 0.5f]==7(l+t)
・・・・・・・・・・・・・・・・・・・・・・・・(
6) Here, r i (Hh)/) If; advanced rate.

即ち、ロールバイト内荷重分布に対する張力の影響は、
接触弧の出側〃Y馬の範囲に前方張力tf分だけ荷重分
布を減少させ、入側(l−/i)茜の範囲に後方張力t
b分だけ荷重分布を減少させたと考えることができる。
In other words, the influence of tension on the load distribution within the roll bite is
The load distribution is reduced by the amount of forward tension tf on the exit side of the contact arc (Y horse range), and the rear tension t is applied on the entry side (l-/i) of the Akane range.
It can be considered that the load distribution is reduced by b.

その模式図を第3図に示す。A schematic diagram thereof is shown in FIG.

そこで、張力に因り変動しない正規化トルクアーム係数
をaoとし、上述の議論をモーメントに適用すると、(
2)式右辺第1項は次式の如く近似できる。
Therefore, if we let ao be the normalized torque arm coefficient that does not change due to tension, and apply the above discussion to the moment, we get (
2) The first term on the right side of the equation can be approximated as shown in the following equation.

6− a (FE’7Fr CP十B)QE’7Ti l l
j tf +(1−β)tbl)   、−0,5BR
’Δh(β2tf+(1−β)(1+β)tbl   
 ・・・・・・・・・(7)例えば、H= 30HM、
 h = 17 m、 a = 0.5、第1スタンド
とすると、β=0.4とな’り、<7)式に代入するa
 r「五P + 0.5 BR’Δhβ(1−β) (
tt −tb ) == (8)従って(8)式右辺第
2項は、従来方式でi’i 、(’)式右辺第2項に混
入していることになる。
6-a (FE'7Fr CP10B)QE'7Ti l l
j tf + (1-β)tbl) , -0,5BR
'Δh(β2tf+(1-β)(1+β)tbl
・・・・・・・・・(7) For example, H= 30HM,
If h = 17 m, a = 0.5, and the first stand, then β = 0.4, and substituting a into formula <7)
r'5P + 0.5 BR'Δhβ(1-β) (
tt - tb ) == (8) Therefore, the second term on the right side of equation (8) is mixed into i'i and the second term on the right side of equation (') in the conventional method.

RキR’、tb=0とし、各位を代入すれは、A:B=
l(8)式右辺第2項114)式右辺第2項)=Δhβ
(l−β)(tr−tb):(tfh−cbn)中3t
f : 17tf 卵ち、(4)式に依る従来方式では、第1スタンド出側
張力に約18 S (VB)の誤差が混入することにな
り、あわせて上流スタンドから順次代入法で張力を推定
するために、下流スタンドでは本誤差は拡大することと
なる。
Set RkiR', tb=0, and substitute each position, A:B=
l (8) second term on the right side of the equation 114) second term on the right side of the equation) = Δhβ
(l-β) (tr-tb): 3t in (tfh-cbn)
f: 17tf However, in the conventional method based on equation (4), an error of about 18 S (VB) will be mixed into the tension on the exit side of the first stand, and the tension will be estimated by sequential substitution method from the upstream stand. Therefore, this error will increase at downstream stands.

即ち、張力変動に因るロールバイト内荷重分布の変動を
無視した従来の(4)式を基本とする張力推定方法は、
大きな誤差を有していると言える。
In other words, the conventional tension estimation method based on equation (4), which ignores variations in the load distribution within the roll bite due to tension variations, is as follows:
It can be said that there is a large error.

本発明は、張力の推定に(1)式又Vi(4)式の代り
に張力の変動に因9余カ変動しない正規トルクアーム係
数aを導入した次式を用いるものである。
The present invention uses the following equation in which a normal torque arm coefficient a, which does not change by more than 9 times due to changes in tension, is introduced in place of equation (1) or equation Vi(4) for estimating tension.

G=a of1rIWCP十珈Cr71(βtf+(1
−β) ib l )−0,5BR’Δh(β噴上(1
−β2)tbl−o、5Rn(trh−ibH)−0,
5(R’−R)αP           ・・・・・
・・・・・・・・・・(9)本式をもとに種々の張力推
定方法が考えられる。1つには前述の特公昭49−18
538に述べると同様な方法で、各スタンド毎に上記式
を作成し、第1スタンド入側張力を零とし、順次代入法
でスタンド間張力を求める。
G=a of1rIWCP Jukka Cr71(βtf+(1
-β) ib l )-0,5BR'Δh(β eruption (1
-β2)tbl-o, 5Rn(trh-ibH)-0,
5(R'-R)αP...
(9) Various tension estimation methods can be considered based on this equation. One example is the aforementioned special public service in 1977-18.
538, the above formula is created for each stand, the tension on the first stand entry side is set to zero, and the inter-stand tension is determined by sequential substitution.

