JPS59161430A - High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation - Google Patents

High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation

Info

Publication number
JPS59161430A
JPS59161430A JP58036008A JP3600883A JPS59161430A JP S59161430 A JPS59161430 A JP S59161430A JP 58036008 A JP58036008 A JP 58036008A JP 3600883 A JP3600883 A JP 3600883A JP S59161430 A JPS59161430 A JP S59161430A
Authority
JP
Japan
Prior art keywords
polysilane
molecular weight
atoms
titanium alkoxide
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58036008A
Other languages
Japanese (ja)
Other versions
JPS6261220B2 (en
Inventor
Yoshio Hasegawa
良雄 長谷川
Mitsuhiko Sato
光彦 佐藤
Kiyoto Okamura
清人 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU MUKI ZAIRYO KENKYUSHO
Ube Corp
Original Assignee
TOKUSHU MUKI ZAIRYO KENKYUSHO
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU MUKI ZAIRYO KENKYUSHO, Ube Industries Ltd filed Critical TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority to JP58036008A priority Critical patent/JPS59161430A/en
Publication of JPS59161430A publication Critical patent/JPS59161430A/en
Publication of JPS6261220B2 publication Critical patent/JPS6261220B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high polymer substance capable of being converted into an inorganic compound having a TiC crystalline structure consisting of Ti, C and O by calcination, by reacting a specific polysilane with a titanium alkoxide under heating. CONSTITUTION:(A) A polysilane having 100-600 molecular weight and a structural unit shown by the formula (R is H, lower alkyl, phenyl, hydroxyl group, or halogen) or a polysilane having this structural unit linked by a carbosilane bond or siloxane bond is reacted with (B) a titanium alkoxide shown by the formula Ti(OR') (R' is alkyl) in a ratio of number of atoms of Ti in the component B to number of atoms of Si in the component A of (5:1)-(1:1) in an inert atmosphere optionally in the presence of a small amount of water under heating, to give the desired high polymer substance having 2X10<2>-10<7> molecular weight and absorption of visible spectrum at 370-1,200nm.

Description

【発明の詳細な説明】 本発明はポリシランとチタンアルコキシドから誘導され
た新規な高分子物質及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel polymeric material derived from polysilane and titanium alkoxide, and a method for producing the same.

TiCはSiCと同様に高硬匿を有し、優れた耐熱材料
として有望であるが、SiCが、主鎖前駆体とし、繊維
状あるいは種々の成型体に成型して焼成することにより
広範な用途が開発されており、そのような技術は例えば
特開昭51−126300号、特開昭51−13992
9号、特開昭54−61299号、特開昭54−824
35号、特開昭54−102311号等に開示されてい
る通りであるのに対して、TiCについては従来のCV
D法や無機化学的手法が行なわれているために、有機物
を前駆体とするSiCに比べその応用は限られていた。
Like SiC, TiC has high hardness and is promising as an excellent heat-resistant material, but SiC can be used in a wide range of applications by using it as a main chain precursor, molding it into fibrous shapes or various molded bodies, and firing it. has been developed, and such technology is disclosed in, for example, JP-A-51-126300 and JP-A-51-13992.
No. 9, JP-A-54-61299, JP-A-54-824
35, JP-A No. 54-102311, etc., whereas for TiC, conventional CV
Because the D method and inorganic chemical methods have been used, its applications have been limited compared to SiC, which uses organic matter as a precursor.

本発明者らは先に特開昭56−5828号、特開昭56
−9209号、特開昭56−74126号、特開昭56
−88877号、特開昭56−128.315号で、?
リカルゲシランとポリチタノキサンあるいはチタンアル
コキシドの反応生成物が5iC−T’iC系の無機物に
転換でき、繊維やその他の成型体の前駆体として有用で
あることを示したが、これはSiCが主成分であること
が避けられず、Ticを主成分とする史に機能的な無機
材料の開発の原料としては限界があることが明らかとな
った。
The present inventors previously published Japanese Patent Application Laid-open No. 56-5828,
-9209, JP-A-56-74126, JP-A-56
-88877, JP-A-56-128.315, ?
It was shown that the reaction product of ricargesilane and polytitanoxane or titanium alkoxide can be converted into a 5iC-T'iC-based inorganic material, which is useful as a precursor for fibers and other molded bodies, which is mainly composed of SiC. This is unavoidable, and it has become clear that there are limits to the use of Tic as a raw material for the development of functional inorganic materials.

そこで本発明者らは、TiCを主成分とする無機材料の
原料に関する研究を行った結果、分子量が100〜60
0のポリシラン構造を有する有機ケイ素化合物とチタン
アルコキシドとの反応生成物が、非酸化性雰囲気中で焼
成することによりTiとCとOより主としてなるTiC
型結晶構造を有する無機物に転換し、しかも、繊維状お
よび種々の成型体に成型でき、無機材料の前駆体として
有用であることを見出し、本発明に到達した。
Therefore, the present inventors conducted research on raw materials for inorganic materials containing TiC as the main component, and found that the molecular weight was 100 to 60.
The reaction product of an organosilicon compound having a polysilane structure of 0 and titanium alkoxide is fired in a non-oxidizing atmosphere to produce TiC, which is mainly composed of Ti, C and O.
The present invention was achieved based on the discovery that it can be converted into an inorganic material having a type crystal structure, can be molded into fibrous forms and various molded bodies, and is useful as a precursor for inorganic materials.

