JPS59160507A - Production of hollow fiber membrane by two stage solidification - Google Patents

Production of hollow fiber membrane by two stage solidification

Info

Publication number
JPS59160507A
JPS59160507A JP3424583A JP3424583A JPS59160507A JP S59160507 A JPS59160507 A JP S59160507A JP 3424583 A JP3424583 A JP 3424583A JP 3424583 A JP3424583 A JP 3424583A JP S59160507 A JPS59160507 A JP S59160507A
Authority
JP
Japan
Prior art keywords
membrane
coagulation bath
hollow fiber
solvent
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3424583A
Other languages
Japanese (ja)
Other versions
JPH0331491B2 (en
Inventor
Shiro Moriya
守屋 四郎
Hiroyuki Akasu
弘幸 赤須
Akio Omori
大森 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3424583A priority Critical patent/JPS59160507A/en
Publication of JPS59160507A publication Critical patent/JPS59160507A/en
Publication of JPH0331491B2 publication Critical patent/JPH0331491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To produce a hollow fiber type separating membrane having excellent dialyzability, ultrafilterability and pressure resistance by forming a raw liquid for spinning extruded from a toric nozzle into a film by a two-stage solidification method. CONSTITUTION:The production of this membrane is accomplished by extruding a raw material polymer for the membrane from an annular nozzle, passing the film through the 1st solidifying bath having a solvent substn. rate of 17-75% to obtain a separating membrane in an imperfectly solidified state, then conducting such film into the 2nd solidifying bath and solidifying the substantially thoroughly the film. The resulting membrane is formed with a layer of a relatively large pore size having a thin dense layer on the outermost side of the hollow fiber, and has the multilayered construction consisting successively of a microporous layer and a large pore size layer in the hollow part direction. The microporous layer of the membrane is thin with respect to the overall thickness of the membrane and the membrane exhibits the higher dialyzability and ultrafilterability while maintaining approximately the same pessure resistance as that of the homogeneous membrane having likewise the same membrane thickness.

Description

【発明の詳細な説明】 本発明は透析性、限外p過性および耐圧性の優れた中空
繊維型分離膜の製造方法に関する。さらに詳しくは透水
性と透析性、限外渥過性のバランスの良い、特に人工腎
臓用として有用な中空繊維型分離膜の湿式製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hollow fiber separation membrane having excellent dialysis properties, ultrapolar permeability and pressure resistance. More specifically, the present invention relates to a wet manufacturing method for a hollow fiber separation membrane that has a good balance of water permeability, dialysis performance, and ultrafiltration performance and is particularly useful for artificial kidneys.

中空繊維型分離膜の湿式製造法は、膜素材のポリマーを
適当な溶媒に溶解した紡糸原液を、円環状ノズルより凝
固浴中へ押出し、ポリマーを析出凝固させて膜構造を発
現させる事を基本とする。
The wet manufacturing method for hollow fiber separation membranes basically involves extruding a spinning dope in which the membrane material polymer is dissolved in an appropriate solvent into a coagulation bath through an annular nozzle to precipitate and coagulate the polymer to develop the membrane structure. shall be.

従って、従来凝固浴はできるだけ完全に紡糸原液中のポ
リマーを析出、凝固させる事を目的として、組成、濃度
、温度、循環量、凝固時間、パスドラフトなどの諸条件
が検討されておシ、これ等の条件設定の差によって種々
の構造、性能の分離膜が得られる事は、例えば特開昭5
5−110132号、特開昭55−110124号、特
開昭55−35969号等に示されている。また膜素材
のポリマーの溶媒を凝固浴へ添加し、凝固速度、即ち膜
壁中の溶媒の置換速度を調節して優れた血液透析膜を得
ようとする試みは特開昭−51−70698号などに示
されている。さらに特開昭57−199808号には、
非凝固性の液体中へ紡糸原液を押出し、冷却して均質に
ゲル化させた後凝固浴に導ひきそのまま均質に凝固させ
る中空la&維型分離膜の湿式紡糸法が開示されている
。しかしながら、これ等従来の公知技術には第1凝固浴
における分離膜壁中の溶媒置換を中断して、不完全凝固
状態の分離膜を得、さらに第2@固浴以降の凝固浴によ
って実質上完全に凝固した中空繊維型分離膜を得ようと
する思想着想は全くない。
Therefore, in the conventional coagulation bath, various conditions such as composition, concentration, temperature, circulation amount, coagulation time, pass draft, etc. have been studied with the aim of precipitating and coagulating the polymer in the spinning dope as completely as possible. The fact that separation membranes with various structures and performances can be obtained by changing the setting of conditions such as
5-110132, JP-A-55-110124, JP-A-55-35969, etc. In addition, an attempt was made to obtain an excellent hemodialysis membrane by adding a solvent for the membrane material polymer to the coagulation bath to adjust the coagulation rate, that is, the rate of replacement of the solvent in the membrane wall, in Japanese Patent Laid-Open No. 51-70698. etc. are shown. Furthermore, in JP-A-57-199808,
A wet spinning method using a hollow la/fiber type separation membrane is disclosed in which a spinning dope is extruded into a non-coagulable liquid, cooled to homogeneously gel, and then introduced into a coagulation bath where it is homogeneously coagulated. However, in these conventional known techniques, the solvent replacement in the wall of the separation membrane in the first coagulation bath is interrupted to obtain the separation membrane in an incompletely coagulated state, and further, the coagulation baths from the second@solid bath onwards are used to substantially displace the solvent in the wall of the separation membrane. There is no thought or idea to obtain a completely solidified hollow fiber type separation membrane.

