JPS59165980A - Vector control system of induction motor - Google Patents

Vector control system of induction motor

Info

Publication number
JPS59165980A
JPS59165980A JP58039432A JP3943283A JPS59165980A JP S59165980 A JPS59165980 A JP S59165980A JP 58039432 A JP58039432 A JP 58039432A JP 3943283 A JP3943283 A JP 3943283A JP S59165980 A JPS59165980 A JP S59165980A
Authority
JP
Japan
Prior art keywords
phase
value
induction motor
coefficient
angular frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58039432A
Other languages
Japanese (ja)
Other versions
JPH0526435B2 (en
Inventor
Kohei Onishi
公平 大西
Tadashi Ashikaga
足利 正
Masayuki Terajima
寺嶋 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP58039432A priority Critical patent/JPS59165980A/en
Publication of JPS59165980A publication Critical patent/JPS59165980A/en
Publication of JPH0526435B2 publication Critical patent/JPH0526435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To enable to control to always perpendicularly cross a magnetic flux to the secondary current including the interference variation due to the angular frequency of a power source by correcting to cancel the mutual interference due to the primary current. CONSTITUTION:A correction calculator 3 calculates the correction value for correcting the interference due to alpha-phase primary current i1alpha to the value passed through a coefficient unit 31 of the primary resistor r1 to alpha-phase primary current set value i*alpha to control the secondary magnetic flux lambda2 constantly for setting the beta-phase primary voltage e1beta. Further, it adds a correcting value for correcting the interference due to the beta-phase primary current i*1beta to the value passed through a coefficient unit 35 of the primary resistor r1 to the set value i*1alpha for setting the alpha-phase primary voltage e1. Thus, the motor 1 can be controlled for speed and torque in noninterference between the magnetic flux and the secondary current.

Description

【発明の詳細な説明】 本発明は、誘導直動機のベクトル制御方式に関する。[Detailed description of the invention] The present invention relates to a vector control system for an induction motor.

近年、誘導電動機の連応性ン向上する制御方式として、
電動機の一?:に電流乞励磁電流と二次電流とに5+け
て制御し、二?X磁束と二次電流ベクトルを常に直交さ
せろことで直流機と同等の応答性2得ようとするベクト
ル制御方式が提案されている。
In recent years, as a control method to improve the coordination of induction motors,
An electric motor? : The current is controlled by 5+ times the excitation current and the secondary current, and 2? A vector control method has been proposed that attempts to obtain the same responsiveness as a DC machine by always making the X magnetic flux and the secondary current vector orthogonal.

しかし、実際f便世する電力変換装置にパルス幅’JG
[l(pwM)方式インバータなどの電圧形インパータ
ン便用−「ろと、−次電流ゲ闇制御すると言っても′電
圧が操作量となるため、周波数ン高くした冨速運転時に
設定通りの一次電流が流nなくなって応答性が悪くなり
、積度良い可変速制御が雛しくなる問題があった。
However, in practice, the pulse width 'JG' is
[For voltage type impartan convenience such as l(pwM) type inverter - Even though it is said to control the secondary current, the voltage is the manipulated variable, so when operating at high speed with a high frequency, the There was a problem in that the current flow stopped, resulting in poor responsiveness and poor variable speed control with good integration.

本発明は、′電動機の一次藏圧匍11′IgIにおいて
、二次磁束外と二次電流分との間に互いの干渉分ンキャ
ンセルで致ろベクトル匍制御とでろことにより、従来の
間趙点乞解消したベクトル制御方式ン提供fろことン目
的とする。
The present invention has the advantage that, in the primary pressure force 11'IgI of the electric motor, interference vector control is performed between the secondary magnetic flux and the secondary current by canceling each other. The purpose of the present invention is to provide a vector control method that eliminates the need for control.

以下、本発明の詳細な説明に続いて実施i+11 ’2
詳:洲に説明fろ。
The detailed description of the present invention is followed by implementation i+11 '2.
Details: Please explain to Su.