本発明によれば分子量が100〜600の下記(但しR
は水素原子、メチル基、エチル基、フェニル基、水酸基
、又ハハロrン) 4リシラン、あるいは、この構造単位がカルボシラン結
合又はシロキサン結合により結合されたポリシランと、
一般式 Ti(OR勺(但しR′はアルキル基)で表わ
されるチタンアルコキシドを加熱により反応させて得ら
れる分子量2X10”〜10’の高分子物質であり、可
視吸収スペクトルにおいて370−1200amに吸収
を有し着色し、加水分解性に優れ、)Jll水分解後、
有機溶媒に不溶となり、かつ加熱により溶融しなくなり
、分子量が100〜600で、かつSi原子を2〜10
含むポリシラン部分が、l’i (OR’)、から誘導
されるTi原子を1〜lO含むチタンアルコキシト多量
体類似物部分とl:1の比で結合し、非酸化性雰囲気で
焼成するとTiとCとOよ9成るTiC型結晶構造を有
する無機物に転換することを特徴とする高分子物質が提
供される。
According to the present invention, the molecular weight is 100 to 600 as follows (however, R
is a hydrogen atom, a methyl group, an ethyl group, a phenyl group, a hydroxyl group, or a hahalon) 4-lysilane, or a polysilane in which this structural unit is bonded by a carbosilane bond or a siloxane bond,
It is a polymeric substance with a molecular weight of 2X10" to 10' obtained by reacting titanium alkoxide represented by the general formula Ti (OR) (where R' is an alkyl group) by heating, and has absorption at 370-1200 am in the visible absorption spectrum. It is colored and has excellent hydrolyzability.) After Jll water decomposition,
It becomes insoluble in organic solvents, does not melt when heated, has a molecular weight of 100 to 600, and contains 2 to 10 Si atoms.
When the polysilane moiety containing Ti atoms derived from l'i (OR') is combined with a titanium alkoxide polymer analog moiety containing 1 to 1O in a ratio of l:1, and sintered in a non-oxidizing atmosphere, Ti Provided is a polymer material which is characterized by being converted into an inorganic substance having a TiC type crystal structure consisting of , C and O.

さらに、本発明によれば前記ポリシラン及び前記チタン
アルコキシドを、ポリシラン中のSi原子数に対するチ
タンアルコキシド中のTi原子数の比が5:1〜1:1
になる量比で加え、反応に対して不活性な雰囲気中にお
いて必要によシ少量の水を加えて加熱する、前記高分子
物質の製造方法が提供される。
Furthermore, according to the present invention, the polysilane and the titanium alkoxide have a ratio of the number of Ti atoms in the titanium alkoxide to the number of Si atoms in the polysilane of 5:1 to 1:1.
There is provided a method for producing the polymeric substance, which comprises adding a small amount of water as necessary and heating in an atmosphere inert to the reaction.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の高分子物質は、一般に下記の構造でその特徴を
表わすことができ、ここでnは2〜1O11〜10、で
あり、ポリシラン部分の分子量は100〜600である
が、ポリシラン部分は鎖状である必要はなく原料ポリシ
ランとして何を用いるかに工や分岐状、環状、かご状の
いずれであシ得、またチタンアルコキシド多量体類似部
分は、このようなポリチタノキサンである盛装はなく、
該高分子物質が可視吸収スペクトルにおいて370〜1
2005mに吸収を有し着色することからも明らかなよ
うに、6配位のTiを含むチタンアル・コキシド多量体
やその類似物を形成しており、例えば下肥のような構造
が考えられる(R′は省略しであるが、反応の際離脱し
ている部分もあることが赤外吸収スペクトルより推定さ
れる。)。また反応の際 少量の水を加えることによりチタノキサン結合が導入さ
れることも明らかであり、実際にはチタンアルコキシド
多量体とチタノキサン結合を有する構造の混合したもの
であシ、このチタンアルコキシド多量体類似物部分中の
Tt原子は1〜10である。
The polymeric substance of the present invention can generally be characterized by the following structure, where n is 2 to 1O11 to 10, and the molecular weight of the polysilane moiety is 100 to 600, but the polysilane moiety is a chain. It does not have to be shaped like a polysilane, and it can be branched, cyclic, or cage-shaped depending on what polysilane is used as the raw material, and the titanium alkoxide polymer-like part does not have to be a polytitanoxane like this.
The polymer substance has a visible absorption spectrum of 370 to 1
As is clear from the fact that it has an absorption at 2005m and is colored, it forms a titanium alkoxide polymer containing six-coordinated Ti or its analogues, and for example, a structure similar to that of a manure can be considered (R Although '' is omitted, it is estimated from the infrared absorption spectrum that some parts are separated during the reaction.) It is also clear that titanoxane bonds are introduced by adding a small amount of water during the reaction, and it is actually a mixture of a titanium alkoxide polymer and a structure with titanoxane bonds, and this titanium alkoxide polymer is similar. The number of Tt atoms in the mono moiety is 1 to 10.

ポリシランおよびチタンアルコキシド自体は公知である
が、本発明における、ポリシランとチタンアルコキシド
から誘導される高分子物質はこれまで知られておらす、
rルtZ−ミエーションクロマトグラフィー(GPC)
の測定結果から、分子量2X10”〜10?の高分子物
質であり、原料ポリシランの分子量よりはるかに大きな
値を示す。
Although polysilane and titanium alkoxide themselves are known, the polymeric substance derived from polysilane and titanium alkoxide in the present invention has not been previously known.
rrutZ-meation chromatography (GPC)
According to the measurement results, it is a polymeric substance with a molecular weight of 2×10'' to 10?, which is much larger than the molecular weight of the raw material polysilane.

また、該高分子物質の赤外吸収スペクトルおよび該高分
子物質を合成する際に副生成物として得られる低沸点生
成物の赤外吸収スペクトル、およびガスクロマトンラフ
イーによる測定結果より、原料ポリシランにおいて反応
に対して活性な部分は時に84−H,5i−ORでちゃ
、低温でも反応により消失することが明らかとなり、さ
らに高温になると84−CM、等のアルキル基やノ・口
rン、フェニル基が反応し、それぞれ対応する化合物、
例えばR10H,RIHSH,O,H,、CH,、C6
H6を生成するが特に注目すべき点は、チタンアルコキ
シドのアルコ−、ルから誘導されるケトンと、H,、C
H4等のガスが生成することであり、反応の複雑さを示
しているが、これは、4リシラン部分とチタンアルコキ
シド多量体類似物部分との結合の生成が、原料ポリシラ
/のSi原子上のどの置換基が離脱して生ずるかによる
ためであることがわかった。
In addition, from the infrared absorption spectrum of the polymeric substance, the infrared absorption spectrum of the low-boiling point product obtained as a by-product when synthesizing the polymeric substance, and the measurement results using gas chromaton roughy, it was found that the raw material polysilane It has become clear that the active moiety for the reaction is sometimes 84-H,5i-OR, which disappears by the reaction even at low temperatures, and at even higher temperatures, alkyl groups such as 84-CM, The groups react, each corresponding compound,
For example, R10H, RIHSH, O, H,, CH,, C6
H6 is produced, but what is particularly noteworthy is that the ketone derived from the alcohol of titanium alkoxide and the H,,C
Gases such as H4 are produced, indicating the complexity of the reaction. It was found that this depends on which substituent is left and formed.

