JPS59159016A - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JPS59159016A
JPS59159016A JP3326983A JP3326983A JPS59159016A JP S59159016 A JPS59159016 A JP S59159016A JP 3326983 A JP3326983 A JP 3326983A JP 3326983 A JP3326983 A JP 3326983A JP S59159016 A JPS59159016 A JP S59159016A
Authority
JP
Japan
Prior art keywords
light
slit
receiving surfaces
slits
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3326983A
Other languages
Japanese (ja)
Inventor
Soichi Iwamura
岩村 総一
Yoshiharu Tanaka
義治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mansei Kogyo KK
Japan Broadcasting Corp
Original Assignee
Mansei Kogyo KK
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mansei Kogyo KK, Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Mansei Kogyo KK
Priority to JP3326983A priority Critical patent/JPS59159016A/en
Publication of JPS59159016A publication Critical patent/JPS59159016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enhance accuracy, probability, and reliability, by using tracks formed on the main body of an encoder, four slits formed on detecting grids, and photodiodes having four light receiving surfaces. CONSTITUTION:A light beam 13 is uniformly projected on the entire surfaces of slit groups 8, 9, 10, and 11, and bright and dark slit images are formed in the close vicinity of each slit group. Tracks 3 and 4 of a main body 1 of an encoder are made to run on the slit-image forming surfaces. The slit groups 8, 9, 10, and 11 and the first and second tracks 3 and 4 are not physically contacted. Photoelectric conversion of the four luminous fluxes, which have passed the tracks 3 and 4, is performed by photodiodes 14, which are divided into four parts and have four light receiving surfaces D1, D2, D3, and D4 so as to face the four slit groups 8, 9, 10, and 11, respectively. By the differential amplifications of the light receiving surfaces D1 and D2 and the light receiving surfaces D3 and D4 corresponding to each track, e1 and e2 are obtained. When the rotation of a material to be measured is synchronized with the rotation of the main body 1 of the encoder, the movement of the tracks 3 and 4 can be detected by the outputs e1 and e2.

Description

【発明の詳細な説明】 本発明は、光学エンコーダに関するものである。[Detailed description of the invention] The present invention relates to optical encoders.

従来より、エンコーダ本体に目盛としてトラック状に微
少スリットを形成し、検出用格子を介しで前記微少スリ
ットを透過する光ビームをホトダイオードへ照射させ、
エンコーダ本体の回転をホトダイオードの光学的変化と
して捕え、回転角全測定する所謂光電式ロータリエンコ
ーダが存在している。ところで、この光電式ロータリエ
ンコーダでは、高度の写真刻線技術を駆使して1回転4
3200パルスから4 a 2000 ハルスの分解能
のエンコーダも存在しているが、その回転角目盛の確度
が不明確であったりし、精度、信頼性の上で問題があっ
た。
Conventionally, minute slits are formed in the shape of a track as graduations on the encoder body, and a photodiode is irradiated with a light beam that passes through the minute slits through a detection grating.
There is a so-called photoelectric rotary encoder that captures the rotation of the encoder body as an optical change in a photodiode and measures the entire rotation angle. By the way, this photoelectric rotary encoder makes full use of advanced photographic engraving technology to
Encoders with a resolution of 3200 pulses to 4 a 2000 Hals exist, but the accuracy of their rotational angle scales is unclear, and there are problems with accuracy and reliability.

本発明は、上述の従来技術の問題点を解消すべく、高精
度、尚確度、高信頼性を有する光学エンコーダを提供す
ること全目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical encoder having high precision, accuracy, and reliability in order to overcome the problems of the prior art described above.

以ド、本発明の一実施例を図面に従い説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

エンコーダ本体lは、軸2を中心に回転可能であり、外
周部に前記軸2の中心Oを幾何学的中心とした第1トラ
ツク3と第2トラツク4が形成し2である。この第1、
第2トラツク3.4は、第2図に示すように、光不透過
部分5を主要部とするエンコーダ本体1に、同一分割数
の光学的な目盛となるように各光透過部分6を前記ii
+1112の中心Oに対して張る角度が等しく、壕だ位
相を揃えて形成している。
The encoder main body 1 is rotatable about a shaft 2, and has a first track 3 and a second track 4 formed on its outer periphery with the center O of the shaft 2 being the geometric center. This first,
As shown in FIG. 2, the second track 3.4 includes each light-transmitting part 6 on the encoder body 1, which has a light-opaque part 5 as its main part, so as to form an optical scale with the same number of divisions. ii
+1112 has the same angle with respect to the center O, and the grooves are formed with the same phase.

