JPS5916145A - Production for magnetic recording medium - Google Patents

Production for magnetic recording medium

Info

Publication number
JPS5916145A
JPS5916145A JP12689982A JP12689982A JPS5916145A JP S5916145 A JPS5916145 A JP S5916145A JP 12689982 A JP12689982 A JP 12689982A JP 12689982 A JP12689982 A JP 12689982A JP S5916145 A JPS5916145 A JP S5916145A
Authority
JP
Japan
Prior art keywords
substrate
electrons
breadthwise direction
uniform
rotary supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12689982A
Other languages
Japanese (ja)
Other versions
JPH0121537B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12689982A priority Critical patent/JPS5916145A/en
Publication of JPS5916145A publication Critical patent/JPS5916145A/en
Publication of JPH0121537B2 publication Critical patent/JPH0121537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To make a characteristic in the breadthwise direction uniform and improve the mass productivity, by injecting electron, which are preliminarily changed in the breadthwise direction, to a high polymer formed material substrate broad in width in the process where a ferromagnetic layer is formed on this substrate. CONSTITUTION:A high polymer formed material substrate 2 fed out from a feeding shaft 1 is led to the surface of a rotary supporting material 3 and is charged with electrons radiated from a charging electron gun 4 in the state where the substrate 2 is moved along the rotary supporting material. The energy of electrons is selected within the range of 2t-3t, and the current density distribution in the breadthwise direction is determined experimentally so that all physical property values are uniform in the breadthwise direction. Next, a magnetic layer is formed with a steam current 7 generated from an evaporation source 6 by a heating electron source 5. A mask 8 limits the incidence angle. The substrate where the magnetic layer is formed is wound around a take-up shaft 9. The substrate and the rotary supporting material are brought closely into contact with each other by the electrostatic field generated by the electric charge trapped by charging of electrons, and therefore, heating and cooling are balanced against each other.

Description

【発明の詳細な説明】 本発明は、金属薄膜型磁気記録媒体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal thin film magnetic recording medium.

そして本発明は、Go、Go金合金斜方蒸着や。The present invention also provides Go, Go gold alloy oblique vapor deposition.

Go−W等のスパッタリングによる面内磁化膜。In-plane magnetized film by sputtering such as Go-W.

Go−Orに代表されるスパッタリング、蒸着、イオン
ブレーティング等による垂直磁化膜のいずれの強磁性層
の形成にも有用で、磁気テープ、磁気ディスクのいずれ
の形態の媒体であっても、広幅の高分子成形物基板上に
、強磁性層を形成する工程において、幅方向の特性の均
一化を図りかつ量産性を高めようとするものである。
It is useful for forming any ferromagnetic layer of perpendicular magnetization film by sputtering such as Go-Or, vapor deposition, ion blating, etc., and it is useful for forming any ferromagnetic layer of perpendicular magnetization film by sputtering such as Go-Or, and it can be used for wide-width media, whether it is magnetic tape or magnetic disk. In the process of forming a ferromagnetic layer on a polymer molded substrate, the aim is to make the characteristics uniform in the width direction and to improve mass productivity.

近年の磁気記録の高密度化は目覚しく、最短記録波長は
1μmをきるところまできた。
The density of magnetic recording has increased dramatically in recent years, and the shortest recording wavelength has reached the point where it is less than 1 μm.

さらに0.5μrrLm下を目ざp改良が重ねられてい
るが、これを実現する上で不可欠の媒体として、金属薄
膜型の媒体の開発が活発になってきている。
Further efforts are being made to improve the target diameter below 0.5 μrrLm, and development of metal thin film media is becoming more active as a medium essential to achieving this goal.

かかる媒体の製造の基礎となる薄膜形成技術は、人混な
用途を有し各方面で磨かれているものの、連続して大量
の原反を得るとなると、未解決の問題も数多く残されて
いる。
Although the thin film forming technology that forms the basis of the production of such media has many applications and has been refined in various fields, there remain many unresolved problems when it comes to continuously obtaining large quantities of raw material. There is.