まず、読4審@磯ンー矢電圧に同期して回転才ろα−β
軸で表わした電圧刀根式は以下の第山式になるし、発生
トルクTは第(2)式になる。
First of all, 4th referee @ Iso-n - Rotating in synchronization with the arrow voltage α-β
The voltage root equation expressed by the axis is the following equation, and the generated torque T is the equation (2).

(以下余白) T−一(λ′2βl/ 2Ct−λ′2ct1′2β)
  ・・・・・・・2)ここで、各記号は以下に示f渚
清である。
(Left below) T-1 (λ'2βl/ 2Ct-λ'2ct1'2β)
......2) Here, each symbol is shown below.

e、−一次区圧(α、β或汁)e′2に欠4圧(α、β
或汁)1、電−次′心流(α、β成汁)λ′2;二/′
に出東(α、β成分)r、;−矢抵抗     r、暮
二矢低抗M 11万/l[インダクタンス  L2;二
次インダクタンスL、L2− y2 Lσ;専+1Iii湘れインダクタンス(Lσ=□)2 Ll;−次インダクタンス  Pie5+j己号−4士
5 ω】;電源角叫彼故   b、1;ロータ川周波数1′
2−二仄こ流(α、β成分) 上述のtll 、 +21式はブロック線図で表わすと
第1図に示すようになり、二相鑞圧e  、e  に対
し1α  1β て−/に電Z危と二次磁束のα軸、β軸成分1.ヶ、1
.β。
e, - Primary pressure (α, β or juice) e′2 is missing 4 pressure (α, β
2/'
Inductance (α, β components) r, ;-arrow resistance r, Kurejiya low resistance M 110,000/l [Inductance L2; Secondary inductance L, L2- y2 Lσ; Special +1Iii submergence inductance (Lσ = □ )2 Ll; -order inductance Pie5+jself-4shi5 ω]; power supply angle therefore b, 1; rotor river frequency 1'
2-2 current (α, β components) The above equation tll, +21 is expressed in a block diagram as shown in Figure 1, and for two-phase solder pressures e and e, 1α 1β and -/ Z-axis and α-axis and β-axis components of secondary magnetic flux 1. 1, 1
.. β.

λ′2a、λ′2β及びトルクTン発生する誘導直動機
の等価ブロック図になる。
This is an equivalent block diagram of an induction direct motor that generates λ'2a, λ'2β and torque T.

ここで、−次道圧に同期して回るα、βl!aはどのよ
5な立相(C定めても良いが、α軸化二次磁束の方間に
定めろと、二次電流がβ軸に一致する条件、′fなわち
、二?′に電流が磁束と直交でる条件はベクトル、11
I、埋理論で明らかにされているように、λ′2β−〇 であり、かつ−矢周波叔ω。は である。
Here, α, βl, which rotates in synchronization with the -next road pressure! a can be set in any five phases (C can be determined, but it should be set in the direction of the α-axis secondary magnetic flux, and the condition that the secondary current coincides with the β-axis, 'f, 2?') The condition for the current to be perpendicular to the magnetic flux is the vector, 11
I, as revealed by the buried theory, λ′2β−〇, and −arrow frequency wave ω. It is.

このよ5に、α、β@3を定めると、−次也流11のα
軸成す1.Ct(=一定)は磁束λ′2VC相当する一
rK醒流であり、β軸成分1.β(エニ欠イ冗1′2 
に相当fる一次醒流となる。
If α and β @ 3 are determined in this way 5, then α of -jiya style 11
Shaft 1. Ct (=constant) is a 1rK current corresponding to the magnetic flux λ'2VC, and the β-axis component 1. β (any lack of meaning 1'2
It becomes a primary wake flow corresponding to f.