本発明者等は、この新しい着想のもとに鋭意研究を重ね
た結果、意外にも2段凝固法によって成膜した分離膜は
従来の方法によって得られる分離膜に較べ、透析性、限
外p過性および耐圧性が優れている事を見い出し本発明
に至ったー即ち本発明は少なくも2つ以上の凝固浴を用
い、第1凝固浴出口における膜壁内の溶媒置換率を10
%以上75%以下に抑え、第2凝固浴以降で実質的に凝
固を完結させる事によシ、膜構造を少なくも2段階で発
現させる事を特徴とする耐圧性、透析性、限外濾過性の
優れた中空繊維型分離膜の湿式製造法である。以下詳細
に説明する。
As a result of intensive research based on this new idea, the present inventors unexpectedly found that the separation membrane formed by the two-stage coagulation method has better dialysis properties and ultraviolet rays than the separation membrane obtained by the conventional method. It was discovered that the p-permeability and pressure resistance are excellent, leading to the present invention.That is, the present invention uses at least two coagulation baths, and the solvent substitution rate in the membrane wall at the outlet of the first coagulation bath is 10.
% to 75% and substantially complete coagulation after the second coagulation bath, thereby developing a membrane structure in at least two stages.Pressure resistance, dialysis, and ultrafiltration. This is a wet manufacturing method for hollow fiber type separation membranes with excellent properties. This will be explained in detail below.

尚、ここでいう膜壁内の溶媒置換率とは、xl:  紡
糸原液中の溶媒含率 (oりxi< 1.o )yi:
  第1凝固浴中の溶媒含率(0≦3’i <’ CO
)Zl:  第1凝固浴出口における膜壁内の溶媒含率
(0<z7≦1.0) で定義されるものである。分離膜膜壁内の溶媒含率の4
1す定は以下の様に行なう。凝固浴出口で分離膜を採取
、帷断後遠心分離機により付着液を除去し、湿潤分離膜
を得、その重量を秤量する。次に水で繰シ返し抽出し、
抽出液中の溶媒量をガスクロマトグラフ等により定量す
る。抽出後の分離膜は乾燥し、ポリマー重量を測定、得
られた結果よシ膜壁中の全揮発分に対する溶媒含率(z
l)を算出する。また紡糸原液中の溶媒含率(xi)も
、ポリマーおよび固形物を除いた全揮発分に対する含率
として算出する。
Incidentally, the solvent substitution rate within the membrane wall here means xl: solvent content in the spinning stock solution (or xi < 1.o) yi:
Solvent content in the first coagulation bath (0≦3'i <' CO
) Zl: Defined by the solvent content in the membrane wall at the outlet of the first coagulation bath (0<z7≦1.0). 4 of the solvent content within the separation membrane membrane wall
1. The determination is carried out as follows. The separation membrane is collected at the exit of the coagulation bath, and after being cut, the adhering liquid is removed using a centrifuge to obtain a wet separation membrane, and its weight is weighed. Next, extract it repeatedly with water,
The amount of solvent in the extract is determined by gas chromatography or the like. The separation membrane after extraction is dried, the polymer weight is measured, and the obtained result is the solvent content (z
Calculate l). The solvent content (xi) in the spinning dope is also calculated as the content based on the total volatile content excluding polymers and solids.

さらに本発明において、溶媒とは次の様な物を言う。す
なわち全揮発分中の成分aが溶媒と判定されるためには
、aは必要なら加熱五に、単独で膜素材ポリマーを15
重量パーセント以上溶解する能力を有していなければな
らない。
Furthermore, in the present invention, the term "solvent" refers to the following. In other words, in order for component a in the total volatile matter to be determined to be a solvent, a must be heated if necessary, and the membrane material polymer alone must be heated for 15 minutes.
It must have the ability to dissolve at least a weight percent.