薄膜を高分子成形物基板上に連続して形成する技術は巻
取蒸着技術として、金属化フィルムコンデンサ、装飾、
包装分野で実用になっているものの、これらは、蒸着材
料がAlであり、磁気記録媒体用の材料であるGo系の
合金に比較すると、高分子成形物への輻射熱影響が小さ
いのと、媒体が0.1μm程度の厚みが必要なのに対し
、A7!では高々0.03μm程度で凝縮熱影響も小さ
いことから、基板への熱影響は殆んど問題にされていな
かった。
The technology of continuously forming thin films on polymer molded substrates is known as roll-deposition technology, and is used for metallized film capacitors, decorations,
Although they have been put into practical use in the packaging field, they use Al as the vapor deposition material, and compared to Go-based alloys, which are materials for magnetic recording media, the effect of radiant heat on polymer molded products is small, and the media requires a thickness of about 0.1 μm, whereas A7! Since the condensation heat effect is small, with a thickness of about 0.03 μm at most, the heat effect on the substrate has hardly been considered a problem.

巻取り蒸着機で、蒸発源を、電子ビーム加熱式に置換え
るか、スパッタ源に置き換えれば、磁性薄膜の形成を行
うことができる。
If the evaporation source in a winding evaporation machine is replaced with an electron beam heating type or a sputtering source, a magnetic thin film can be formed.

面内磁化膜にしても、垂直磁化膜にしても先ず基本は、
幅方向、長手方向に磁気特性を均一にすることである。
Regardless of whether it is an in-plane magnetized film or a perpendicularly magnetized film, the basics are as follows.
The goal is to make the magnetic properties uniform in the width and length directions.

この課題は、蒸着効果を無視して取組むならば解決は容
易であるといえる。
This problem can be easily solved if the vapor deposition effect is ignored.

すなわち、基板の幅の倍近い幅の蒸発源を用意すればよ
いからである。
That is, it is sufficient to prepare an evaporation source with a width nearly twice the width of the substrate.

しかし大量生産技術として、この課題に取組むのは、必
ずしも容易ではない。
However, it is not necessarily easy to address this issue as a mass production technology.

蒸発源として電子ビーム蒸発源を用いた場合。When an electron beam evaporation source is used as the evaporation source.

(1)幅方向に長軸を有する広幅の容器に蒸発材料を挿
入し、偏向磁界走査で、基板の幅方向の位置により、電
子ビームの滞留時間を変化させて、膜厚を一定にし、磁
気特性を均一にする、(ii)小容量の蒸発源容器を幅
方向に複数個並べ、それぞれの蒸発速度を個別に制御し
て、やはり特性を均一にすることか考えられるが、基板
と蒸発源の相対位置により、(1)も(11)も再調整
が必要である。
(1) Insert the evaporation material into a wide container with a long axis in the width direction, and use deflection magnetic field scanning to change the residence time of the electron beam depending on the position in the width direction of the substrate to keep the film thickness constant. (ii) It may be possible to arrange multiple small-capacity evaporation source containers in the width direction and individually control the evaporation rate of each to make the characteristics uniform, but the substrate and evaporation source Both (1) and (11) need to be readjusted depending on their relative positions.

スパッタ源を用いた場合は、膜厚は比較的均一であるが
、逆にそれ以上の均一化を企てた時は、工夫の余地がな
い。
When a sputtering source is used, the film thickness is relatively uniform, but if an attempt is made to make it more uniform than that, there is no room for improvement.

またスパッタ源は膜形成速度が、ターゲットが磁性体で
あるため小さくなり、強引にパワーを投入すると、基板
への熱影響が大きくなり、かつ不均一になる傾向があっ
た。
In addition, the film formation rate of the sputtering source is slow because the target is a magnetic material, and when power is forcibly applied, the thermal effect on the substrate tends to be large and the film formation becomes non-uniform.

両者のいずれも、量産を前提とした条件、すなわち広幅
の基板(最低でも60c1n)で長尺ものを短時間で処
理する能力をもった上で、特性の良いこと、特性が均一
であることのいずれを欠いても問題であり、現状では満
足のいく製法は見出されていない。
Both of them meet the requirements for mass production, that is, the ability to process long items on wide substrates (at least 60c1n) in a short time, as well as good and uniform characteristics. Lack of either is a problem, and no satisfactory manufacturing method has been found at present.

垂直磁化膜にしても電子ビーム蒸着(又はイオンブレー
ティング)で充分な実用特性が得られる見通しがあるし
、特定の用途であれば、投入パワーを大きくとったマグ
ネトロンスパッタでも充分実用速度になるのであるから
、特性を均一にした時の熱影響を均一にできれば、いず
れも厳しい規格を満足する磁気記録媒体を大量に生産す
る技術として評価することができるわけである。
Even with perpendicularly magnetized films, there is a prospect that sufficient practical characteristics can be obtained by electron beam evaporation (or ion blating), and for specific applications, magnetron sputtering with a large input power can provide sufficient practical speed. Therefore, if the thermal effects can be made uniform when the characteristics are made uniform, it can be evaluated as a technology for mass-producing magnetic recording media that meet strict standards.