次に、上述の31 、141式の条件乞第1図のブロッ
ク線図に入れろと第21g1に示すブロック線図になる
。そなわち、第1図におげろ6点は・4)式の関I糸か
ら零に皿し卸されろ。0点はλ′2β=0であるからこ
の点につなかろ者シ工芋て零であり、同様K 1′2(
f=0からd点につながる罐も零であるしλ′2i−一
定であるからその機外であるb点も零である。そして、
第1図の破線ブロックへの部分ぞ同様の条件下で計if
ると、L2/r2−τ2 、 L(r = L(L+L
2−M2) / L23として、 一τ2P +1 =□L1ω011α τ2P+1 ここで11α=一定であるからp = nとおいて=L
、ωo1.α このようにして、第1図のブロック線図は第21メ1の
ブロック線図になる。第2図から明らかなように、二次
磁束λ’2aはα相−次電圧e、(1によって一義的に
設定できずにβ相−仄軍流1.βによる+L、ω。1.
β分の干渉があるし、二次電流12βはβ相−次′ボ圧
e、βによって一猛的に設定できずにα相−次ル流1 
による−L、ω。1.ct 汁の干渉かある。
Next, if the conditions of formulas 31 and 141 mentioned above are included in the block diagram of FIG. 1, the block diagram shown in No. 21g1 will be obtained. In other words, the 6 points in Figure 1 can be translated into zero from the Seki I thread of equation 4). 0 point is λ'2β = 0, so anyone who does not connect to this point is zero, and similarly K 1'2 (
The can connected from f=0 to point d is also zero, and since λ'2i is constant, point b, which is outside the machine, is also zero. and,
If the part to the dashed line block in Figure 1 is calculated under similar conditions,
Then, L2/r2-τ2, L(r = L(L+L
2-M2) / L23, - τ2P +1 = □L1ω011α τ2P+1 Here, since 11α = constant, p = n = L
,ωo1. α In this way, the block diagram of FIG. 1 becomes the block diagram of the 21st block diagram. As is clear from FIG. 2, the secondary magnetic flux λ'2a cannot be uniquely set by the α-phase-order voltage e,
There is interference by β, and the secondary current 12β cannot be set due to the β phase-next pressure e, β, and the
According to −L, ω. 1. ct There may be interference from the juice.

1α そこで、本発明においては、−次′市流11゜及び11
βによる干#分χ予め補償した7Ii1し1g1着にな
るよう一次電圧”、(t 1 ejβン桶正する。こり
梱正には一次電圧e、ctVc力ロ算されろり。ω。1
.〕乞見込んで該電圧8.(Iの設定にり。ω。1.β
ン眞算しておき、−欠電圧e、βに成算されるL1ω。
1α Therefore, in the present invention, −next′ market flow 11° and 11
Correct the primary voltage so that it becomes 7Ii1 and 1g1 after pre-compensated by β.The primary voltage e and ctVc force are calculated for ω.1
.. ] Please note that the voltage 8. (Depending on the setting of I.ω.1.β
-L1ω is calculated and added to -shortage voltage e and β.

1.ctン見込んで拶市圧e、βの設定1cL、ω。1
.α?り0彦しておき、さらに電圧e1βに対して電流
1.βが[1/ (L、P+ r、) 〕’yjの一次
遅れ?伴なうことから該電圧e、ctの補正演算に遅れ
分も廿めた補正乞しておく。この帰旧により、二次磁束
λ′2aと二次′ft鑞12βぞ非干渉に訓f卸する一
矢電圧e1α+e1βを設定fることかで羨ろ。
1. Set the market pressure e, β to 1 cL, ω, assuming ct. 1
.. α? 0hiko, and furthermore, the current 1. Is β the first-order lag of [1/ (L, P+ r,)]'yj? Therefore, the correction calculations for the voltages e and ct should be corrected to account for the delay. By this return, it is possible to set the voltage e1α+e1β to prevent the secondary magnetic flux λ'2a and the secondary flux 12β from interfering with each other.