本発明に用いられる膜素材ポリマーは例えばキュプロフ
ァン、再生セルローヌ、セルロースエステル、ポリアク
リロニトリル、ポリメチルメタクリレート、ポリス、ル
ホン、ポリプロピレン、ポリエチレン、ホリヒニルアル
コール、エチレンビニルアルコ− れ等のポリマーを主成分とする共重合体、あるいはこれ
等のポリマーの誘導体でもよい。本発明による分離膜を
特に人工臓器用として用いる場合には、血液適合性の面
からエチレンビニルアルコール系共重合体が好ましい。
The main component of the membrane material polymer used in the present invention is, for example, cuprophane, regenerated cellulone, cellulose ester, polyacrylonitrile, polymethyl methacrylate, polysulfone, polypropylene, polyethylene, polyhinyl alcohol, ethylene vinyl alcohol, etc. It may also be a copolymer of , or a derivative of these polymers. When the separation membrane according to the present invention is used particularly for artificial organs, ethylene vinyl alcohol copolymers are preferred from the viewpoint of blood compatibility.

これ等ポリマーの紡糸原液を調整する為に用いられる溶
媒は特に限定されないが、塩基性銅アンモニウム水溶H
、ジメチルホルムアミド、ジメチルアセトアミド、ジメ
チルスルホキシド、ピロリドン、N−メチルピロリドン
等の強力な溶剤、あるいはこれ等を成分とする混合溶媒
が好ましい。
The solvent used to prepare the spinning stock solution of these polymers is not particularly limited, but basic copper ammonium aqueous solution H
, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, pyrrolidone, N-methylpyrrolidone, or a mixed solvent containing these as components is preferred.

強力な溶媒の使用は貧溶媒、非溶媒専の紡糸原液ヘの添
加を可能にし、幅広い安定な製膜条件をとる事ができる
The use of strong solvents allows them to be added to spinning dope exclusively for poor solvents and non-solvents, allowing a wide range of stable film forming conditions to be achieved.

膜素材としてエチレンビニルアルコール合体を用いる場
合には特にジメチルスルホキシドが好ましい。またポリ
スルホンを用いる場合にはシメチルホ7レムアミドやN
−メチルピロリドンが好ましい。
Dimethyl sulfoxide is particularly preferred when an ethylene vinyl alcohol combination is used as the membrane material. In addition, when polysulfone is used, dimethylphoremamide or N
-Methylpyrrolidone is preferred.

膜素材ポリマーの紡糸原液中での′a度は、通常5〜5
0重量係、好ましくは10〜65重量係の範囲にある。
The degree of 'a' of the membrane material polymer in the spinning dope is usually 5 to 5.
0 weight ratio, preferably in the range of 10 to 65 weight ratio.

これよp高濃度では原液粘度が高すぎて成膜が困難であ
り、これよシ低濃度では第1凝固浴出1」における膜の
機械的仕度が不足する。
If the p concentration is higher than this, the viscosity of the raw solution is too high, making it difficult to form a film, and if the concentration is lower than this, the mechanical preparation of the film in the first coagulation bath step 1 is insufficient.

紡糸原液の温度は通常D〜120℃、好捷しくけ5〜6
0′Cが良い。これより高温では!膜素材のポリマーが
、分解あるいは髪質する恐れがあシ、これより低温では
原液粘度が高くなシすぎて製膜が困難である。
The temperature of the spinning stock solution is usually D to 120°C, and the speed is 5 to 6.
0'C is good. At higher temperatures! There is a risk that the polymer of the membrane material will decompose or become hairy, and at lower temperatures the viscosity of the stock solution is too high, making it difficult to form a membrane.

紡糸原液の吐出は中空繊維を紡糸する為に用いられる円
環状ノズルより行なう。この時中空繊維の中空部を充填
する流体、すなわち環状ノズルのニードル孔内を流れる
流体は第1凝固浴出口における膜壁内の溶媒置換率が7
5%を越えてしまう程強い脱溶媒力(溶媒親和性)を有
していてはいけない。通常は空気、窒素、汰酸ガヌ専の
気体の他、水を主成分とする凝固性液体が用いられる。
The spinning stock solution is discharged from an annular nozzle used for spinning hollow fibers. At this time, the fluid filling the hollow part of the hollow fiber, that is, the fluid flowing through the needle hole of the annular nozzle, has a solvent substitution rate of 7 in the membrane wall at the outlet of the first coagulation bath.
It must not have a strong desolvation power (solvent affinity) that exceeds 5%. Usually, in addition to air, nitrogen, and other gases, a coagulable liquid whose main component is water is used.

水性凝固液の場合は塩類、有機溶媒の添加によシ脱溶媒
力を調整する事ができる。また、場合により膜素材のポ
リマーに対し非凝固性の液体や紡糸原液に対し混和しな
い液体を用いた方が良好な膜性能を得られる事がある。
In the case of an aqueous coagulating liquid, the desolvation power can be adjusted by adding salts and organic solvents. Further, in some cases, better membrane performance can be obtained by using a non-coagulable liquid for the polymer of the membrane material or a liquid that is immiscible with the spinning dope.