本発明の高分子物質を製造するための方法は、無溶媒又
は有機溶媒中で、反応に対して不活性な雰囲気中におい
て、ポリシランとチタンアルコキシドを加熱し、rle
リシラン部分とチタンアルコキシド多量体類似部分を結
合させる方法であシ、用いるポリシランが通常液体であ
るため、無溶媒で反応させることができるが、原料ポリ
シランが高粘度であるか、あるいは固体であったり、チ
タンアルコキシドが高級アルコールのアルコキシドで固
体状であり、均一に混合することができない場合に有機
溶媒を用いると有利であり、好ましい溶[トt、テハヘ
キサン、ベンゼン、トルエン、キシ反応に対して不活性
な雰囲気としては例えば水素、アルゴンが好適であム空
気中では酸化が生じ、減圧下では原料ポリシランやチタ
ンアルコキシドが反応前に留出し好ましくない。
The method for producing the polymeric substance of the present invention involves heating polysilane and titanium alkoxide in an atmosphere inert to the reaction, without solvent or in an organic solvent, and
This is a method of bonding a resilane moiety with a titanium alkoxide polymer-like moiety.Since the polysilane used is usually liquid, the reaction can be carried out without a solvent, but if the raw material polysilane has a high viscosity or is solid, It is advantageous to use an organic solvent when the titanium alkoxide is a solid alkoxide of a higher alcohol and cannot be mixed uniformly. For example, hydrogen and argon are suitable as the active atmosphere; oxidation occurs in air, and raw material polysilane and titanium alkoxide are distilled off before the reaction under reduced pressure, which is not preferable.

反応温度は、有機溶媒を用いる場合はその沸点で、有機
溶媒を用いない場合は到達温度で還流させる温度が必要
であり、その後、溶1sあるいは未反応物を留出させ2
00〜450Cで加熱することが必要でちゃ、一般にr
ル化を避けるために400C以下にすることが好ましい
The reaction temperature is the boiling point when an organic solvent is used, and the reflux temperature is required when no organic solvent is used.After that, the solution 1s or unreacted substances are distilled off.
If it is necessary to heat at 00~450C, generally r
It is preferable to keep the temperature at 400C or less in order to avoid melting.

反応時間は特に重要ではなく、分子量は反応温度によっ
て関節するのが好ましい。
The reaction time is not particularly important, and the molecular weight is preferably determined by the reaction temperature.

本発明の方法において新規高分子物質を製造するための
出発原料の一つであるポリシランは分子量100−60
0の下記の構造式 (但しRは水素原子、メチル基、エチル基、フェニル基
、水tS基又はハロゲノ) で表わされ、場合によっては上記構造単位がカルがシラ
ン結合あるいはシロキサン結合により結合されたポリシ
ランであシ、また、分岐状、環状、かご状のいずれの構
造であってもさしつかえなく、また末端基は前記側鎖と
同じであるが、該ポリシラン単位がカルビシラン結合あ
るいはシロキサン結合により結合されている場合、この
ポリシラン部分中のSi原子の数は後述するように2〜
1Gであることが好ましく、これらのポリ・72/の製
造方法自体は公知であシ、特に本発明の原料として用い
るポリシランとして好適であるのは、重合度が大きい鎖
状デリジメチルシ2ンを、5ooc以下で熱分解して留
出させて得られる低沸点のポリシランであシ、このポリ
シランは分子中にわずかのカルがシラン結合を有するが
、Si原子上に水素原子を置換基として有しているため
反応性に富む点で有利でちゃ、シかもこのようなポリシ
ランを容易に入手できる方法としても優れている。
Polysilane, which is one of the starting materials for producing the new polymeric substance in the method of the present invention, has a molecular weight of 100-60.
It is represented by the following structural formula of The polysilane unit may have a branched, cyclic, or cage-like structure, and the terminal group is the same as the side chain described above, but the polysilane unit is bonded by a carbisilane bond or a siloxane bond. In this case, the number of Si atoms in this polysilane moiety ranges from 2 to 2, as described below.
1G is preferable, and the manufacturing method of these poly-72/s is known per se. Particularly suitable as the polysilane to be used as a raw material in the present invention is linear deli-dimethylsilane having a high degree of polymerization, 5ooc It is a low boiling point polysilane obtained by thermal decomposition and distillation as described below.This polysilane has a small amount of Cal in the molecule with a silane bond, but has a hydrogen atom as a substituent on the Si atom. Therefore, it is advantageous in terms of high reactivity, and it is also an excellent method for easily obtaining such polysilanes.

本発明のもう一つの出発原料は一般式T i (OR’
)。
Another starting material of the present invention has the general formula T i (OR'
).

(ただしR′はアルキル基)で表わされその製造方法は
公知であるが、たとえば、R′がプロピル、イソプロピ
ル、n−グチル基が好ましく、また、チタンソイソグロ
ポキシビスアセチルアセl−ト等も用いることができる
(where R' is an alkyl group) and its manufacturing method is known, but for example, R' is preferably a propyl, isopropyl, n-butyl group, and titanium soisoglopoxy bisacetylacetate, etc. can also be used.

