JPS59165562A - Method for extracting frequency components of picture - Google Patents

Method for extracting frequency components of picture

Info

Publication number
JPS59165562A
JPS59165562A JP58038594A JP3859483A JPS59165562A JP S59165562 A JPS59165562 A JP S59165562A JP 58038594 A JP58038594 A JP 58038594A JP 3859483 A JP3859483 A JP 3859483A JP S59165562 A JPS59165562 A JP S59165562A
Authority
JP
Japan
Prior art keywords
output
picture
conversion element
gate
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58038594A
Other languages
Japanese (ja)
Inventor
Mitsuya Hosoe
細江 三弥
Nobuhiko Shinoda
篠田 信比古
Kazuhiko Arakawa
和彦 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58038594A priority Critical patent/JPS59165562A/en
Publication of JPS59165562A publication Critical patent/JPS59165562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To obtain easily the value of the frequency components of picture information by accessing several times to the output of each picture element of a photoelectric transducer consisting of N units of picture elements on the basis of a prescribed order and obtaining the frequency components of the picture for each value of the selected picture element interval K which is equivalent to the space frequency component. CONSTITUTION:A photoelectric transducer 10 receives an image of a subject pattern 21 via an image forming lens 20, and electrical outputs a(1)-a(N) are outputted from picture elements P1-PN respectively in response to the received light quantity. The outputs of elements P1-PN of the transducer 10 are accessed several times via electrical gates 111 and 13 which are capable of random accesses. Then a(i) is defined as the i-th picture element output of the transducer 10, and K is referred to as a positive integer. Thus an output Fk is obtained as shown by an equation and for each value of the selected picture element interval K corresponding to the space frequency component.

Description

【発明の詳細な説明】 本発明は、画像信号を出力する複数個の画素を有する光
電変換素子の出力をアクセスして、その出力信号中に含
まれる周波数成分の大きさを検出する画像の周波数成分
抽出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention accesses the output of a photoelectric conversion element having a plurality of pixels that outputs an image signal, and detects the magnitude of a frequency component included in the output signal. This invention relates to a component extraction method.

従来から画像情報処理は、例えばCODやBBDのよう
な電荷転送デバイスの画像出力、又は撮像管からの画像
出力を用いて行うの通常である。しかし、これらの画像
出力は光電荷そのものの破壊的な読み出しによるもので
あるため、一度読み出すたびに新たに信号の蓄積動作を
行わなければ、再読み出しは不可能である。このような
電荷転送デバイスを使用して同一画像情報を繰り返して
用いる場合、例えば2画像のコリレーション処理等を行
うためには、シフトレジスタのような別途のデバイスに
画像データの格納を行い、この格納データを用いて処理
する必要があるなど装置の複雑化を招く。また、読み出
すごとに信号を再、  蓄積しなければならないデバイ
スを用いる場合は、その処理速度が遅くなるいう問題が
生ずることと、そのために物体の動き・照明の変化など
の外乱を回避することが困難である。また、本発明で意
図するような周波数成分の抽出においても、多くの記憶
手段が必要である等の不便さがある。
Conventionally, image information processing has typically been performed using image output from a charge transfer device such as a COD or BBD, or image output from an image pickup tube. However, since these image outputs are based on destructive readout of the photocharges themselves, rereading is impossible unless a new signal accumulation operation is performed each time the image is read out. When using such a charge transfer device to repeatedly use the same image information, for example, in order to perform correlation processing between two images, the image data must be stored in a separate device such as a shift register, and this image data must be stored in a separate device such as a shift register. This results in increased complexity of the device, such as the need for processing using stored data. Furthermore, when using a device that requires re-accumulating the signal each time it is read out, there is a problem that the processing speed becomes slow, and this makes it difficult to avoid disturbances such as movement of objects or changes in illumination. Have difficulty. Furthermore, even in the extraction of frequency components as intended by the present invention, there are inconveniences such as the need for a large number of storage means.