同様に第1凝固浴も、その出口における膜壁内の溶媒置
換率が75%を越える程強い脱溶媒力を有する液体であ
ってはならないが、紡糸原液に使用されているポリマー
の溶媒に対し、少なくも部分的な混和性は有していなけ
ればならない。ここでいう部分的混和性とはポリマー溶
媒を10%以上、より好ましくは60%以上、さらに好
ま9しくは50%以上溶解する能力を言う。
Similarly, the first coagulation bath must not be a liquid that has such strong desolvation power that the solvent substitution rate in the membrane wall at its outlet exceeds 75%, but it must , must be at least partially miscible. The term "partial miscibility" as used herein refers to the ability to dissolve 10% or more of the polymer solvent, more preferably 60% or more, even more preferably 50% or more.

部分的混和性を有する液体として通常は水または水性媒
体が用いられる。水性媒体としては、水混和性有機溶剤
や界面活性剤等、さらには芒硝、塩化カルシウムを始め
とする無機塩類を含有する系などが用いうる。
Water or an aqueous medium is usually used as partially miscible liquid. As the aqueous medium, systems containing water-miscible organic solvents, surfactants, and inorganic salts such as mirabilite and calcium chloride can be used.

第1@固浴出[コにおける膜壁内の溶媒置換率が75%
を越えるのを防ぐ手段として、第1膜固浴にポリマー溶
媒と同一の溶媒を20重量%以「、より好才しくは60
重量係以下の割合で含む水性媒体を使用する事は実際的
である。この場合第1凝固浴中の溶媒含量が低下する程
膜壁中の溶媒置換*U増加する。また第1凝固浴へ無機
塩類を添加する場合にはその添加量の多い程、貧溶媒を
添加する場合にはその添加量の少ない程、膜壁中の溶媒
置換率は増加する傾向があシ、非溶媒の添加は置換率を
若干低下させる傾向がある。
1st @ Solid bath exit [The solvent replacement rate in the membrane wall was 75%]
As a means to prevent the polymer solvent from exceeding 20% by weight, more preferably 60% by weight, the same solvent as the polymer solvent is added to the first membrane solid bath.
It is practical to use an aqueous medium containing less than the weight ratio. In this case, as the solvent content in the first coagulation bath decreases, the solvent displacement *U in the membrane wall increases. Furthermore, when adding inorganic salts to the first coagulation bath, the larger the amount added, and when adding a poor solvent, the smaller the amount added, the more the solvent substitution rate in the membrane wall tends to increase. , the addition of non-solvent tends to reduce the substitution rate slightly.

第1凝固浴出口における分離膜膜壁中の溶媒置換率は、
第1凝固浴の組成だけでなくその温度や、凝固浴通過時
間によっても調節する事ができる。
The solvent substitution rate in the separation membrane wall at the outlet of the first coagulation bath is:
It can be adjusted not only by the composition of the first coagulation bath but also by its temperature and the time for passing through the coagulation bath.

温度は高い程溶媒置換率が増加する場合が多く、凝固時
間は長い程置換率が増す。
The higher the temperature, the more often the solvent substitution rate increases, and the longer the coagulation time, the more the substitution rate increases.

上記の様にして調整される分離膜膜壁中の溶媒置換率は
、第1凝固浴出口において10%以上75チ以下、よシ
好ましくは60%以上65%以下、さらに好ましくは5
0%以上65f6以下でなければならない。溶媒の置換
率が10%以丁だと第1凝固浴における膜構造の発現は
殆んど凝固浴温度の効果のみによるものとなるが、この
膜構造は第2@固浴以降の温度条件によシ比較的容易に
可逆的に変化する為、実質的には第2凝固浴以降の凝固
条件によって膜構造が決定され、2段階での膜構造発現
が行なわれない。その結果孔径の異なる2つ以上の層よ
りなる膜構造が達成され得す、本発明の目的とする優れ
た透析性″、限外濾過性、耐圧性の分離膜が得られない
The solvent substitution rate in the membrane wall of the separation membrane adjusted as described above is 10% or more and 75% or less, preferably 60% or more and 65% or less, and more preferably 5
Must be 0% or more and 65f6 or less. When the solvent substitution rate is 10% or less, the development of a film structure in the first coagulation bath is almost solely due to the effect of the coagulation bath temperature, but this film structure changes depending on the temperature conditions from the second solid bath onwards. Since the change is relatively easy and reversible, the membrane structure is substantially determined by the coagulation conditions after the second coagulation bath, and the membrane structure is not developed in two steps. As a result, a membrane structure consisting of two or more layers with different pore sizes can be achieved, and a separation membrane with excellent dialysis properties, ultrafiltration properties, and pressure resistance, which are the objects of the present invention, cannot be obtained.