本発明は以上のような点に鑑みなされたもので、幅方向
の磁気特性の均一化を図った時に生ずる基板の受ける熱
影響の不均一を補償し、幅方向に磁気特性以外の主要な
物性を均一にするために、電子を基板に注入するもので
、その注入過程が、蒸着時と同じ回転支持体に沿った状
態で行われることで目的を達成するものである。
The present invention was developed in view of the above points, and it compensates for the unevenness of the thermal effect on the substrate that occurs when trying to make the magnetic properties uniform in the width direction, and improves the main physical properties other than the magnetic properties in the width direction. In order to make the deposition uniform, electrons are injected into the substrate, and this purpose is achieved by performing the injection process along the same rotating support as during vapor deposition.

電子は例えば、グロー放電処理による程度のエネルギー
では不充分であり、高分子成形物を基板とする場合その
厚みをt〔μm〕とすると、電子のエネルギーは1.s
 t (KV)からts t [KV:]、さらに好し
くは2tから3tの範囲を選べば良い。
For example, the energy generated by glow discharge treatment is insufficient for electrons, and when a polymer molded substrate is used and its thickness is t [μm], the energy of electrons is 1. s
The range may be selected from t (KV) to ts t [KV:], more preferably from 2t to 3t.

次に電流密度の設計が重要であり、蒸発源からの基板へ
の入熱を計算で求めて(正確には求められないがおよそ
の見当をつけることはできる。)それを補償するように
幅方向の電流密度を変化させ、全ての物性値が幅方向に
均一になるように実験的に求めていけば良い。
Next, it is important to design the current density, and the heat input from the evaporation source to the substrate is calculated (it cannot be determined exactly, but it is possible to get a rough idea), and the width is adjusted to compensate for it. All physical property values may be experimentally determined by changing the current density in the width direction so that they are uniform in the width direction.

大ずかみに傾向をいえば、第2図(A) 、 (B)に
示すような関係を基礎にして調整すればいい。
Broadly speaking, adjustments can be made based on the relationships shown in Figure 2 (A) and (B).

考え方は、入熱が磁気特性の均一化を図った時に例えば
(A) 、 (B) (もちろんこれ以外のパターンも
当然予測される。)のように分布したとすると、幅方向
を蒸着時の冷却で補償するか、加熱で補償するかである
が、単に加熱で補償するのは、高分子成形物基板は融点
が低いので危険であり、加熱するにしても冷却条件の変
動が幅、長手方向で小さいようにすることが基本である
The idea is that if the heat input is distributed as shown in (A) and (B) (of course, other patterns are naturally expected) when the magnetic properties are made uniform, then the width direction is Compensation can be done by cooling or by heating, but it is dangerous to simply compensate by heating because the melting point of the polymer molded substrate is low, and even if heating is done, the cooling conditions will fluctuate in width and length. The basic idea is to make it as small as possible in the direction.

電子注入により、トラップされた電荷により生ずる静電
界による基板と回転支持体との間の密着力が制御される
点を利用して、入熱と冷却とをバランスさせるのが本発
明の思想である。
The idea of the present invention is to balance heat input and cooling by utilizing the fact that electron injection controls the adhesion between the substrate and the rotating support due to the electrostatic field generated by the trapped charges. .

第1図は本発明を実施するための蒸着装置の要部構成例
を示す。
FIG. 1 shows an example of the main part configuration of a vapor deposition apparatus for carrying out the present invention.

図に示すように、送り出し軸1より、送り出された高分
子成形物基板2は、回転支持体3の表面に導かれ、回転
支持体に沿った状態で、注入用電子源4よシ放射される
電子を注入される。
As shown in the figure, the polymer molded substrate 2 fed out from the feeding shaft 1 is guided to the surface of the rotating support 3, and emitted by the injection electron source 4 along the rotating support. electrons are injected.

次に、加熱用電子源5を動作させ、蒸発源6より発生さ
せた蒸気流7により磁性層が形成される。
Next, the heating electron source 5 is operated, and the vapor flow 7 generated from the evaporation source 6 forms a magnetic layer.

8は入射角を限定するマスクである。8 is a mask that limits the angle of incidence.