本発明の目的は、画像情報の周波数成分の大きさを簡便
に求め得る画像の周波数成分抽出方法を提供することに
あり、その要旨は、N個の画素から成る光電変換素子の
各画素の出力を、ランダムにアクセス可能な電気的ゲー
トを介して所定の順序に従って複数回アクセスし、a(
i)を光電変換素子の第1番目の画素の出力とし、kを
正の整数とすると、 なる出力Fkを、空間周波数成分に相当する選択した画
素間隔にの大きさごとに求めることを特徴とする方法で
ある。
An object of the present invention is to provide an image frequency component extraction method that can easily determine the magnitude of the frequency component of image information. is accessed multiple times according to a predetermined order via randomly accessible electrical gates, and a(
If i) is the output of the first pixel of the photoelectric conversion element and k is a positive integer, the following output Fk is obtained for each size of the selected pixel interval corresponding to the spatial frequency component. This is the way to do it.

本発明に係る方法を図示の実施例に基づいて詳細に説明
する。
The method according to the invention will be explained in detail on the basis of illustrated embodiments.

第1図は本発明に係る画像の周波数成分抽出方法に好適
に用いることができるゲート蓄積形静電誘導トランジス
タ(Static Induction Transi
st−or 、以下SITという)の構造Φ作用の説明
図である。なお、このSITは例えば特開昭56−15
0878号公報に開示されており、第1図(a)はSI
Tの断面構造、(b)はその等価回路を示している。第
1図(a)において、1はSITを構成するSi半導体
基板であり、基板の下面にはn”Siから成るドレーン
2が形成され、上面の一部には同様にn”Siから成る
ソース3が設けられ、このソース3をリング状に囲むp
″″Siから成るフローテングゲ−1・4が形成されて
いる。ドレーン2には例えば+7v程度の電位Eが印加
されており、ソース3には適当な負荷抵抗Rが接続され
、出力端子0から信号を読み出す構造とされている。
FIG. 1 shows a gate accumulation type static induction transistor (Static Induction Transistor) which can be suitably used in the image frequency component extraction method according to the present invention.
FIG. 2 is an explanatory diagram of the structure Φ effect of the s-tor (hereinafter referred to as SIT). Note that this SIT is based on, for example, Japanese Patent Application Laid-Open No. 56-15
It is disclosed in Japanese Patent No. 0878, and FIG. 1(a) is SI
The cross-sectional structure of T, (b) shows its equivalent circuit. In FIG. 1(a), reference numeral 1 denotes a Si semiconductor substrate constituting the SIT. A drain 2 made of n"Si is formed on the bottom surface of the substrate, and a source similarly made of n"Si is formed on a part of the top surface. 3 is provided, and p surrounds this source 3 in a ring shape.
Floating games 1 and 4 made of ``''Si are formed. A potential E of, for example, about +7 V is applied to the drain 2, a suitable load resistance R is connected to the source 3, and the structure is such that a signal is read from the output terminal 0.

電位Eが高レベルのときは、画像の蓄積・読み出しが行
われ、低レベル時には画像の消去が行われる。光りが照
射されn−領域に発生する光電子と正孔のうち、光電子
はドレーン2に吸収され正孔はゲート4に吸収される。
When the potential E is at a high level, images are stored and read out, and when the potential E is at a low level, images are erased. Of the photoelectrons and holes generated in the n- region upon irradiation with light, the photoelectrons are absorbed by the drain 2 and the holes are absorbed by the gate 4.