丑だもし第1凝固浴出口における膜壁内の溶媒置換率が
75%を越えると、第1凝固浴において実質的に膜構造
が決定されてしまう為に、第2@固浴以降の凝固条件の
効果は殆んど無く、孔径の異なる2つ以上の層よシなる
多層膜構造が形成され得す、本発明の目的とする優れた
透析性、限外濾過性、耐圧性を達成する事ができない。
Unfortunately, if the solvent substitution rate in the membrane wall at the outlet of the first coagulation bath exceeds 75%, the membrane structure will be substantially determined in the first coagulation bath, so the coagulation conditions from the second solid bath onwards will change. It has almost no effect, and a multilayer membrane structure consisting of two or more layers with different pore sizes can be formed.It is possible to achieve the excellent dialysis properties, ultrafiltration properties, and pressure resistance that are the objectives of the present invention. I can't.

膜壁内の溶媒置換率が10%以上75係以下の不完全凝
固状態の中空繊維型分離膜を、第2凝固浴以降に導ひき
、実質上完全に凝固させると、通常は中空繊維の最外層
に薄い緻密層を伴なった相対的に孔径の大きい層が形成
され、以下中空部方向に順次、微多孔層、大孔径層よシ
なる多層構造の分離膜が得られる。中空部側の最内層に
は緻密層が形成される事も多い。この様な構造の膜は全
膜厚に対し薄い微多孔層を有する為、同じ膜厚の均質微
多孔膜とほぼ同程度の耐圧性を保ちながらより高い透析
性、限外濾過性を示す。また、同じ透析性、限外p過性
を付与された薄い均質微多孔膜に較べて高い耐圧性を示
す。
When a hollow fiber type separation membrane in an incompletely coagulated state with a solvent substitution rate of 10% or more and 75% or less in the membrane wall is introduced into the second coagulation bath or later and is substantially completely coagulated, the most of the hollow fibers are usually A layer with a relatively large pore size is formed with a thin dense layer as an outer layer, and a multilayer separation membrane is obtained in which a microporous layer, a large pore layer, and so on are sequentially formed in the direction of the hollow portion. A dense layer is often formed in the innermost layer on the hollow side. Since a membrane with such a structure has a thin microporous layer relative to the total membrane thickness, it exhibits higher dialysis and ultrafiltration properties while maintaining almost the same pressure resistance as a homogeneous microporous membrane of the same thickness. In addition, it exhibits higher pressure resistance than a thin homogeneous microporous membrane that has the same dialysis properties and ultrapolar permeability.

本発明の2段凝固法による中空繊維型分離膜のこの様な
特徴は、第1凝固浴出口における膜壁内の溶媒置換率が
60%以上65悸以下である場合により安定に発現し、
その溶媒置換率が50%以上65処以−Fの場合によシ
一層安定に発現する。
These characteristics of the hollow fiber separation membrane produced by the two-stage coagulation method of the present invention are more stably expressed when the solvent substitution rate within the membrane wall at the outlet of the first coagulation bath is 60% or more and 65% or less.
When the solvent substitution rate is 50% or more and 65-F, more stable expression is achieved.

また第1凝固浴の温度が低く、第2凝固浴以降の温度が
高い程顕著に発現する。第1凝固浴温度が紡糸原液のゲ
ル化(白濁化)温度以下、第2凝固浴以降がゲル化温度
以上の時は特に顕著に発現する。ここでいうゲル化温度
とは紡糸原液を1℃毎分の割で徐冷しだ際に、原液が白
濁を開始する温度である。
Moreover, the lower the temperature of the first coagulation bath and the higher the temperature of the second and subsequent coagulation baths, the more pronounced the phenomenon is. This is particularly noticeable when the temperature of the first coagulation bath is below the gelation (clouding) temperature of the spinning stock solution and above the gelation temperature of the second and subsequent coagulation baths. The gelling temperature here is the temperature at which the spinning stock solution starts to become cloudy when it is slowly cooled at a rate of 1° C./minute.

本発明によって特に透析性と限外濾過性の優れた分離膜
を得ようとする場合には、第1凝固浴と第2凝固浴以降
の間に気相を設ける方が効果的であシ、その気相が第1
凝固浴温度よシ扁温であれば、より効果的であシ第2凝
固浴がゲル化温度より高温であればさらに効果的である
。気相は第1凝固浴を出た不完全凝固状態の中空繊維型
分離膜の外周部の微多孔構造を部分的に緩和して大孔径
化する作用を示し、微多孔層の厚みを一層減少させる為
、透析性と限外濾過性が向上する。気相中への加湿、有
機溶媒蒸気の添加等により気相のこうした作用を助長、
減殺する事も可能である。
When attempting to obtain a separation membrane with particularly excellent dialysis properties and ultrafiltration properties according to the present invention, it is more effective to provide a gas phase between the first coagulation bath and the second coagulation bath. The gas phase is the first
It is more effective if the temperature of the coagulation bath is lower than the temperature of the coagulation bath, and it is even more effective if the temperature of the second coagulation bath is higher than the gelation temperature. The gas phase has the effect of partially relaxing the microporous structure at the outer periphery of the incompletely solidified hollow fiber separation membrane that exits the first coagulation bath, increasing the pore size, and further reducing the thickness of the microporous layer. As a result, dialysis performance and ultrafiltration performance are improved. This effect of the gas phase is promoted by humidifying the gas phase, adding organic solvent vapor, etc.
It is also possible to reduce the number of deaths.