第3図は本発明の一実施例乞示すブロック図である。電
動機1にpWM方式インバータ2から′直圧制御による
一矢覗圧乞供給して該遊動の1に磁束と二仄砿流とが硬
いVciσダするよう拙御するにおいて、α、β相電圧
e1Ctl e、βの設定に抽正演真回・各3によって
前述の補正ン施す。補正演算回・63はα相−次電圧e
、ctの設定に、電動機の二仄逼東λ′2ぞ一定に制御
fろためのα相−次イ流設定;1σ1□に一次砥抗r1
の係数43.?通した値・て対してβ相−次市流1.β
による。第2図に示す干渉分ン補正fろための鋪正値ン
炊算しておく。この(i@旧値は、二次電流1′2ン制
御才ろためのβ相−矢′社流設定11α1でβvC第2
図に示す一次遅れ汁[1/(L、p+r、)] とその
係nr、Y乗するM分器3□によって該1、βに対fる
遅れ汁補王1直13** ぞ叙出し、この補正lllT1.βに電源角周波斂ω0
乞乗算器33で乗算し、この乗算結果に係数として等価
漏れインダクタンスLσヶ持つ係数器34乞yfjl 
して得る。
FIG. 3 is a block diagram showing one embodiment of the present invention. When the electric motor 1 is supplied with direct voltage control from the pWM inverter 2, and is carefully controlled so that the floating magnetic flux and the two currents become hard Vciσ, the α and β phase voltages e1Ctl e The above-mentioned correction is applied to the settings of , β by 3 each of the abstraction and derivation times. Correction calculation time 63 is α phase-order voltage e
, ct setting, α phase-order current setting for constant control of the electric motor's 2nd axis λ'2; primary grinding force r1 at 1σ1□
The coefficient of 43. ? For the value passed through β phase - next market flow 1. β
by. The positive value for the interference correction shown in FIG. 2 is calculated in advance. This (i @ old value is the β phase for secondary current 1'2 - Ya' company style setting 11α1 and βvC 2nd value)
The first-order delayed juice [1/(L, p+r, )] shown in the figure and its coefficient nr, M divider 3□ raised to the power of Y are used to calculate the delayed juice corresponding to f for the 1 and β. , this correction lllT1. β has a power angular frequency difference ω0
The multiplier 33 multiplies the result, and the multiplier 34 has an equivalent leakage inductance Lσ as a coefficient.
and get it.

また、補正演算回路3は、β相−欠′区圧e1βの設定
に設定1旧1.βに一次砥rにrlの係数器3,2通し
た値に対して、α相−1矢戚流11.工による第2図に
示イ干渉鋒乞補正fろための@IE値ン7JO算し不 てお(。このpHl正値は電流設定値11αに解源用周
波数ω0ン乗算器3゜で乗算し、この栄算桔呆に係数と
して一次インダクタンスL1ヶ待つ;系叔637乞通し
て得ろ。
Further, the correction calculation circuit 3 sets the β phase-missing section pressure e1β to 1 old 1. α phase-1 arrow flow 11. The @IE value for the interference correction shown in Fig. 2 is not calculated (this pHl positive value is multiplied by the current setting value 11α and the solution source frequency ω0 multiplier 3°). However, I will wait for the primary inductance L1 as a coefficient for this Eisan calculation; get it by asking 637 uncles.