従って、ゲート4付近のポテンシャルが照度に対応して
変化し、このポテンシャル、即ち像の明るさに応じて流
れる電流が変化することになる。これを第1図(b)で
等測的に示すと、ドレーン2、ソース3、ゲート4から
成るSITはゲート容量Cgを有しており、入射光りに
よる電荷がここに蓄積される。5は信号の読み出しゲー
トであり、信号は信号線6を介して読み出される。この
ような機能を有するSITは、そのゲート4が入射光量
に応じて制御され、ドレーン電流が入射光量の増幅信号
になり、かつゲートポテンシャルを消去しない限りは、
読み出しゲート5を開くごとに信号が何回でも非破壊的
に読み出されることになる。
Therefore, the potential near the gate 4 changes in accordance with the illuminance, and the flowing current changes in accordance with this potential, that is, the brightness of the image. This is illustrated isometrically in FIG. 1(b). The SIT consisting of the drain 2, source 3, and gate 4 has a gate capacitance Cg, and charges due to incident light are accumulated here. Reference numeral 5 denotes a signal read gate, and the signal is read out via a signal line 6. In an SIT having such a function, unless the gate 4 is controlled according to the amount of incident light, the drain current becomes an amplified signal of the amount of incident light, and the gate potential is not erased,
Each time the readout gate 5 is opened, the signal can be read out non-destructively any number of times.

第2図は第1図に示したSITのような画像信号の非破
壊的な読み出しが可能な光電変換素子10を用い、本発
明に係る画像の周波数成分抽出方法を実現するための実
施例である。この光電変換素子10はN個の画素P1〜
PNに分れており、それぞれの画素出力信号a(1)〜
a(N)を独立して読み出し得るようになっている。各
画素Pの出力信号a(1)〜a(N)は、それぞれゲー
ト11、〜11 Nを介して差動増幅器12の非反転入
力端及びゲート13に接続されている。一方、差動増幅
器12の反転入力端には、ゲート13、サンプル値ホー
ルド回路14を経て各画素の出力信号a(1)〜a(N
)が入力するようになっている。差動増幅器12の出力
は絶対値回路15、積分回路16を経て、アナログシフ
トレジスタ17に入力するように接続されている。また
、18はゲート制御回路であり、この制御回路18から
のゲート制御信号は各ゲート11、〜11N、ゲート1
3に伝達され、サンプル値ホールド回路14、積分回路
16にはリセット信号が、アナログシフトレジスタ17
には制御信号が伝達されるようになっている。
FIG. 2 shows an embodiment for realizing the image frequency component extraction method according to the present invention using a photoelectric conversion element 10 capable of non-destructively reading out image signals, such as the SIT shown in FIG. be. This photoelectric conversion element 10 has N pixels P1 to
It is divided into PN, and each pixel output signal a(1) ~
a(N) can be read out independently. Output signals a(1) to a(N) of each pixel P are connected to a non-inverting input terminal of a differential amplifier 12 and a gate 13 via gates 11 and 11N, respectively. On the other hand, the inverting input terminal of the differential amplifier 12 receives the output signals a(1) to a(N
) is now entered. The output of the differential amplifier 12 is connected to be input to an analog shift register 17 via an absolute value circuit 15 and an integration circuit 16. Further, 18 is a gate control circuit, and a gate control signal from this control circuit 18 is transmitted to each gate 11, to 11N, and gate 1.
3, the reset signal is transmitted to the sample value hold circuit 14 and the integration circuit 16, and the reset signal is transmitted to the analog shift register 17.
A control signal is transmitted to.