中空繊維型分離膜は一般に適当な筐体内に納めて使用さ
れるが、使用目的によってはそうした筐 。
Hollow fiber separation membranes are generally used by being housed in a suitable housing, but depending on the purpose of use, such a housing may be used.

体内での糸の伸び、曲υ等も膜モジュールの性能を左右
する事が知られている。その為中空繊維型分離膜の湿式
紡糸法においては、凝固工程の後に、延伸、熱処理、乾
燥等の工程が付随している場合が多いが、凝固浴後のこ
れ等の諸工程も膜性能に影響する。しかしながら実験結
果によれば、分離膜膜壁内の溶媒含有率が20%以下で
ある場合には凝固浴後の諸工程の条件による分離膜構造
、性能の変化は小さい。それ故最終凝固浴出口における
膜壁内の溶媒含有率を20係以下に抑えた場合には、2
段凝固法によって形成されるところの孔径の異なる2つ
以上の層よりなる多層構造がより明確に認められ、本発
明の目的たる優れた透析性、限外濾過性、耐圧性がより
完全に達成される。
It is known that the elongation and curvature of the thread in the body, etc., also affect the performance of the membrane module. Therefore, in the wet spinning method of hollow fiber type separation membranes, processes such as stretching, heat treatment, and drying are often attached after the coagulation process, but these various processes after the coagulation bath also affect membrane performance. do. However, according to experimental results, when the solvent content in the separation membrane wall is 20% or less, the changes in the structure and performance of the separation membrane due to the conditions of various steps after the coagulation bath are small. Therefore, if the solvent content in the membrane wall at the final coagulation bath outlet is suppressed to 20 parts or less,
The multilayer structure formed by the stage coagulation method, which consists of two or more layers with different pore sizes, is more clearly recognized, and the objectives of the present invention, which are excellent dialysis properties, ultrafiltration properties, and pressure resistance, are more fully achieved. be done.

尚、ここでいう膜壁内の溶媒含有率とは、膜壁内の溶媒
重量 膜壁内の全揮発分重量 によって定義される値“である。
Incidentally, the solvent content within the membrane wall herein is a value defined by the weight of the solvent within the membrane wall and the total weight of volatile matter within the membrane wall.

以上に詳述した様に本発明は少なくも2つの凝固浴を用
いる中空繊維型分離膜の湿式紡糸法において、第1凝固
浴と、第2凝固浴以降の少なくも2段階で膜構造を発現
させる製膜法を提示するものであシ、この方法によって
得られる分離膜は公知の1段凝固法によって得られるも
のに較べ、優れた透析性、限外p過性、および耐圧性を
示す。
As described in detail above, the present invention provides a wet spinning method for hollow fiber separation membranes using at least two coagulation baths, in which the membrane structure is developed in at least two stages: the first coagulation bath and the second coagulation bath. The separation membrane obtained by this method exhibits superior dialysis properties, ultrapolar permeability, and pressure resistance compared to those obtained by the known one-stage coagulation method.

以下、実施例によって説明するが、これは本発明を限定
するものではない。
Examples will be explained below, but the present invention is not limited thereto.

実施例1〜3.比較例1 エチレン含量65モ)V%、ケン化度99.8%のエチ
レン−酢酸ビニル共重合体ケン化物をジメチルスルホキ
シドに80℃で溶解、脱泡してポリマー濃度22%の溶
液を調製した。ゲル化温度13℃のこの紡糸原液を環状
紡糸口から第1凝固浴出に吐出させ、環状紡糸口中央部
にある内部凝固剤の吐出口からはN2ガスを定量的に流
出させつつ、ジメチルヌルホキシト ℃の第1凝固浴中で、凝固時間を変えて第1段の凝固を
行なった(実施例1〜5,比較例1)。ついで55℃の
水よりなる第2凝固浴中でジメチルスルホキシドを完全
に水に置換した後、アセトン置換、風乾を行なった。得
られた中空繊維はいずれも乾燥状態で内径200μ、外
径280μであった。
Examples 1-3. Comparative Example 1 A saponified ethylene-vinyl acetate copolymer with an ethylene content of 65 V% and a degree of saponification of 99.8% was dissolved in dimethyl sulfoxide at 80°C and defoamed to prepare a solution with a polymer concentration of 22%. . This spinning stock solution with a gelation temperature of 13°C is discharged from the annular spinneret to the first coagulation bath outlet, and while N2 gas is quantitatively discharged from the outlet of the internal coagulant in the center of the annular spinneret, dimethyl null is discharged. The first stage of coagulation was carried out in a first coagulation bath at Phoxito° C. while changing the coagulation time (Examples 1 to 5, Comparative Example 1). Next, dimethyl sulfoxide was completely replaced with water in a second coagulation bath made of water at 55°C, followed by replacement with acetone and air drying. All of the obtained hollow fibers had an inner diameter of 200 μm and an outer diameter of 280 μm in a dry state.