β相−次藏流設定値1雪βは速度設定値4と電動機1に
結合fろ速度検出器4の検出11σ(ロータ肉周波数ω
r)との偏差ン比(り11積汁演算(p’r)fろ速度
調節器5の出力として得ろ。也源角周汲叔ωOは角周彼
数演算回@6によって得る。この演算回路6は、設定値
1雪βに第2図の遅れ汁を補正した設定11r1)と設
定1i i1αの除算ンする割算器6.と、この除′a
皓果11β/11Ctvc係敬1 / 72 Y 掛算
f、b係数器62 と7有してすべり角周波数ω8ヶ算
出し、このすべり角周波数ωSにロータ角周波数ω、ン
力り算して屯諒角周彼数ω0娑得ろ。この割算器61 
と係数器62Vcよるすべり角周波数ω8の算出は、前
述の、41式右辺第2項中に前述の次の条件及び第2図
からλ’2d = 14a・M ’!l’代入して1.
p/(1,(1’τ2)に置換さ肚ろ。
β phase - Next flow set value 1 snow β is coupled to speed set value 4 and motor 1 f Detection 11σ of speed detector 4 (rotor flesh frequency ω
Obtain the deviation ratio (p'r) from the angle r) as the output of the filter speed regulator 5. Obtain the source angle and circumference ωO by the angle and circumference calculation times @6. This calculation The circuit 6 is a divider 6. which divides the set value 1 snow β by the setting 11r1) corrected for the delay in FIG. 2 and the setting 1i i1α. And this removal'a
Result 11β/11Ctvc relation 1/72 Y multiplier f, b coefficient multiplier 62 and 7 to calculate slip angular frequency ω8, rotor angular frequency ω and n force are multiplied by this slip angular frequency ωS to obtain the sum. Get the number of angles around the corner ω0. This divider 61
The slip angular frequency ω8 is calculated by the coefficient unit 62Vc using the following conditions mentioned above in the second term on the right side of Equation 41 and from FIG. 2, λ'2d = 14a·M'! Substitute l' to 1.
Be sure to replace it with p/(1, (1'τ2)).

2 τ2−一 2 このように干渉分が補正されたα、β相の一次電圧e、
Ct’+’B+βは相電圧演算回路7において2相−3
相変換がなされ、インバータ2Q)3相電圧役定値、*
、 、 eZ 、 六  が取出され、この設定値πよ
るPWM彼形の一次軍圧市制御によって電動様1には磁
束と二次電流ン非干#にした速度又Vエトルク部]御が
実現されゐ。なに、相ぼ圧屓算回・烙7vc%ける2相
−3相変喚のためて、市w用周波数(・タ、乞便っだ三
角i列数発生回路8から正弦波SINωQt、及び余弦
波CO8ωotケ得ている。また、インノく一夕2にお
けろpwg1反形乞得るために、′屯源角周彼叙ω0ン
便つ−た三角波発生回路9から拶ω口に同呵した定数倍
の三角波(!1′取出し、この三角波と設定重圧eal
 Qh! 8.、、  とのレベル比較によってPWM
彼形を得ている。
2 τ2--2 The primary voltage e of the α and β phases with the interference corrected in this way,
Ct'+'B+β is 2-phase -3 in the phase voltage calculation circuit 7.
Phase conversion is performed, inverter 2Q) 3-phase voltage nominal value, *
. Wow. What, for the 2-phase to 3-phase change that takes 7vc% of the phase pressure calculation cycle, the sine wave SINωQt from the triangular i-series number generation circuit 8, A cosine wave CO8ωot is obtained.Also, in order to obtain the opposite form of pwg1 in Innoku Ichiyo 2, I also received a message from the triangular wave generation circuit 9, which was sent by 'Tunyuan Kakushu's description ω0'. Take out the triangular wave (!1'), which is multiplied by the constant, and combine this triangular wave with the set pressure eal
Qh! 8. , , PWM by comparing the level with
He's getting his shape.