次に、この実施例による抽出方法の動作を説明すると、
光電変換素子10は結像レンズ20を介して物体パター
ン21の像を受光し、各画素P1〜PNからは受光量に
応じた電気的な出力a(1)〜a(N)がなされている
。そこで先ず、ゲート制御回路18からの指令により、
ゲート13をオンすると共にゲー)111をオンし、サ
ンプル値ホールド回路14に画素P1の出力a(1)を
ホールドする。続いて、ゲー)13をオフしゲート11
2をオンにして、サンプル値ホールド回路14内の信号
a(1)と画素P2の出力a(2)との差を差動増幅器
12で検出し、その出力の絶対値を絶対値回路15で求
め積分回路16で積分する。次に、ゲー)13をオンす
ると共にゲート112をオンにして、サンプル値ホール
ド回路14内に信号a(2)をホールドする。更に、ゲ
ート13をオフしてゲート113をオンし、サンプル値
ホールド回路14の信号a(2)と画素P3の出力a(
3)との差の絶対値信号を積分回路16内に積分する。
Next, the operation of the extraction method according to this embodiment will be explained.
The photoelectric conversion element 10 receives an image of the object pattern 21 through the imaging lens 20, and each pixel P1 to PN generates electrical outputs a(1) to a(N) according to the amount of received light. . Therefore, first, according to a command from the gate control circuit 18,
At the same time as the gate 13 is turned on, the gate 111 is turned on, and the sample value hold circuit 14 holds the output a(1) of the pixel P1. Next, turn off gate 13 and turn off gate 11.
2 is turned on, the difference between the signal a(1) in the sample value hold circuit 14 and the output a(2) of the pixel P2 is detected by the differential amplifier 12, and the absolute value of the output is detected by the absolute value circuit 15. The calculation and integration circuit 16 performs integration. Next, the gate 13 is turned on and the gate 112 is turned on to hold the signal a(2) in the sample value hold circuit 14. Furthermore, the gate 13 is turned off and the gate 113 is turned on, and the signal a(2) of the sample value hold circuit 14 and the output a(
3) is integrated in the integrating circuit 16.

かくすることを繰り返すと、 F1= l a(1)−a(2) l + I a(2
)−a(3) 1十〇Φ・+I a(n−2) −a(
n−1) I+ l a(n−1) −a(n) l 
      −(1)なる出力Flが、積分回路16内
に得られる。ただし、ここでa(i)は光電変換素子1
0の第1番目の画素Piの出力である。
By repeating this, F1 = l a (1) - a (2) l + I a (2
)-a(3) 100Φ・+I a(n-2) -a(
n-1) I+ l a(n-1) -a(n) l
An output Fl of -(1) is obtained in the integrating circuit 16. However, here a(i) is photoelectric conversion element 1
This is the output of the first pixel Pi of 0.

(1)式で得られた出力F1は画素Pの間隔に相当する
周期の空間周波数成分の大きさを表し、出力F1はアナ
ログシフトレジスタ17に蓄積される。
The output F1 obtained by equation (1) represents the magnitude of a spatial frequency component with a period corresponding to the interval between pixels P, and the output F1 is accumulated in the analog shift register 17.

更に、ゲート制御回路18の指令によりゲート11、〜
11N、13を切換えて、画素Pの2つおきの出力信号
の差の絶対値をとると、得られる出力F2は、 F2= I a(1)−a(3) l + l a(2
) −a(4) I+・・・+l a(n−3) −a
(n−1) I+ l a(n−2)−a(n) l 
     ・(2)となる。
Further, according to the command from the gate control circuit 18, the gates 11, -
11N and 13 and take the absolute value of the difference between the output signals of every second pixel P, the resulting output F2 is: F2=I a(1)-a(3) l + l a(2
) -a(4) I+...+l a(n-3) -a
(n-1) I+ l a(n-2)-a(n) l
・(2) becomes.

同様にして、画素Pの間隔を増加しながらそれぞれの相
当する空間周波数成分の大きさを求めると、得られる出
力Fkは、kを正の整数とすると次の(3)式で表され
る。
Similarly, when the magnitude of each corresponding spatial frequency component is determined while increasing the interval between pixels P, the resulting output Fk is expressed by the following equation (3), where k is a positive integer.

第2図の実施例で得られる出力F1、F2、・・、FN
は、アナログシフトレジスタ17に順次に蓄積されてい
るので、必要に応じて制御回路18の指令により出力端
OUTから読み出すことができる。
Outputs F1, F2,..., FN obtained in the embodiment of Fig. 2
are sequentially stored in the analog shift register 17, so they can be read out from the output terminal OUT according to a command from the control circuit 18, if necessary.