前記光透過部分6と光不透過部分5とからなる各トラン
ク3.4の形成は、電子計算機と電子ビーム描画装置を
使用して行う。一般に電子ビーム描画ができる領域はl
 20mmX110mmの領域のものであって、記録位
置精腿は0.1μmである。依って、1本のトラック−
周の光透過部分6の数、つまり分割数を21600とす
ると、1つの光透過部分6が中心0に対して張る角度は
30″になる。そして第1トラツク8の外径が107゜
26mm、トランク幅0.5mmであり、第2トラツク
4の外径が105.86mm、トラック幅0.5mmで
あると、光透過部分6の記録の空間波長は、第1トラン
ク3上で15.6μm、第2トラツク4上で15,4μ
mとなる。
The formation of each trunk 3.4 consisting of the light-transmitting portion 6 and the light-opaque portion 5 is performed using an electronic computer and an electron beam lithography device. In general, the area where electron beam writing can be performed is l
The area is 20 mm x 110 mm, and the recording position is 0.1 μm. Therefore, one track -
If the number of light transmitting parts 6 on the circumference, that is, the number of divisions, is 21,600, the angle that one light transmitting part 6 makes with respect to the center 0 is 30''.The outer diameter of the first track 8 is 107°26 mm, If the trunk width is 0.5 mm, the outer diameter of the second track 4 is 105.86 mm, and the track width is 0.5 mm, the spatial wavelength of recording in the light transmitting portion 6 is 15.6 μm on the first trunk 3. 15,4μ on the second track 4
m.

上述のようなバクーンを有するエンコーダ原盤の製作工
程は、一般的な超LSI用マスターマスクと全く同様で
あり、5″角クロムブランクス上にポジレジストを塗布
し、重子ビームにより指定個所(光透過部分)を露光し
、その部分を現像で溶かし、クロム地を露出させ、クロ
ムエツチング処理を施して、その露出部分のガラス基板
を露出し、透明化する。このようにして得られたエンコ
ーダ原盤の目盛となる光透過部分の仕上がり精度は、光
透過部分の位置誤差、形状誤差が0.1μm以下である
から、光透過部分の中心に対して張る角度誤差がo 、
  L H以下になる。実際に使用きれるエンコーダ本
体は、このエンコーダ原盤からコピーしたものであるが
へそれでも略同等の精度は維持している。
The manufacturing process of the encoder master with the above-mentioned backcoon is exactly the same as that of a general master mask for VLSI, in which a positive resist is applied on a 5" square chrome blank, and designated areas (light-transmitting areas) are ) is exposed to light, that part is melted by development, the chrome base is exposed, and a chrome etching process is performed to expose the exposed part of the glass substrate and make it transparent.The scale of the encoder master obtained in this way The finishing accuracy of the light transmitting part is that the positional error and shape error of the light transmitting part are less than 0.1 μm, so the angular error relative to the center of the light transmitting part is o,
It becomes below LH. The encoder body that can actually be used is a copy of this encoder master, but it still maintains approximately the same accuracy.

次に、前6己第1トラツク3と第2トラツク4とに対向
設置ばされる検出用格子7の構成を説明する。
Next, the structure of the detection grating 7, which is disposed opposite to the first track 3 and the second track 4, will be explained.