磁性層形成を終えた基板は、巻取り軸9に巻き上げられ
る。
The substrate on which the magnetic layer has been formed is wound up on the winding shaft 9.

必要に応じてなされる前処理、後処理は1本発明を何ら
制約するものではない。
Pre-treatment and post-treatment performed as necessary do not limit the present invention in any way.

巻取り系、蒸発源系などは、真空容器10の内部に収納
される。11は真空排気系である。
A winding system, an evaporation source system, and the like are housed inside the vacuum container 10. 11 is a vacuum evacuation system.

さて第1図に示した装置を用いて、ポリエチレンテレフ
タレート(フィルム厚さ10μm)上にGo80%Ni
2O%から成る磁性層を、2X10 ”TOrrの酸素
中でo、16μmの厚さに形成した。
Now, using the apparatus shown in Figure 1, Go80%Ni was deposited on polyethylene terephthalate (film thickness 10 μm).
A magnetic layer consisting of 2O% was formed to a thickness of 16 μm in 2×10” TOrr of oxygen.

円筒状キャン(直径177’L)の冷却媒体tri5°
G 一定である。蒸発源位置は、キャンの直下27CT
Lで、最小入射角43°である。
Cooling medium tri5° in cylindrical can (diameter 177'L)
G is constant. The evaporation source position is 27 CT directly below the can.
L, and the minimum angle of incidence is 43°.

蒸着した幅方向は48(mにわたって、保磁力。The width direction of the vapor deposition is 48 (m), and the coercive force is 48 (m).

角形比、膜厚全て、+:3%に制御した。The squareness ratio and film thickness were all controlled to +:3%.

これを用いて磁気テープを製造した結果(幅8mm)6
o条中36条以外は、磁気テープの平担性が不充分で実
用にならなかった。
Result of manufacturing magnetic tape using this (width 8mm) 6
The flatness of the magnetic tape for all but 36 of the o-stripes was insufficient and could not be put to practical use.

これに比較して本発明における電子注入を以下の条件で
適用して、平担性の分布を調べた。
In comparison, the electron injection according to the present invention was applied under the following conditions to examine the flatness distribution.

〔条件1〕 電子を25KVで幅方向に60CTLにわたって均一に
照射した。電流密度1’j: 1 mk/c$である。
[Condition 1] Electrons were uniformly irradiated at 25 KV over 60 CTL in the width direction. Current density 1'j: 1 mk/c$.

〔条件2〕 25 Kvの電子で幅方向に対称性を保ち、中心より1
26nLまで1−A/ca 、 12 cmより26α
捷で直線的に増加させ25C7nの位置で1.5mしd
となるよう照射した。
[Condition 2] Maintain symmetry in the width direction with 25 Kv electrons, 1 from the center
1-A/ca up to 26nL, 26α from 12 cm
Increase linearly with the sword and increase it by 1.5m at the position of 25C7n.
It was irradiated so that

以上の実除の結果、条件1では良品が48条であったが
、条件2では60条全て良品であった。
As a result of the above actual division, under condition 1 there were 48 non-defective items, but under condition 2 all 60 items were non-defective.

次に、Go 80%Cr2O%を垂直入射に近い成分タ
ケでポリエチレンテレフタレートフィルム(厚さ14μ
m)上に0.2μmの厚さに形成した。
Next, a polyethylene terephthalate film (thickness 14μ
m) to a thickness of 0.2 μm.

電子ビーム蒸着とスパッタリングの両者の方法で実施し
た(磁気特性は±3%以内に制御)。
Both electron beam evaporation and sputtering were used (magnetic properties were controlled within ±3%).

電子注入の条件は、30KVで、幅方向に対称で中心よ
、!71ocmまでが0−5WL’/ca + q o
vaから186rrL″!!でか直線的に増加、18c
rIL位置で。、6/2cm+ 18crILから25cm4でか0.6mA/c4一定
とした。
The conditions for electron injection are 30KV, symmetrical in the width direction, and centered! 0-5WL'/ca + qo up to 71ocm
186rrL'' from va!! Huge linear increase, 18c
at the rIL position. , 0.6 mA/c4 constant from 6/2cm+18crIL to 25cm4.

この条件で幅方向全域にわたり、テープの平担性が確保
できた。
Under these conditions, the flatness of the tape could be ensured over the entire width direction.