本発明の方法においては、前記ポリシラン中の全Si原
子数に対するチタンアルコキシド中の全Ti原子数の比
が5:1〜1:1になる量比で加え加熱して高分子物質
を製造するが、この反応によシ、分子量がto’o〜6
00でかつSi原子を2〜10含む49727部分がT
i(OR’)4から誘導されるTi原子を1〜10含む
チタンアルコキシド多量体類似物部分と1:1の比で結
合した高分子物質が得られる。
In the method of the present invention, a polymeric substance is produced by adding and heating the titanium alkoxide in a quantity ratio such that the ratio of the total number of Ti atoms in the titanium alkoxide to the total number of Si atoms in the polysilane is 5:1 to 1:1. , due to this reaction, the molecular weight is to'o ~ 6
00 and 49727 part containing 2 to 10 Si atoms is T
A polymer material is obtained which is bonded in a 1:1 ratio with a titanium alkoxide multimer analog moiety containing 1 to 10 Ti atoms derived from i(OR')4.

上記方法により得られる高分子物質中のポリシラン部分
中のSi原子数が10より大きくなったシ、チタンアル
コキシド多量体類似部分中のTi原子数がlOより大き
くなると、焼成して得られる無機物の収址が小さくなっ
たり、TiC型構造の無機物が得られなくなシ、5iC
−?SiO,およびTie、〜TiOの間の酸化物の生
成が主となり、さらにTiC型構造の無機物を得るため
には全Si原子数に対する全Ti原子数の比が5:1〜
l:1であることが必要であることが明らかとなり、そ
の理由は後述の通りである。
If the number of Si atoms in the polysilane moiety in the polymer material obtained by the above method is greater than 10, or if the number of Ti atoms in the titanium alkoxide polymer-like moiety is greater than 1O, the inorganic material obtained by firing will be 5iC
−? The generation of oxides between SiO, Tie, and ~TiO is the main process, and in order to obtain an inorganic material with a TiC type structure, the ratio of the total number of Ti atoms to the total number of Si atoms must be 5:1 ~
It has become clear that l:1 is necessary, and the reason will be explained later.

本発明の方法で製造される新規高分子物質は、分子量が
2X10”〜10?であり、通常流動性を有する粘稠な
液体あるいは室温以上で加熱すると軟化あるいは溶融す
る熱可塑性物質であり、まタトルエン、キシレン、テト
ラヒドロフラン等の溶媒に可溶であるが、空気中の水分
あるいは溶媒中の水分により加水分解を受けやすく、G
PCに工り分子量分布を測定するとその分子量分布は時
間の経過とともに低分子量側へ移動し、また空気中に放
置あるいは9気中で低温加熱すると加水分解お工びrル
化が同時に進行し、溶媒に不溶となり、又、加熱による
軟化も示さなくなることが明らかとなった。この現象は
水分の不存在下では起こらない。これは、前記高分子物
・dを構成するチタンアルコキシド多量体類似切部分が
加水分解を受けやすいためであると推定されるが、この
性質は無機材料の前駆体として該高分子物質を用いる際
該高分子物質を成型あるいは成型体の焼結助剤とした後
焼成して種々の形状の成型体を加熱による軟化の為に変
形することなく形状を保たせて得る際にきわめて有用で
ある。
The new polymeric substance produced by the method of the present invention has a molecular weight of 2X10'' to 10?, and is usually a fluid viscous liquid or a thermoplastic substance that softens or melts when heated above room temperature. Although it is soluble in solvents such as tatoluene, xylene, and tetrahydrofuran, it is susceptible to hydrolysis due to moisture in the air or moisture in the solvent, and G
When the molecular weight distribution is measured using a PC, the molecular weight distribution shifts to the lower molecular weight side over time, and when left in the air or heated at low temperature in 9 air, hydrolysis and oxidation proceed at the same time. It became clear that it became insoluble in the solvent and did not show any softening upon heating. This phenomenon does not occur in the absence of moisture. This is presumed to be because the titanium alkoxide polymer-like cut portion constituting the polymer d is susceptible to hydrolysis; The polymer substance is extremely useful when molded or used as a sintering aid for molded bodies and then fired to obtain molded bodies of various shapes that maintain their shapes without being deformed due to softening due to heating.

本発明の新規高分子物質は、真空中、不活性ガス雰囲気
中のような非酸化性雰囲気中で焼成することにより7’
 i l CとOよシ主として成るTiC型結晶構造を
有する無機物に転換することが大きな特徴であり、その
ためには、原料ポリシラン中の全Si原子数に対するチ
タンアルコキシド中の全Ti原子数の比が5:1−1:
1になる建地で加えて反応させなければならず、この竜
比の時に、分子量が100〜600で、かつSt原子を
2〜10含むポリシラン部分が亭タンアルコキシドから
誘導されるTi原子を1〜10含むチタンアルコキシド
多量体類似物部分とl:1で結合した高分子物質が形成
される。
The novel polymeric substance of the present invention can be produced by firing in a non-oxidizing atmosphere such as a vacuum or an inert gas atmosphere.
The major feature is that it is converted into an inorganic substance with a TiC-type crystal structure mainly composed of C and O, and for this purpose, the ratio of the total number of Ti atoms in the titanium alkoxide to the total number of Si atoms in the raw material polysilane must be 5:1-1:
At this time, the polysilane moiety with a molecular weight of 100 to 600 and containing 2 to 10 St atoms reacts with Ti atoms derived from the tan alkoxide. A polymeric material is formed that is 1:1 combined with a titanium alkoxide multimer analog moiety containing ~10.