なお、SITを使用すれば非破壊的な読み出しが可能で
あり、この周波数成分抽出の実行時間は極く僅かな時間
であるが、物体パターン21が動画像の場合は、抽出実
行時間中は光電変換素子10への入射光をシャッタ等で
遮光しておくことが好ましい。第2図に示した回路構成
は、敢くまでも一つの実施例であり、本発明に係る方法
は特許請求の範囲の範鴎内において、幾多の変形が可能
なことは勿論である。
Note that non-destructive readout is possible by using SIT, and the execution time for this frequency component extraction is extremely short; however, if the object pattern 21 is a moving image, photoelectric reading is not performed during the extraction execution time. It is preferable that the light incident on the conversion element 10 be blocked by a shutter or the like. The circuit configuration shown in FIG. 2 is just one embodiment, and it goes without saying that the method according to the present invention can be modified in many ways within the scope of the claims.

この本発明に係る方法は各種用途に用い得るが、例えば
画像解析、自動焦点の最適調整、レンズの透過特性の測
定等に有効に適用することができる。
The method according to the present invention can be used for various purposes, and can be effectively applied, for example, to image analysis, optimal adjustment of automatic focus, measurement of lens transmission characteristics, etc.

以」二説明したように本発明に係る画像の周波数成分抽
出方法は、簡易に画像信号内に含まれる周波数成分の抽
出ができ、特に再蓄積することなく繰り返して読み出し
可能な光電変換素子を用いると極く僅かな時間で成分抽
出の実行が可能である。
As explained below, the method for extracting frequency components of an image according to the present invention uses a photoelectric conversion element that can easily extract frequency components contained in an image signal and that can be repeatedly read out without being re-accumulated. Component extraction can be performed in a very short amount of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る方法に用いるに適した光電
変換素子の断面構成図、(b)はその等価回路図、第2
図は本発明に係る方法を実現するための周波数成分抽出
回路の一実施例の構成図である。 符号10は光電変換素子、11.〜11N、13はゲー
ト、12は差動増幅器、14はサンプル値ホールド回路
、15は絶対値回路、16は積分回路、17はアナログ
シフトレジスタ、18はゲート制御回路である。 特許出願人   キャノン株式会社 手続補正書は式) 昭和58年特許願第38594号 2、発明の名称 画像の周波数成分抽出方法 3、補正をする者 事件との関係 特許出願人 住所 東京都大田区下丸子三丁目30番2号名称(10
0)キャノン株式会社 代表者 賀来龍三部 4、代理人 〒121東京都足立区梅島二丁目17番3号梅島ハイタ
ウンC−104 昭和58年6月28日発送 6、補正の対象 図面 7、補正の内容 図面第1図を別紙コピーに未配の通り補正する。
FIG. 1(a) is a cross-sectional configuration diagram of a photoelectric conversion element suitable for use in the method according to the present invention, FIG. 1(b) is its equivalent circuit diagram, and FIG.
The figure is a configuration diagram of an embodiment of a frequency component extraction circuit for implementing the method according to the present invention. Reference numeral 10 indicates a photoelectric conversion element; 11. 11N, 13 is a gate, 12 is a differential amplifier, 14 is a sample value hold circuit, 15 is an absolute value circuit, 16 is an integration circuit, 17 is an analog shift register, and 18 is a gate control circuit. Patent Applicant Canon Co., Ltd. Procedural Amendment Form) 1982 Patent Application No. 38594 2, Method for Extracting Frequency Components of Name Image of Invention 3, Relationship with the Person Who Makes the Amendment Case Patent Applicant Address Shimomaruko, Ota-ku, Tokyo 3-30-2 Name (10
0) Canon Co., Ltd. Representative Ryu Kaku Sanbu 4, Agent Address: C-104 Umejima High Town, 2-17-3 Umejima, Adachi-ku, Tokyo 121, Sent on June 28, 1980 6, Drawing subject to amendment 7, Amendment Figure 1 of the content drawing has been corrected as not yet distributed in a separate copy.