以上のとおり、本発明によれば、電圧形インバータ71
史って誘導電動4幾ケベクトル市1」御fろにおいて、
革IIJJ機の励(丑電流設定値1青、と二次電流設定
値iテβからインバータの設定重圧”、Ll、 I e
1βン得るのに電動機の一次市流1 、  によろ相互
1α 11β 干#5+馨キャンセルする補正ケするため、市源角周波
依ω0による干渉汁変動も含めて磁束と二欠電流ベクト
ルヶ常に直交させろ制御がoJ能となり、広いMll 
(卸範囲に渡って正確なベクトル匍1@ができる幼果が
ある。しかも、L、/r、の時定数ン持つ一次遅れ汁も
含めた一次電圧及び角周波数ω0の補正になって高精度
の制御が可能となる。
As described above, according to the present invention, the voltage source inverter 71
In the history of induction motors 4 and vector city 1,
Excitation of IIJJ machine (current setting value 1 blue, and secondary current setting value i te β to inverter setting pressure", Ll, I e
To obtain 1β, the motor's primary flow 1 and mutual 1α 11β are canceled.In order to compensate for cancellation, the magnetic flux and the two-way current vector, including the interference fluctuation due to the source angular frequency ω0, should always be orthogonal. Control becomes OJ function, wide Mll
(There is a young fruit that can produce an accurate vector 1@ over the wholesale range. Moreover, it is highly accurate because it corrects the primary voltage and angular frequency ω0 including the first-order lag fluid with a time constant of L, /r. control becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図シエ2相電圧e  、e  に対する誘導電動1
α  1β 機の等1曲ブロック図、第2図は誘導電動機のベクトル
制御におげろ等価ブロック図、第3図は本発明の一実施
例乞示−f′1IiII御装置ブロック図である。 1・・・誘導電動機、2・・・電圧形インバータ、3・
・・補正演算回路、4・・・速度検出器、5・・・速度
調節器、6・・・角周波数演算回路、7・・・相電圧演
算回路、8・・・三角関数発生回路、9・・・三角波発
生回路。
Figure 1 Induction motor 1 for two-phase voltages e and e
FIG. 2 is an equivalent block diagram for vector control of an induction motor, and FIG. 3 is a block diagram of a control device for an embodiment of the present invention. 1... Induction motor, 2... Voltage type inverter, 3...
... Correction calculation circuit, 4 ... Speed detector, 5 ... Speed regulator, 6 ... Angular frequency calculation circuit, 7 ... Phase voltage calculation circuit, 8 ... Trigonometric function generation circuit, 9 ...Triangular wave generation circuit.

Claims (1)

【特許請求の範囲】 Ill  誘導電@機χ亀圧形インバータで駆動し、誘
導電動機の磁束5+ケ設定するα相電圧θ1αと二次盲
、流汁ン設定才ろβ相゛亀圧e1βから2相3相変換に
よって上記電圧形インバータのa、b。 C相3相准圧設定値eへ、と、−〇 を得る誘導電動機
のベクトル制御方式において、誘導t r+の1′幾の
磁#、汁?設定するα相−次電流設定1可己αに一次抵
抗r、に設定′fろ係a器乞通した値から誘尋電@機の
二次心流汁を設定するβ相−欠電流設定値11βに等1
曲漏れインダクタンスLσと一矢砥抗r、の比Lσ/r
1の時定a?持ちかつr。 倍した一次遅れに設定した係数器2通した値六−に電圧
形インバータの角周波数設定器0Joを乗算しかつ上記
インダクタンスLσに設定する係数器ケ通した値を畝算
して上記電圧e1αン求め、上記設定値11β乞−次抵
抗r1に設定する係数* 器乞通した値に上記設定値1.CtK上記角周波数wa
 Y乗算しかつ一次インダクタンスL1に設定する係数
器ン通、した値をカロ算して上記電圧e、βン求めるこ
とン特徴とする誘導電動機のベクトル制御方式。 *** 12)上記設定置1.βから求めた上記値1.βン上記
設定値踏ヶで割算した1直乞=次インタリタンスL2と
二次抵抗r2の比r 2/L 2に設定する係数器を通
した11Iijに誘導心動機のロータ角周波数検出値v
vrン加算して上記角周波敬設定餉00を求めること乞
特徴とする特許請求の範囲第1項記載の誘導電動機のベ
クトル制御方式。
[Claims] Ill The induction motor is driven by a tortoise pressure type inverter, and the magnetic flux 5+ of the induction motor is set from the α phase voltage θ1α and the secondary blind, the flow rate is set from the β phase to the tortoise pressure e1β. a, b of the above voltage source inverter by two-phase three-phase conversion. In the vector control method of an induction motor to obtain the C-phase 3-phase quasi-pressure set value e, and -〇, the induction motor 1' of the induction t r+ has a magnetic #, ? Set the α phase - secondary current setting 1 Set the primary resistance r to the self α, set the filtration coefficient a, and set the secondary heart flow of the dielectric @ machine β phase - missing current setting equal to the value 11β1
Ratio Lσ/r of bending leakage inductance Lσ and single arrow resistance r
1 time constant a? Hold and r. Multiply the angular frequency setter 0Jo of the voltage source inverter by the value 6- passed through the coefficient machine set to the multiplied first-order lag, and calculate the value passed through the coefficient machine set to the above inductance Lσ to calculate the voltage e1α. Calculate the above set value 11β and set the coefficient * to the next resistance r1. Set the above set value 1. CtK above angular frequency wa
A vector control method for an induction motor characterized in that the voltages e and β are obtained by multiplying by Y and passing through a coefficient set to the primary inductance L1, and calculating the resulting values. *** 12) Above settings 1. The above value obtained from β1. The rotor angular frequency detected value v of the induction motor is set to 11Iij through a coefficient unit set to 2/L.
2. The vector control method for an induction motor according to claim 1, wherein the angular frequency setting value 00 is determined by adding the angular frequency.
JP58039432A 1983-03-10 1983-03-10 Vector control system of induction motor Granted JPS59165980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039432A JPS59165980A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039432A JPS59165980A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Publications (2)