本発明における一記高分子量物質が焼成するとTtとC
とOよシ主として成るTiC型結晶構造を有する無機物
に転換する機構は必ずしも明らかではないが、該高分子
物質を構成するポリシラン部分は6oQC1での熱処理
により完全に熱分解し多数のラジカル、例えば−1R2
、Ro、Roを生成し、これらのラジカルがTjと反応
しまたTi原子のli!6四の酸素と反応して還元作用
を示しTiCを形成シ、またポリチタノキサンのみを熱
分解した時に生成するTie、〜TiOの7“io、か
ら酸素が不足した酸化物、例えばT i、01.、Ti
60n % T S@’ts トイツタ組成o T i
 Ill 化* (比較例1)が還元されて生成したT
iOと7“iCに7′ioが固溶した相とTiOにTi
Cが固溶した相の混合相を形成し、実施例で示したよう
なTiとCとOより成るTiC型結晶構造を有す′る無
機物に転換すると推定され、この際ポリシラン部分がケ
イ素原子を10より多く含んでいてもよい場合もあるが
、一般にその時には得られる無機物の収量が低くなった
り、ポリシラン部分の熱分解によシポリカルゲシランが
形成されそのポリカルがシランが焼成によt)S ic
を生成することがあるので好ましくない。またポリシラ
ン部分のケイ素原子が1の場合にはやはり熱分解生成物
の収量が低かったり、収量が高いフェニル基を有する場
合(比較例2)には焼成によシ多量のケイ素の酸化物、
炭素、さらに高温に加熱することによってこれらの反応
生成物であるSiCが生成して好ましくない。
When the high molecular weight substance in the present invention is fired, Tt and C
Although the mechanism of conversion into an inorganic substance having a TiC-type crystal structure mainly consisting of 1R2
, Ro, and Ro are generated, and these radicals react with Tj and li! of the Ti atom. Oxygen-deficient oxides, such as Ti, 01.01.6, exhibit a reducing action and form TiC by reacting with the oxygen of 64, and Tie, which is produced when only polytitanoxane is thermally decomposed, ~7"io of TiO. , Ti
60n % T S@'ts Toi Tsuta Composition o T i
T produced by reduction of Ill compound* (Comparative Example 1)
iO and 7′io solid solution phase in iC and TiO in TiO
It is estimated that a mixed phase in which C is dissolved in solid solution is formed, and it is converted into an inorganic substance having a TiC-type crystal structure consisting of Ti, C, and O as shown in the example. In some cases, it may be possible to contain more than 10, but in general, in such a case, the yield of inorganic substances obtained may be low, or cypolycargesilane is formed by thermal decomposition of the polysilane part, and the polycal is oxidized by calcination. )Sic
This is not desirable as it may generate In addition, when the polysilane moiety has one silicon atom, the yield of thermal decomposition products is still low, and when it has a phenyl group with a high yield (Comparative Example 2), a large amount of silicon oxide,
Carbon, and SiC, which is a reaction product of these, is produced by heating to a high temperature, which is undesirable.

一方チタンアルコキシド多量体類似部分のTi原子数は
1〜10が好ましく、それ以上では前述したようなTi
Oより散票原子が多い酸化物が生成し好ましくない。
On the other hand, the number of Ti atoms in the titanium alkoxide polymer-like moiety is preferably 1 to 10;
This is not preferable because an oxide with more scattered atoms than O is produced.

さらに前記高分子物質を形成するポリシラン部分の分子
量が600より大きくてもよいが、該高分子物質が焼成
される時熱分解により大部分が飛散する部分であるから
、無機物の収量を高める上で100〜600が好ましく
、このようなポリシランは置換基が実質的にメチル基、
エチト基でありさらに少量の水素、フェニル基、水酸基
、ノ・口rンである。
Furthermore, the molecular weight of the polysilane part forming the polymeric material may be greater than 600, but since most of the polysilane portion is dispersed due to thermal decomposition when the polymeric material is fired, this is effective in increasing the yield of inorganic materials. 100 to 600 is preferable, and such a polysilane has substituents substantially including methyl groups,
It is an ethyl group, and a small amount of hydrogen, a phenyl group, a hydroxyl group, and a hydrogen group.

本発明の製造方法により得られる前記高分子物質は、加
熱により軟化あるいは溶融する固体であったり、また粘
稠な液体であるから種々な形状を有する成形体としたり
、成形体の焼結助剤として用いることが出来、これを上
記の加水分解および焼成処理に付すことにより性能の良
好な無機質の材料を得ることができ、例えば#維、フィ
ルム、超微粒子などや、その他複雑な形状の成型体の原
料として有用である。
The polymeric substance obtained by the production method of the present invention is a solid that softens or melts when heated, or is a viscous liquid, so it can be made into molded bodies of various shapes, or it can be used as a sintering aid for molded bodies. By subjecting it to the above-mentioned hydrolysis and calcination treatment, inorganic materials with good performance can be obtained, such as #fibers, films, ultrafine particles, etc., and other complex shaped molded bodies It is useful as a raw material for

以下本発明を実S;包例によって説明する。The present invention will be explained below using a practical example.

実権例1 重合反約35のボリゾメチルシラン、−fSiA4す÷
、を1000F窒素雰囲気中室温よ、p450Cまで加
熱し分解し、生成する低沸点物を留出させ、約750f
の分子量範囲が60〜600のポリシランを得た。この
ポリシランはSi原子上の置換基としてメチル基以外に
約17%の水素を有することが赤外吸収スペクトル、核
磁気共鳴スペクトルよシ確認され、まfc紫外吸収スペ
クトルの測定を含め、このポリシラン中にはほとんどカ
ルボシラン結合がないことが確認された。
Practical Example 1 Polymerization of about 35% borizomethylsilane, -fSiA4S÷
, is heated to 1000F from room temperature to p450C in a nitrogen atmosphere to decompose it, and the low boiling point products produced are distilled out to about 750F.
A polysilane having a molecular weight in the range of 60 to 600 was obtained. Infrared absorption spectra and nuclear magnetic resonance spectra confirmed that this polysilane has approximately 17% hydrogen as a substituent on the Si atom in addition to methyl groups. It was confirmed that there were almost no carbosilane bonds.

次に上記ポリシラン60fにチタンテトラブトキシド3
40fを加え窒素雰囲気中でカクノ・ンしながら加熱し
210CK温度が上昇するまで還−流させ、次に低沸点
の反応生成物および未反応物を留出させて25(1’t
で加熱し冷却し、SiとTiの比が1:lの分子t30
0〜2X10”の黒縁色の固体の高分子物質を137f
得た。
Next, titanium tetrabutoxide 3 was added to the polysilane 60f.
40f was added and heated in a nitrogen atmosphere with stirring until the 210CK temperature rose. Next, low-boiling reaction products and unreacted products were distilled out to give 25(1't
The molecule t30 with a Si to Ti ratio of 1:l is heated and cooled.
0~2X10" solid polymer material with black border color
Obtained.