第3図に検出用格子7の原理的構成を示す。この検出用
格子7は、具体的−例として同一ピッチの47個の光透
過用のスリットSからなる4個のスリット群8.9.1
O111′lf:形成しである0これらのスリット群8
.9.10.11は、前記第1トラツク3に対して2つ
のスリット群8.9を、また第2トラツク4に対して2
つのスリット群10.11を各々配列し、同一トランク
に配列されるスリット群は、互に空間位相で1800の
差がある。さらに異なるトラックに配列されスリット群
の内、上下近接するスリット群8とioとの間の空間位
相差は900であり、スリット群9と11との間の関係
も同様である。これらのスリット群8.9.10,11
のスリットSの幾何学的中心は、第4図のように前記エ
ンコーダ本体1の@32の中心Oであり、谷スリット群
8.9.10.11のスリットSが中ノlJOに対して
張る角度は・エンコーダ本体1の光透過部分6と同じに
しである。従って、エンコーダ本体1の各トラック3.
4と、検出用格子7の各スリット群8.9.1O511
との幾何学的中心を一致をせて重ね合せると第4図に示
すようになり、スリット群8.9.10.11でそれぞ
rl、光透過する面積が異なっているので、透過ビーム
光量が変化する。
FIG. 3 shows the basic configuration of the detection grating 7. This detection grating 7 is made up of, for example, four slit groups 8.9.1 consisting of 47 light-transmitting slits S with the same pitch.
O111'lf: These slit groups 8 are formed
.. 9.10.11 has two slit groups 8.9 for the first track 3 and two slit groups 8.9 for the second track 4.
Two slit groups 10 and 11 are each arranged, and the slit groups arranged in the same trunk have a spatial phase difference of 1800 degrees. Further, among the slit groups arranged in different tracks, the spatial phase difference between slit groups 8 and io that are close to each other above and below is 900, and the relationship between slit groups 9 and 11 is also the same. These slit groups 8.9.10,11
The geometric center of the slit S is the center O of @32 of the encoder body 1 as shown in FIG. The angle is the same as the light transmitting portion 6 of the encoder body 1. Therefore, each track 3 of the encoder body 1.
4 and each slit group 8.9.1O511 of the detection grating 7
When the geometric centers of the slits are aligned and superimposed, it becomes as shown in Fig. 4, and since the slit groups 8, 9, 10, and 11 have different rl and light transmitting areas, the amount of transmitted beam light is changes.

尚、上記検出用格子の説明にて、各スリット群8.9.
10.11のスリットSの数才、47個としだが、この
ように多数のスリットSを使用する理由は、透A元量を
大さくして検出信号のSl□l比を同上させるためと、
47個のスリットSの平均空間位相を検出することにな
るので、目盛となる光透過部分6に付いた傷あるいは塵
埃の#響を小さくするためであるから、本発明としては
、前記スリット群に対応する丙所に最低各1本のスリッ
トSを1′3己し、日干41固のスリットがあれば良い
In addition, in the above description of the detection grating, each slit group 8.9.
The number of slits S in 10.11 is 47, but the reason for using such a large number of slits S is to increase the amount of transmission A and increase the Sl□l ratio of the detection signal.
Since the average spatial phase of the 47 slits S will be detected, the purpose of this invention is to reduce the noise caused by scratches or dust on the light transmitting portion 6 that serves as a scale. It is sufficient to have at least one slit S in each corresponding location, and a slit with a diameter of 41 degrees.

上述の検出用格子7のスリット群8.9.10.11も
電子ビーム描画で精度よくできる上、スリノトイ片すノ
し状も一例として2.4mmX3.6+n1Thと小さ
いため、従来一般的な工Cチップの描画方法と同様に、
同じスリットパターンをノl真次繰返し露光すれば良い
ので多数のスリン)Sがα子ビームVこて一枚のマスク
上に描画できる。
The slit groups 8.9.10.11 of the detection grating 7 described above can also be made with high accuracy by electron beam lithography, and the shape of the slits is small, for example, 2.4 mm x 3.6 + n1 Th, so it is possible to use the conventional common process C. Similar to how the chip is drawn,
Since the same slit pattern can be repeatedly exposed every time, a large number of slits can be drawn on one mask of the α-beam V trowel.

次に、回転角の検出方法について説明する。。Next, a method of detecting the rotation angle will be explained. .