Publication Number Publication Date
JPS59165980A true JPS59165980A (en) 1984-09-19
JPH0526435B2 JPH0526435B2 (en) 1993-04-16

Family

ID=12552832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039432A Granted JPS59165980A (en) 1983-03-10 1983-03-10 Vector control system of induction motor

Country Status (1)

Country Link
JP (1) JPS59165980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121982A (en) * 1983-12-05 1985-06-29 Mitsubishi Electric Corp Controller of induction motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396423A (en) * 1977-02-01 1978-08-23 Mitsubishi Electric Corp Control system for induction motor
JPS55128495A (en) * 1979-03-27 1980-10-04 Chiyuujiyou Bungu Kk Sheettlike packing holding tool
JPS57153586A (en) * 1981-03-16 1982-09-22 Shinko Electric Co Ltd Controller for induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396423A (en) * 1977-02-01 1978-08-23 Mitsubishi Electric Corp Control system for induction motor
JPS55128495A (en) * 1979-03-27 1980-10-04 Chiyuujiyou Bungu Kk Sheettlike packing holding tool
JPS57153586A (en) * 1981-03-16 1982-09-22 Shinko Electric Co Ltd Controller for induction motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121982A (en) * 1983-12-05 1985-06-29 Mitsubishi Electric Corp Controller of induction motor
JPH0546794B2 (en) * 1983-12-05 1993-07-14 Mitsubishi Electric Corp

Also Published As

Publication number Publication date
JPH0526435B2 (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US9634575B2 (en) Control method and control device for inverter system
US6927548B2 (en) Electric power steering apparatus
US5003243A (en) Control apparatus for induction machine
US7057908B2 (en) Method and arrangement in connection with network inverter
EP1035645B1 (en) Control device of induction motor
JPS59165980A (en) Vector control system of induction motor
JP2010029027A (en) Motor control device
JP2004080975A (en) Controller for motor
JP3310193B2 (en) Power converter
JP4303433B2 (en) Power converter for grid connection
JPS6176091A (en) Digitally controlling method of induction motor
US11316460B2 (en) Motor position calibration
JPH08168300A (en) Device for controlling vector of induction motor
Xiao et al. An Approach of Stator Flux Trajectory Tracking Control Based on Optimal PWM
JP7163641B2 (en) Synchronous motor controller
JP2730383B2 (en) Parallel operation control device for AC output converter
JPS61236398A (en) Controller of wound-rotor induction generator
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
Han et al. Dual MRAS for Robust Rotor Time Constant Compensation in IFOC IM Drives
JPH04101692A (en) Dc brushless motor controller
JPH08191572A (en) Output voltage controlling method of inverter circuit
JPS6115582A (en) Controlling method of induction motor
JPH09201100A (en) Apparatus and method for control of vector of induction motor
JPH01110082A (en) Controller for induction motor
JPH01243870A (en) Induction machine controller