ここで得られた高分子物質を真空中100 C・A−1
で1400t:’まで加熱し1400Cで0.5時間焼
成した無機物の収率は62%であり、この物質のCu 
K cz線を用いたX線粉末回折測定の結果は、2θが
3&2’、4L1°、60,8°、727°、76.6
°で各、*7’sCの(111)、(200)、(22
0)、(113)、(222)の回折線に和尚する回折
ピークが得られたが、この回折線は従来のTiCに観測
される回折線より高角度側にシフトあるいは高角度側に
もう一つの回折線の重なりを示しておシ、これはTiC
にTiOが固溶し九低角度側圧回折線を示す相とTiO
にTiCが固溶した高角度側に回折線を示す相であり、
シかもいずれもTiC型結晶構造であり、同様な焼成条
件で1200Cまで焼成した無機物の回折−一りはより
半値巾の広い同様な回折線を示すことからTiとCとO
より成るTi−C型結晶構造を有する無機物によると推
定される。
The polymer material obtained here was heated to 100 C.A-1 in vacuum.
The yield of the inorganic material heated to 1400t:' and calcined at 1400C for 0.5 hours was 62%, and the Cu
The results of X-ray powder diffraction measurement using K cz rays show that 2θ is 3&2', 4L1°, 60.8°, 727°, 76.6
(111), (200), (22) of *7'sC, respectively at °
Diffraction peaks similar to the diffraction lines of 0), (113), and (222) were obtained, but this diffraction line was shifted to a higher angle than the diffraction line observed for conventional TiC, or there was another diffraction peak on the high angle side. It shows the overlap of two diffraction lines, which is TiC.
A phase in which TiO is dissolved in solid solution and shows a nine-low angle lateral pressure diffraction line and a TiO
It is a phase that shows a diffraction line on the high angle side in which TiC is dissolved in solid solution,
However, both of them have a TiC type crystal structure, and the diffraction of inorganic materials fired to 1200C under similar firing conditions shows similar diffraction lines with a wider half-width.
It is presumed that this is caused by an inorganic substance having a Ti-C type crystal structure consisting of.

実施例2 実施例1で得られたポリシランのうち90〜310Cま
での沸点を有する分子量200〜600のポリシラン1
20Fにチタンテトフィソグロポキシドを1902加え
窒素雰囲気中で攪拌しながら180Cに温度が上昇する
まで遣流し、次に低沸点の反応生成物および未反応物を
留出させて280Cまで加熱した後冷却して、SiとT
iC比が3:lの分子量1000〜107の暗緑色の半
固体状の高分子物質を1292得た。
Example 2 Among the polysilanes obtained in Example 1, polysilane 1 having a boiling point of 90 to 310C and a molecular weight of 200 to 600
Add 1,902 ml of titanium tetraphysogropoxide to 20F and feed it while stirring in a nitrogen atmosphere until the temperature rises to 180C, then distill off the low boiling point reaction products and unreacted substances and heat to 280C. After cooling, Si and T
1292 dark green semi-solid polymeric substances having an iC ratio of 3:l and a molecular weight of 1000 to 107 were obtained.

この高分子物質を実施例1と同様に1400Cで焼成し
て得られた無機物は収率37%でやはりTiとCとOよ
9成るTiC型結晶構造を有する無機物によると推定さ
れるX線回折図形を与えた。
The inorganic material obtained by firing this polymer material at 1400C in the same manner as in Example 1 had a yield of 37%, and was estimated to be due to the inorganic material having a TiC type crystal structure consisting of Ti, C, and O. given the shape.

実施例3 実施例1で得られたポリシラン1202にチタンナト2
イソグロポキシドを1141加え窒素雰囲気中でカクハ
ンしなから205Cになるまで還流させ、次に低沸点の
反応生成物および未反応物を留出させ350Cまで加熱
した後冷却して、Siとi’ iの比が5=1の分子量
200〜5×10’の黒青色の半固体状の尚分子物質を
1081得た。
Example 3 Titanium Nato 2 was added to the polysilane 1202 obtained in Example 1.
Add 1141 isoglopoxide and reflux in a nitrogen atmosphere until the temperature reaches 205C. Next, low-boiling reaction products and unreacted substances are distilled off. After heating to 350C, it is cooled to separate Si and i'i. 1081 black-blue semi-solid molecular substances with a molecular weight of 200 to 5 x 10' with a ratio of 5=1 were obtained.

この高分子物質を200 cc−mitV”の流速のA
r気流中で100C・ん−1の件温速度で1400Cま
で加熱し、1400Uで0.5時間焼成して得られた無
機物は収率・31%でやはシI′iとCとO工り成るT
iC型結晶構造を有する無機物によると推定されるX線
回折図形を与えた。
This polymer material was heated at a flow rate of 200 cc-mitV''.
The inorganic material obtained by heating to 1400C at a temperature rate of 100C·n-1 in a r air flow and sintering at 1400U for 0.5 hours has a yield of 31%. T consisting of
An X-ray diffraction pattern estimated to be due to an inorganic substance having an iC type crystal structure was given.