第1凝固浴での凝固時間が異なる4種の中空繊維型分離
膜を、内径規準膜面積が1.DIになる様に集束し、公
知の方法によシ同型同大の円筒型人工腎臓に成形した。
Four types of hollow fiber type separation membranes with different coagulation times in the first coagulation bath were used, each having an inner diameter standard membrane area of 1. It was focused to become DI and molded into a cylindrical artificial kidney of the same type and size by a known method.

表−1にこれ等の人工腎臓に用いた中空繊維型分離膜の
第1段凝固時間、第1浴出口における膜壁内の溶媒置換
率と尿素の透析性(ダイアリザンス= Dur’ea 
)との関係を示す。
Table 1 shows the first-stage coagulation time of the hollow fiber separation membrane used in these artificial kidneys, the solvent substitution rate in the membrane wall at the first bath outlet, and the dialysis performance of urea (dialysis = Dur'ea).
).

本発明の2段凝固法により、透析性の優れた分離膜が得
られる事が明らかである。
It is clear that a separation membrane with excellent dialysis properties can be obtained by the two-stage coagulation method of the present invention.

実施例4,5.比較例2 第1凝固浴における凝固温度と凝固時間を表−2に示す
様に変え、第1凝固浴と第2凝固浴間に気相を設け、そ
の雰囲気温度を18℃に保った以外は、実施例1〜6と
同様にしてほぼ等しい透水性を有する3種の膜モジュー
ルを作製し、尿素に対する透析性、牛アルブミンに対す
る隈外濾過性および耐圧性を比較した。表−2に示した
様に第1@固浴出口における分離膜膜壁内の溶媒置換率
が10%以上75%以下のものは明らかに高いアルブミ
ン阻止率、尿素透過性を示し、本発明による分離膜が優
れた限外沖過性、透析性、および耐圧性を有する事がわ
かる。
Examples 4 and 5. Comparative Example 2 The coagulation temperature and coagulation time in the first coagulation bath were changed as shown in Table 2, a gas phase was provided between the first coagulation bath and the second coagulation bath, and the atmospheric temperature was maintained at 18°C. Three types of membrane modules having approximately the same water permeability were prepared in the same manner as in Examples 1 to 6, and their dialysis properties against urea, filtration properties against bovine albumin, and pressure resistance were compared. As shown in Table 2, those in which the solvent substitution rate within the separation membrane wall at the first @solid bath outlet is 10% or more and 75% or less exhibit clearly high albumin rejection and urea permeability, and the present invention It can be seen that the separation membrane has excellent ultraviolet permeability, dialysis performance, and pressure resistance.

第1〜第3図に実施例5によって作られた中空繊維型分
離膜の電顕写真を示す。明細書中に述べた孔径の異なる
層よシなる多層構造が明確に認められる。本例では中空
繊維の最外側に緻密層を伴なった大孔径層があり、順次
内側へ微多孔層、大孔径層となっている。
1 to 3 show electron micrographs of the hollow fiber type separation membrane produced in Example 5. The multilayer structure of layers with different pore sizes as described in the specification is clearly recognized. In this example, there is a large pore layer with a dense layer on the outermost side of the hollow fiber, and a microporous layer and a large pore layer are sequentially placed inward.