第1図及び第5図に示すように、スリット群8.9.1
0.11全面に、発光ダイオード、ガスレーザあるいr
よ半導体レーザ尋の央負旧に平行光を元する光源12よ
り発せられる元ビーム13を一様に照射しくただし、実
際的には光源として半導体レーザを使用するのが種々の
点で望ましい)、各スリット群の極く近傍に明暗スリッ
ト像を形成する。このスリット像形成面上を、エンコー
ダ本体1のトラック3.4が走るようにし2、前記スリ
ット群8.9.1O111と第11第2トラツク3.4
とは物理的に接触烙せない0、そして前記トランク3.
4を透過した4本の光束は、それぞね4個のスリット#
8.9.10.11に対向設置I、また4個の受光面D
+ 、 D2、Ds、D4  を刊する4分割ホトダイ
オード14で光電変換させ、各トラ・ツクに対応する受
光面D+  とD2、受光面D3  とD4との差動増
巾で(e+  及び02  を得る。従って、破測定物
の回転とエンコーダ本体lの回転を同期させておけば、
前記出力el、02 Kでトラック3.4の動きを検知
できるので公知のごとく回転角が・演出さf″Lろ。前
記4個の受光面を有するホトダイオードは一つのパッケ
ージに収納する4分割型ホトダイオード14が好ましい
As shown in Figures 1 and 5, slit group 8.9.1
0.11 Light emitting diode, gas laser or r
The original beam 13 emitted from the light source 12 originating from parallel light is uniformly irradiated at the center of the semiconductor laser beam; however, in practice, it is desirable from various points of view to use a semiconductor laser as the light source). Bright and dark slit images are formed very close to each slit group. The track 3.4 of the encoder main body 1 runs on this slit image forming surface 2, and the slit group 8.9.1O111 and the 11th second track 3.4
0, which cannot be physically touched, and the trunk 3.
The four beams of light that have passed through #4 pass through four slits #
8.9.10.11 Opposing installation I, and 4 light receiving surfaces D
+, D2, Ds, D4 are photoelectrically converted by the four-divided photodiode 14, and by differential amplification between the light-receiving surfaces D+ and D2 and the light-receiving surfaces D3 and D4 corresponding to each track, (e+ and 02 are obtained. Therefore, if the rotation of the broken object and the rotation of the encoder body l are synchronized,
Since the movement of the track 3.4 can be detected with the outputs el and 02 K, the rotation angle is increased as is known. Photodiode 14 is preferred.

前d己スリット群とトラックの間隙2がある範囲でない
と、例えば本実施例においては、約100μm以−ドの
間隙でないとスリシトSに対応する像が明瞭に形成膓れ
ない。従って、トラックとスリット群を上記間隙範囲内
まで接近させてエンコーダ本体1を走らせることにより
、トラック3.4を透過した光束は、エンコーダ本体l
の動きに対応して変動することになる0 向、スリットSにより回折が生じるが、この回折光は平
面波であって、スリットSによる伽幅変調は受けない。
Unless the gap 2 between the front slit group and the track is within a certain range, for example, in this embodiment, the image corresponding to the slit S cannot be clearly formed unless the gap is about 100 μm or more. Therefore, by running the encoder body 1 with the tracks and slits close to each other within the above-mentioned gap range, the light beam transmitted through the tracks 3.4 is transmitted through the encoder body l.
Although diffraction occurs due to the slit S in the 0 direction which changes in response to the movement of the slit S, this diffracted light is a plane wave and is not subjected to the width modulation by the slit S.

才だ、エンコーダ本体1の目盛部分6を透過し、たレー
ザの光束は、第5図の破mAにて示すようVC回折する
ため±1次回折元までを、そね、それ対応する4分割型
ホトダイオード14の受光面で父光させれば、他の受光
面へのクロスト−りを少なくすると共に検出信号のBN
比を向上できる。
The laser beam that passes through the scale part 6 of the encoder body 1 undergoes VC diffraction as shown in Fig. 5, so it is divided into four parts corresponding to the ±1st-order diffraction source. By transmitting light on the light receiving surface of the type photodiode 14, crosstalk to other light receiving surfaces can be reduced and the BN of the detection signal can be reduced.
ratio can be improved.

捷た、前記エンコーダ本体lの反り、または軸受部のガ
タ付き等により、前記検出用格子7との間隙Zが変動す
るため、その変動に対応できるように予め両者を離して
おく必要がある0従って、第7図に示すスリット群とス
リット像の光強度分布との関係のように、検出光出力に
はかなりの定常成分が重畳し、4分割型ホトダイオード
14の各受光面からの検出信号に直流成分が重畳してく
る。この直流成分′を消去するために、本実施例では同
一トランクに配列されるスリット群、例えばスリット群
8と9、及びスリット群10と11とに空間位相差を1
8−00とり、スリット群8と9とにそれぞれ対向する
4分割型ホトダイオード14の受光面り、とD2  、
及びスリット群10と11とにそれぞれ対向する受光面
D3  とD4  との差動増巾をしている。特に、一
般的にホトダイオードは温度特性によるドリフトが多い
が、4分割型ホトダイオード14のように同一パッケー
ジ内に受光面D+  、Da  、Ds  、D4  
’に収納しであると、コンパクトに構成できると共に、
同一条件下に受光面が存在するため温度特性によるドリ
フト及びホトダイオードの暗電流等を互に打ち消すこと
ができる。
Because the gap Z with the detection grating 7 changes due to warpage of the encoder main body l, warping of the encoder body l, or play in the bearing part, it is necessary to separate the two in advance to accommodate the fluctuation. Therefore, as shown in the relationship between the slit group and the light intensity distribution of the slit image shown in FIG. DC components are superimposed. In order to eliminate this DC component, in this embodiment, a spatial phase difference of 1 is set between slit groups arranged in the same trunk, for example, slit groups 8 and 9, and slit groups 10 and 11.
8-00, the light receiving surface of the four-part photodiode 14 facing the slit groups 8 and 9, and D2,
And the differential width of the light receiving surfaces D3 and D4 facing the slit groups 10 and 11, respectively, is increased. In particular, photodiodes generally have a lot of drift due to temperature characteristics, but as in the 4-segment photodiode 14, light-receiving surfaces D+, Da, Ds, D4 are arranged in the same package.
If it is stored in ', it can be configured compactly and
Since the light-receiving surfaces exist under the same conditions, drift due to temperature characteristics, dark current of the photodiode, etc. can be mutually canceled out.