実施例4 ツメチルジクロロシラン1モルとソフェニルソクロロシ
クン2モルを金114Nα4モルでキシレン中で脱塩素
縮合させ平均組成がC1−8iPh、−SイMg!−8
iPh@二CI なるポリシランを生成させこれを加水
分解させHO−8iPh、 −SiMel −8iP〜
−ORなるダシ2ノールとし九後このポリシラン114
Fに対してチタンテトラブトキシド85fを加えさらに
キシレン130fを加えて窒素雰囲気中でカクハンしな
がら加熱し還流後、キシレン、低沸点生成物を留出させ
200rまで加熱してその後冷却し、SiとTiC比が
3:1の分子量1000〜3X10’の褐色の固体状の
高分子物質を130f得た。
Example 4 1 mole of trimethyldichlorosilane and 2 moles of sophenylsochlorosicune were dechlorinated and condensed in xylene with 4 moles of gold 114Nα to give an average composition of C1-8iPh, -S-Mg! -8
Polysilane iPh@2CI is generated and this is hydrolyzed to produce HO-8iPh, -SiMel -8iP~
-OR is the dashi 2-nor and after nine this polysilane 114
85 f of titanium tetrabutoxide was added to F, and 130 f of xylene was added, and heated under nitrogen atmosphere with stirring. After refluxing, xylene and low boiling point products were distilled out, heated to 200 r, then cooled, and Si and TiC 130f of a brown solid polymeric substance with a molecular weight of 1000 to 3×10' was obtained with a ratio of 3:1.

この高分子物質を実施例3と同様の条件で140(lで
焼成して得られた無機物は収率58%でやは9、T(と
CとOよプ成るTiC型結晶構造を有する無機物罠よる
と推定されるX線回折図形を与えた。
The inorganic substance obtained by calcining this polymer substance at 140 l under the same conditions as in Example 3 had a yield of 58% and had a TiC type crystal structure consisting of T (, C, and O). An X-ray diffraction pattern estimated to be based on traps was given.

実施例5 実施例2で得た為分子物質を10fテトラヒドロフ2ン
toccに溶解し、空気中で2.4時間放置して加水分
解後、テトラヒドロフランを蒸発させ溶媒不溶の褐色の
樹脂状物を得た。このものは加熱により軟化せず、実施
例1と同様の方法で1400tll’で焼成すると収率
50%でTiとCとOよ9成るTiC型結晶構造を有す
る無機物と微量の:SiO,によると推定させるX線回
折図形を与えた。
Example 5 The molecular substance obtained in Example 2 was dissolved in 10f tetrahydrofuran TOCC and left to stand in the air for 2.4 hours to hydrolyze. Tetrahydrofuran was then evaporated and a brown resinous substance insoluble in the solvent was obtained. Obtained. This material does not soften when heated, and when fired at 1400 tll' in the same manner as in Example 1, the yield is 50%, which is based on an inorganic substance having a TiC-type crystal structure consisting of Ti, C, and O, and a trace amount of SiO. An estimated X-ray diffraction pattern was provided.

比較例1 チタンテトライソグロポキシド284tを窒素°雰囲気
中30Cに加熱してカクノ・ンしながら、水17.4F
をイソプロピルアA、 コ−A/ 100 CCK溶か
して2時間で滴下しその後低沸点の反応生成物を留出さ
せながら240tll’tで加熱し、134Fのポリチ
タノキサンを得た。これを実施例1と同様の方法でlj
!00(:’sおよび1400Cで焼成したものの収率
はそれぞれ53%、49%であったが、そのX線回折図
形はいずれもTi、O,、、Ti@O,、、Ti@O,
@が生成分であり、7’ t C型結晶構造は認められ
なかった。
Comparative Example 1 284t of titanium tetraisogropoxide was heated to 30C in a nitrogen atmosphere and heated to 17.4F in water.
Isopropyl A, Co-A/100 CCK was dissolved and added dropwise over 2 hours, and then heated at 240 tll't while distilling off the low boiling point reaction product to obtain 134F polytitanoxane. This was carried out in the same manner as in Example 1.
! The yields of those calcined at 00(:'s and 1400C were 53% and 49%, respectively, but their X-ray diffraction patterns were Ti, O, , Ti@O, , Ti@O,
@ indicates a generated component, and a 7' t C-type crystal structure was not observed.

比較例2 チタンテトライソグロポキシド35.5 Fとノフェニ
ルシランジオール81Fを混合し、窒素雰四気中、カク
ハンしながら18(Itで加熱しSiとTiC比が3=
1のポリチタノシロキサン78fを得た。これを実施例
1と同様の方法で1200Cおよび1400Cで焼成し
たものの収率はそれぞれ41%、27%であったがその
X線回折図形はTiC型結晶構造以外にβ−8iCが主
成分として観測され、1200Cでは多量のSin、お
よびCが認められた。
Comparative Example 2 Titanium tetraisogropoxide 35.5 F and nophenylsilanediol 81 F were mixed and heated at 18 (It) while stirring in a nitrogen atmosphere until the Si to TiC ratio was 3=
Polytitanosiloxane 78f of No. 1 was obtained. When this was calcined at 1200C and 1400C in the same manner as in Example 1, the yields were 41% and 27%, respectively, but the X-ray diffraction pattern was observed to have β-8iC as the main component in addition to the TiC type crystal structure. At 1200C, large amounts of Sin and C were observed.

Claims (1)