表−1Table-1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の方法によって製造さ
れた中空繊維分離膜の断面を示す写真であって、第1図
は膜全体の断面、第2図は膜外盾部の断面、第3図は膜
内盾部の断面を示す。 特許出願人   株式会社 り ラ し代理人 弁理土
木多 堅 第1図 第2図
FIGS. 1 to 3 are photographs showing cross sections of hollow fiber separation membranes produced by the method of the present invention, in which FIG. 1 is a cross section of the entire membrane, FIG. 2 is a cross section of a membrane outer shield, and FIG. FIG. 3 shows a cross section of the inner membrane shield. Patent applicant: RiRashi Co., Ltd. Agent: Ken Dobokuta Figure 1 Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも2つの凝固浴を用いる湿式紡糸法にお
いて、第1凝固浴出口における膜壁内の溶媒置換率が1
0%以上75%以下である事を特徴とする中空繊維型分
離膜の製造方法。
(1) In a wet spinning method using at least two coagulation baths, the solvent substitution rate within the membrane wall at the outlet of the first coagulation bath is 1.
A method for producing a hollow fiber type separation membrane, characterized in that it is 0% or more and 75% or less.
(2)  第1凝固浴出口における膜壁内の溶媒置換率
が50%以上65%以下である事を特徴とする第1項記
載の中空繊維型分離膜の製造方法。
(2) The method for producing a hollow fiber separation membrane according to item 1, wherein the solvent substitution rate within the membrane wall at the outlet of the first coagulation bath is 50% or more and 65% or less.
(3)第1凝固浴出口における膜壁内の溶媒置換率が5
0%以上65%以下である事を特徴とする第1項記載の
中空繊維型分離膜の製造方法。
(3) The solvent substitution rate within the membrane wall at the first coagulation bath outlet is 5
2. The method for producing a hollow fiber separation membrane according to item 1, characterized in that the content is 0% or more and 65% or less.
(4)最終凝固浴出口における膜壁内の溶媒含有率が2
0%以下である事を特徴とする第1項、第2項または第
3項記載の中空繊維型分離膜の製造方法。
(4) The solvent content in the membrane wall at the final coagulation bath outlet is 2
3. The method for producing a hollow fiber separation membrane according to item 1, item 2, or item 3, characterized in that the content is 0% or less.
(5)  第1凝固浴の温度が紡糸原液のゲル化温度以
下、第2凝固浴の温度がゲル化温度以上である第1項、
第2項、第6項または第4項記載の中空繊維型分離膜の
製造方法。
(5) Item 1, wherein the temperature of the first coagulation bath is below the gelation temperature of the spinning dope, and the temperature of the second coagulation bath is above the gelation temperature;
A method for producing a hollow fiber separation membrane according to item 2, 6, or 4.
(6)第1凝固浴は紡糸原液に使用される溶媒を60%
以下含有する第1項、第2項、第6項、第4項または第
5@記載の中空繊維型分離膜の製造方法。
(6) The first coagulation bath contains 60% of the solvent used in the spinning dope.
A method for producing a hollow fiber separation membrane as described in item 1, item 2, item 6, item 4, or item 5 @, which contains the following:
(7)  少なくも紡糸原液のゲル化温度より低温の第
1凝固浴と、第1凝固浴よシ高温の気中算囲気、ゲル化
温度より高温の第2凝固浴を用いる湿式紡糸法において
、第1凝固浴出口における膜壁内の溶媒置換率が10%
以上75多以下であシ、最終凝固浴出口における膜壁内
の溶媒含有率が20係以下である事を特徴とする中空繊
維型分離膜の製造方法。
(7) In a wet spinning method using at least a first coagulation bath at a temperature lower than the gelling temperature of the spinning dope, an ambient atmosphere at a higher temperature than the first coagulating bath, and a second coagulating bath at a temperature higher than the gelling temperature, Solvent replacement rate within the membrane wall at the first coagulation bath outlet is 10%
A method for producing a hollow fiber separation membrane, characterized in that the content of solvent in the membrane wall at the exit of the final coagulation bath is 20 or less.
JP3424583A 1983-03-01 1983-03-01 Production of hollow fiber membrane by two stage solidification Granted JPS59160507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424583A JPS59160507A (en) 1983-03-01 1983-03-01 Production of hollow fiber membrane by two stage solidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424583A JPS59160507A (en) 1983-03-01 1983-03-01 Production of hollow fiber membrane by two stage solidification

Publications (2)

Publication Number Publication Date
JPS59160507A true JPS59160507A (en) 1984-09-11
JPH0331491B2 JPH0331491B2 (en) 1991-05-07

Family

ID=12408772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424583A Granted JPS59160507A (en) 1983-03-01 1983-03-01 Production of hollow fiber membrane by two stage solidification

Country Status (1)

Country Link
JP (1) JPS59160507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034719A1 (en) * 1997-02-07 1998-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber membrane and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034719A1 (en) * 1997-02-07 1998-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber membrane and method of manufacturing same

Also Published As

Publication number Publication date
JPH0331491B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
CN100448516C (en) High-flux dialysis membrane with an improved separation behavior
JPS6193801A (en) Asymmetric microporous hollow fiber and its production
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JPH08150327A (en) Preparation of film from blend of polyether imide polymer and polyimide polymer
JPS60216804A (en) Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
AU672856B2 (en) High flux hollow fiber membrane
JPS61114701A (en) Flat film type permeable membrane and preparation thereof
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JP2003010654A (en) Method for producing hollow yarn membrane
JPS59160507A (en) Production of hollow fiber membrane by two stage solidification
JPH0929078A (en) Production of hollow yarn membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
JPH0756084B2 (en) Polysulfone resin hollow system and method for producing the same
JPS6045358A (en) Serum separating membrane and its preparation
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JP2001259387A (en) Hollow fiber membrane manufacturing method
JPS63209707A (en) Production of separating membrane
JP2000237558A (en) High performance selectively permeable hollow fiber membrane
JP2001038169A (en) Blood plasma component separation membrane
JPS59183761A (en) Serum separating membrane and production thereof
JP2001314736A (en) Membrane molding solution and method for manufacturing hollow fiber membrane
JPS62294405A (en) Hollow yarn type blood plasma separating membrane and manufacture of same