2つには本出願人の出願に係る特願昭56−18549
3に示す漸化形最小自乗法を用いて各スタンドロールバ
イト内のトルクアーム係数を算出し、その後スタンド間
張力を推定する方法にも適用できる。この場合は&ρ百
覇Pの代りに aofW11Cp+M’fF7ii1βtf+(1−β
)tb))−0,5BR’Δh(β2tf+(1−β2
)tblを用いる必要があり、本項に、求める未知数t
f 、 tbを含んでいる問題を有する。しかし、数値
解析手法でよく用いられる如く、前回サンプリング時に
算出したtf 、 tbを用いて本項を算出し、漸化形
最小自乗法を適用し、しかる後に今回サンプリング時の
tf 、 tbを求める方法で充分収束する。
The second is the patent application No. 18549 filed by the present applicant.
The present invention can also be applied to a method of calculating the torque arm coefficient within each stand roll bite using the recursive least squares method shown in No. 3, and then estimating the inter-stand tension. In this case, instead of &ρhyakuhaP, aofW11Cp+M'fF7ii1βtf+(1-β
)tb))-0,5BR'Δh(β2tf+(1-β2
) tbl, and in this section, the unknown quantity t to be sought is
We have a problem involving f, tb. However, as is often used in numerical analysis methods, this term is calculated using tf and tb calculated at the previous sampling time, the recursive least squares method is applied, and then tf and tb at the current sampling time are calculated. It converges sufficiently.

こノ発明方法は上記のよう寿もので、材料張力をトルク
アームを利用して推定するに際し、張力変動に伴うロー
ル・寸イト内荷重分布変動を補正することによって、材
料張力を高精度で推定することができる。
The method of this invention has a long life as described above, and when estimating material tension using a torque arm, it can estimate material tension with high accuracy by correcting the variation in load distribution within the roll and dimension due to tension variation. can do.

9−9-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法で荷重がロールノ々イト部に集中して
作用するとするモデルの説明図、第2図は圧延理論によ
るロールノ々イト内荷重分布の重心の移動状況を示す説
明図、第3図はロールレバイト内荷重分布に対する張力
の影響を示す説明図でおる。 出願人代理人  弁理士 鈴 江 武 彦lO− 矛1図 に3図 ロロ 3Ip2図
Figure 1 is an explanatory diagram of a model in which the load acts concentratedly on the roll nozzle in the conventional method. Figure 2 is an explanatory diagram showing the movement of the center of gravity of the load distribution in the roll nozzle based on rolling theory. The figure is an explanatory diagram showing the influence of tension on the load distribution within the rolllevite. Applicant's agent Patent attorney Suzue Takehiko lO- 1 figure, 3 figures, Roro 3Ip2 figures

Claims (1)

【特許請求の範囲】[Claims] 連続圧延機の材料張力を圧延荷重及び圧延トルクを測定
しトルクアームを利用して推定するに際し、張力変動に
伴うロールバイト内荷重分布変動を補正して材料張力を
推定することを特徴とする連続圧延機の材料張力推定方
法。
When estimating the material tension of a continuous rolling mill by measuring the rolling load and rolling torque and using a torque arm, the continuous rolling mill is characterized in that the material tension is estimated by correcting load distribution fluctuations within the roll bit due to tension fluctuations. Method for estimating material tension in rolling mills.
JP57124131A 1982-07-16 1982-07-16 Method for estimating material tension of continuous rolling mill Pending JPS5916623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124131A JPS5916623A (en) 1982-07-16 1982-07-16 Method for estimating material tension of continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124131A JPS5916623A (en) 1982-07-16 1982-07-16 Method for estimating material tension of continuous rolling mill

Publications (1)

Publication Number Publication Date
JPS5916623A true JPS5916623A (en) 1984-01-27

Family

ID=14877682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124131A Pending JPS5916623A (en) 1982-07-16 1982-07-16 Method for estimating material tension of continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS5916623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130210A (en) * 1984-07-19 1986-02-12 Kobe Steel Ltd Method for correcting interstand tension in tandem rolling of strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394248A (en) * 1977-01-28 1978-08-18 Mitsubishi Electric Corp Tension controlling method of continuous rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394248A (en) * 1977-01-28 1978-08-18 Mitsubishi Electric Corp Tension controlling method of continuous rolling mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130210A (en) * 1984-07-19 1986-02-12 Kobe Steel Ltd Method for correcting interstand tension in tandem rolling of strip

Similar Documents

Publication Publication Date Title
TWI412411B (en) Method for adjusting flatness and/or roughness of metal strip and lubricant applying device
JPS5916623A (en) Method for estimating material tension of continuous rolling mill
JP4232230B2 (en) Leveling control method and apparatus for hot finishing mill
JP3479820B2 (en) Method and apparatus for controlling meandering of a strip in a continuous rolling mill
JPH0569021A (en) Method and device for controlling rolling mill
JP3205175B2 (en) Strip width control method in hot rolling
JP2001353513A (en) Method for predicting amount of wear of work roll of rolling mill
JPH05337527A (en) Method for rolling steel strip
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JPS57146414A (en) Controlling method of sheet thickness in cold tandem mill
JP3129162B2 (en) Method and apparatus for controlling thickness of tandem rolling mill
JPS5916527B2 (en) How to correct meandering strips
JPH0788518A (en) Method for controlling continuous rolling mill
JPH07214124A (en) Device for controlling rolling mill
JPH02307611A (en) Setting up method for sheet rolling
JPS5886918A (en) Material tension estimating method of continuous rolling mill
JP3048185B2 (en) Adaptive correction method for tandem rolling mill
JPH0357507A (en) Method for controlling meandering of plate under rolling
JPH05104123A (en) Hot continuous rolling method
JPS6040607A (en) Rolling method of steel bar
JPH07256323A (en) Speed control method for hot rolling mill
JPH0116205B2 (en)
JPH07227612A (en) Tension control method for continuous rolling mill
JPH0576367B2 (en)
JPS63299807A (en) Control method for plate width in hot rolling of steel plate