【特許請求の範囲】 L 分子量が100〜600の、下記の構造式を有する
ポリシラ/ 一←Si→− 1′ (但しRは水素原子、メチル基、エチル基、フェニル&
、714M又はノーロダン)あるいtまとのffI造単
位がカルボク2/結会又はクロキサン結合により結合さ
れたポリシランと、一般式 1’1(OR’)、  (
但しR′はアルキル基)で表わされるチタンアルコキシ
ドを、加熱によシ反応させて得られる分子112X10
”〜107の高分子物質であり、可視吸収スペクトルに
おいて370〜1200nmに吸収を有し着色し、加水
分解性に優れ、加水分解後、有機溶媒に不溶となり、か
つ加熱によシ溶融し力〈なシ、分子量が100〜600
で、かつSi原子を2〜10含むポリシラン部分が、T
i(OR’)4から誘導されるTi原子を1〜10含む
チタンアルコキシド多量体類似物部分とl二lの比で結
合し、非酸化性雰囲気で焼成するとTiとCとOよi成
るTiC型結晶構造を有する無機物に転換することを特
徴とする高分子物質。 2 分子量が100−600の下記の構造式を有するポ
リシラン I′ (但しRは水素原子、低級アルキル基、フエニル基、水
酸基、又はハロゲノ) あるいけこの構造単位がカルボシラン結合又はシロキサ
ン結合により結合されたポリシランに、一般式 Ti 
(OR’) (但しR′はアルキル基)で表わされるチ
タンアルコキシドを、前銭己ポリシラン中のSi原子数
に対するチタンアルコキシド中のTi原子数の比が5=
1〜1:1になる量比で加え、反応に対して不活性な雰
囲気中において必要によシ少蓋の水を加えて加熱するこ
とを特徴とする特許請求の範凹第1項記載の高分子物質
の製造方法。
[Scope of Claims] L Polysila/1←Si→-1' having a molecular weight of 100 to 600 and having the following structural formula (wherein R is a hydrogen atom, a methyl group, an ethyl group, a phenyl &
, 714M or Norodane) or a polysilane in which several ffI structural units are bonded through a carboxyl/cloxane bond, and the general formula 1'1(OR'), (
However, R' is an alkyl group) A molecule obtained by reacting titanium alkoxide with heating
It is a polymeric substance with a molecular weight of ~107, has absorption in the range of 370 to 1200 nm in the visible absorption spectrum, is colored, has excellent hydrolyzability, becomes insoluble in organic solvents after hydrolysis, and melts when heated. No, molecular weight is 100-600
and the polysilane moiety containing 2 to 10 Si atoms is T
When bonded with a titanium alkoxide polymer analog moiety containing 1 to 10 Ti atoms derived from i(OR')4 in a ratio of l2l and fired in a non-oxidizing atmosphere, TiC consisting of Ti, C, and O is formed. A polymer substance characterized by being converted into an inorganic substance having a type crystal structure. 2. Polysilane I' having a molecular weight of 100-600 and having the following structural formula (where R is a hydrogen atom, a lower alkyl group, a phenyl group, a hydroxyl group, or a halogeno group), or a polysilane I' having a molecular weight of 100-600 and having structural units bonded by a carbosilane bond or a siloxane bond. Polysilane has the general formula Ti
(OR') (where R' is an alkyl group), the ratio of the number of Ti atoms in the titanium alkoxide to the number of Si atoms in the polysilane is 5=
Claim 1, characterized in that the mixture is added at a ratio of 1 to 1:1, and heated in an inert atmosphere with a small amount of water added if necessary. A method for producing polymeric substances.
JP58036008A 1983-03-07 1983-03-07 High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation Granted JPS59161430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036008A JPS59161430A (en) 1983-03-07 1983-03-07 High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036008A JPS59161430A (en) 1983-03-07 1983-03-07 High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation

Publications (2)

Publication Number Publication Date
JPS59161430A true JPS59161430A (en) 1984-09-12
JPS6261220B2 JPS6261220B2 (en) 1987-12-21

Family

ID=12457733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036008A Granted JPS59161430A (en) 1983-03-07 1983-03-07 High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation

Country Status (1)

Country Link
JP (1) JPS59161430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622215A (en) * 1985-03-12 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Process for preparing fine grain titanium carbide powder
US4762895A (en) * 1987-08-10 1988-08-09 Dow Corning Corporation Process for the preparation of preceramic metallopolysilanes and the polymers therefrom
EP0367497A2 (en) * 1988-10-31 1990-05-09 Dow Corning Corporation Method of preparing preceramic metallopolysilanes
US5292830A (en) * 1991-06-20 1994-03-08 Tonen Corporation Thermosetting copolymers, silicon carbide-based fiber and processes for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622215A (en) * 1985-03-12 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Process for preparing fine grain titanium carbide powder
US4762895A (en) * 1987-08-10 1988-08-09 Dow Corning Corporation Process for the preparation of preceramic metallopolysilanes and the polymers therefrom
EP0367497A2 (en) * 1988-10-31 1990-05-09 Dow Corning Corporation Method of preparing preceramic metallopolysilanes
US5292830A (en) * 1991-06-20 1994-03-08 Tonen Corporation Thermosetting copolymers, silicon carbide-based fiber and processes for producing same

Also Published As

Publication number Publication date
JPS6261220B2 (en) 1987-12-21

Similar Documents

Publication Publication Date Title
JP2507714B2 (en) Novel polytitanosilazane and method for producing the same
KR840001536B1 (en) Method of producing for polysilane
US4767876A (en) Method for converting organosilicon polymers containing SIH repeat units and organopolysilazane precursors to new and useful preceramic polymers and silicon nitride enriched ceramic materials
US4595775A (en) N-methylhydridosilazanes, polymers thereof, methods of making same and silicon nitrides produced therefrom
US4639501A (en) Method for forming new preceramic polymers containing silicon
US5750643A (en) Dehydrocoupling treatment and hydrosilylation of silicon-containing polymers, and compounds and articles produced thereby
JP2760555B2 (en) Polyborosilazane and method for producing the same
Devapal et al. Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes
JPS6316325B2 (en)
KR20110040784A (en) Halogenated polysilane and thermal process for producing the same
US6225247B1 (en) Polymer precursor composition, crosslinked polymers, thermosets and ceramics made with silyl and siloxyl substituted carboranes with unsaturated organic end groups
JPS6337129A (en) Production of polyorganobolysilane ceramic precursor polymer and polyorganoborosilane
JPH02239154A (en) Manufacture of silicon carbide ceramic composition
JP3448611B2 (en) Low oxygen polymetallosilazane and method for producing the same
US4497787A (en) Branched polycarbosilanes and their use in the production of silicon carbide
US5312649A (en) Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies
JPS59161430A (en) High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation
KR940007325B1 (en) Process for preparation of polysila methylrenosilane
JPH085963B2 (en) Novel polyaluminosilazane and method for producing the same
Hemida et al. Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics: Part 1 The copolymer route
JPS6239612B2 (en)
JPS58213023A (en) Polymetallosilane and its production
GB2076417A (en) Organometallic polymer and process for production thereof
JPS6260414B2 (en)
JPH0233734B2 (en) SHINKINAHORICHITANOKARUBOSHIRAN