Claims (1)

【特許請求の範囲】 1、  N個の画素から成る光電変換素子の各画素の出
力を、ランダムにアクセス可能な電気的ゲートを介して
所定の順序に従って複数回アクセスし、a(1)を光電
変換素子の第1番目の画素の出力とし、kを正の整数と
すると、 なる出力Fkを、空間周波数成分に相当する選択した画
素間隔にの大きさごとに求めることを特徴とする画像の
周波数成分抽出方法。 2、前記光電変換素子は非破壊的な読み出しを特徴とす
る特性を有するものとした特許請求の範囲第1項に記載
の画像の周波数成分抽出方法。 3、前記非破壊的な読み出しを可能とする光電変換素子
をゲート蓄積型静電誘導トランジスタとする特許請求の
範囲第2項に記載の画像の周波数成分抽出方法。
[Claims] 1. The output of each pixel of a photoelectric conversion element consisting of N pixels is accessed multiple times according to a predetermined order via a randomly accessible electrical gate, and a(1) is converted into a photoelectric conversion element. If the output of the first pixel of the conversion element is the output, and k is a positive integer, the following output Fk is obtained for each size of a selected pixel interval corresponding to a spatial frequency component. Component extraction method. 2. The image frequency component extraction method according to claim 1, wherein the photoelectric conversion element has a characteristic of non-destructive readout. 3. The image frequency component extraction method according to claim 2, wherein the photoelectric conversion element that enables non-destructive readout is a gate accumulation type static induction transistor.
JP58038594A 1983-03-09 1983-03-09 Method for extracting frequency components of picture Pending JPS59165562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038594A JPS59165562A (en) 1983-03-09 1983-03-09 Method for extracting frequency components of picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038594A JPS59165562A (en) 1983-03-09 1983-03-09 Method for extracting frequency components of picture

Publications (1)

Publication Number Publication Date
JPS59165562A true JPS59165562A (en) 1984-09-18

Family

ID=12529617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038594A Pending JPS59165562A (en) 1983-03-09 1983-03-09 Method for extracting frequency components of picture

Country Status (1)

Country Link
JP (1) JPS59165562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848280A (en) * 1987-01-09 1989-07-18 Mazda Motor Corporation Intake apparatus for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848280A (en) * 1987-01-09 1989-07-18 Mazda Motor Corporation Intake apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
CN105144699B (en) The imaging sensor and its operating method of the resetting of having ready conditions of threshold monitor
EP0201373B1 (en) Fotosensitive device with locally adjustable exposure time
US11165982B1 (en) Spatial derivative pixel array with adaptive quantization
CN100391241C (en) Image sensor for removing horizontal noise
CN1105449C (en) Local auto-adaptive optic sensor
US6455831B1 (en) CMOS foveal image sensor chip
TW437057B (en) Image sensor circuit and imaging system
CN108600661A (en) Separated grid is had ready conditions the imaging sensor of resetting
US8749665B2 (en) Dynamic range extension for CMOS image sensors for mobile applications
US20090135263A1 (en) Method and Apparatus for Expanded Dynamic Range Imaging
US7397509B2 (en) High dynamic range imager with a rolling shutter
JP3927696B2 (en) Imaging device
EP1096789A3 (en) Cmos image sensor with extended dynamic range
JP2010536252A (en) Circuit and method enabling pixel array exposure pattern control
JPH01157175A (en) Intelligent scanning image pickup sensor and method of scanning picture
WO2002101832A3 (en) Cmos image sensor and method for operating a cmos image sensor with increased dynamic range
TW201644266A (en) Ramp generator for low noise image sensor
CN108234907B (en) Pixel circuit and imaging system
CN109040632A (en) Readout circuit and sensing device
JP2830482B2 (en) High dynamic range imaging device
US11412170B2 (en) Image sensor and image sensing method
JPS59165562A (en) Method for extracting frequency components of picture
FR2524751A1 (en) TRANSISTORISTIC DEVICE FOR HIGH-SENSITIVITY IMAGING
JPH02107076A (en) Solid-state image pickup device
CN115460361B (en) Image sensor for phase detection autofocus and image sensing photodiode