またスパッタリングでは、この条件で電子注入を行うこ
とで、基板の移動速度21 Vminを確保できた。こ
れに対し電子注入しない場合、このパワーでは基板が溶
けてしまい、パワーを稀にしたため基板の移動速度は3
.sm/minの低速になってしまった。
Furthermore, in sputtering, by performing electron injection under these conditions, a substrate movement speed of 21 Vmin could be secured. On the other hand, if electrons were not injected, the substrate would melt with this power, and since the power was made rare, the substrate movement speed would be 3
.. The speed became as low as sm/min.

以上のように本発明によると、量産性の高い条件下で均
質な金属薄膜型記録媒体を容易に得ることができ、この
ことは短波長記録の要請の強い技術分野においてきわめ
て有用である。
As described above, according to the present invention, a homogeneous metal thin film type recording medium can be easily obtained under conditions of high mass production, and this is extremely useful in technical fields where short wavelength recording is strongly required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において用いられた装置の要部
の構成例を示す図、第2図は同じく本発明の実施例にお
ける電子注入茶汁を説明するだめの図である。 2・・・・・・基板、3・・・・・・回転支持体、4・
・・・・・注入用電子源、6・・・・・・蒸発源、1o
・・・・・・真空容器。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 (B> 基枦のV昌方伺侑渭−
FIG. 1 is a diagram showing an example of the configuration of the essential parts of an apparatus used in an embodiment of the present invention, and FIG. 2 is a diagram illustrating an electron-injected tea juice in the same embodiment of the present invention. 2...Substrate, 3...Rotating support, 4.
...Injection electron source, 6...Evaporation source, 1o
・・・・・・Vacuum container. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 (B>Motohisa's V Changgata Visiting Wave)

Claims (1)

【特許請求の範囲】[Claims] 支持体に沿って移動する高分子成形物基板上に真空蒸着
法により強磁性層を形成するとともに、上記強磁性層の
形成に先立ち上記基板に電子を注入しかつその電子注入
量を上記基板の幅方向において変化させることを特徴と
する磁気記録媒体の製造方法。
A ferromagnetic layer is formed by vacuum evaporation on a polymer molded substrate that moves along a support, and prior to forming the ferromagnetic layer, electrons are injected into the substrate and the amount of electron injection is controlled to A method for manufacturing a magnetic recording medium, characterized by changing the width in the width direction.
JP12689982A 1982-07-20 1982-07-20 Production for magnetic recording medium Granted JPS5916145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12689982A JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12689982A JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5916145A true JPS5916145A (en) 1984-01-27
JPH0121537B2 JPH0121537B2 (en) 1989-04-21

Family

ID=14946630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12689982A Granted JPS5916145A (en) 1982-07-20 1982-07-20 Production for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5916145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157208A (en) * 1985-12-28 1987-07-13 Mitsubishi Heavy Ind Ltd Multiple type valve mechanism
JPS6378337A (en) * 1986-09-19 1988-04-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157208A (en) * 1985-12-28 1987-07-13 Mitsubishi Heavy Ind Ltd Multiple type valve mechanism
JPS6378337A (en) * 1986-09-19 1988-04-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPH0121537B2 (en) 1989-04-21

Similar Documents

Publication Publication Date Title
JPS6396267A (en) Thin film forming device
US4740385A (en) Apparatus for producing coils from films of insulating material, conductively coated in a vacuum
US3342633A (en) Magnetic coating
JPS6320304B2 (en)
US5976636A (en) Magnetic apparatus for arc ion plating
CA1162113A (en) Process for producing magnetic recording medium
US3777704A (en) Apparatus for vaporizing metal on a substratum
JPS5916145A (en) Production for magnetic recording medium
JPS59124038A (en) Manufacture of magnetic recording medium
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
JPS58199862A (en) Magnetron type sputtering device
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
Kukla et al. High rate sputtering of metals and metal oxides with a moving plasma zone
JPS627264B2 (en)
JPS60101721A (en) Formation of barium ferrite layer
JPH0758027A (en) Plasma cvd apparatus
JPS59124939A (en) Wind-up metallizing method
JPH04116160A (en) Film forming device
JP3404065B2 (en) Ion plating equipment with high deposition efficiency
JPS59129944A (en) Method and device for manufacturing magnetic recording medium
Feuerstein et al. Video tape manufacture by high vacuum evaporation—aspects of machine technology
JPS59175037A (en) Production of magnetic recording medium
JPS6249974B2 (en)
JPS5916143A (en) Production for magnetic recording medium
KR20040004742A (en) Fabrication of highly oriented thin film using opposing target sputtering method