ここで、上述した実施例では、4個の受光面を1つのパ
ッケージに収納″J7る4分割ホトダイオードを使用し
て説明し7たが、前述の差動出力を取る受光[R12個
を1組としたパンケージとすることも考えられ、この場
合、パッケージ2個にて4個の受光面が得られろことに
なる。
Here, in the above-mentioned embodiment, explanation was given using a 4-split photodiode in which 4 light-receiving surfaces are housed in one package. It is also conceivable to use a pan-cage with 2 packages, and in this case, 4 light-receiving surfaces can be obtained with 2 packages.

丑た、スリット群8とlo、及びスリット群9と11は
空1昌1的に正確に900の位相差をもたせであるので
、例えば、前^己検出用格子7の中心を通り、かつ光ビ
ーム13の光軸と平行な軸を回転軸として、検出用格子
7全体全微少回転して調整すること(でより、検出信号
e、と02  の位相差を正確に900に調整できる。
Furthermore, since the slit groups 8 and 10 and the slit groups 9 and 11 have a phase difference of exactly 900, for example, the light passes through the center of the self-detecting grating 7, and the light Adjustment is made by slightly rotating the entire detection grating 7 using an axis parallel to the optical axis of the beam 13 as the rotation axis (thereby, the phase difference between the detection signals e and 02 can be adjusted to exactly 900 degrees.

従って第8図に示すようシこ検出1昌号1:’+  y
 e2  に振i陥変動があっても、ゼロクロス時刻、
例えば検出信号e1  に関しては波形P、  で示す
ようにt Io 、’L +1.T: +z ’−−−
−−−−−−がコンパレータ寺で正確に検出できる。、
険出信号e2シ(付いても同様である。従って、分割敢
21600、すなわち1分割当り角度1′の場合でも、
その4分の1− T iわち15″を最小升別率位にで
きることになる。
Therefore, as shown in FIG.
Even if there is a fluctuation in e2, the zero crossing time,
For example, regarding the detection signal e1, the waveform P is t Io , 'L +1. T: +z'---
−−−−−− can be detected accurately using a comparator. ,
The same applies even if the start signal e2 is attached. Therefore, even if the division is 21600, that is, the angle per division is 1',
One-fourth of that - T i , ie, 15'' can be made into the minimum square rate.

さらに、検出信号θ1 、e2 の振幅は、エンコーダ
本体lの反り等で変動するが、この変動の予想ができる
ためデジタルメモリ等で回転角度毎の検出信号をメモリ
(〜でおき、常に一定振幅の検出信号e、及びe2  
になるように補正でき、ベクトルスコープ式に電子的に
10倍から20倍程度、さらに分割数を上げることがで
きる。
Furthermore, the amplitudes of the detection signals θ1 and e2 fluctuate due to warping of the encoder body l, etc., but since this fluctuation can be predicted, the detection signals for each rotation angle are stored in a digital memory (~), and the amplitude is always constant. Detection signals e and e2
The number of divisions can be further increased by about 10 to 20 times electronically using a vector scope method.

また、エンコーダ本体lの目盛部分6の稍度がo、i″
に仕上っていても、そのパターンの幾伺字的中心と、エ
ンコーダ本体lの回転中心にずれ、すなわち偏心がある
と測定角の確度が低下する。
In addition, the degree of consistency of the scale portion 6 of the encoder body l is o, i″
Even if it is finished, if there is a deviation between the geometrical center of the pattern and the center of rotation of the encoder body l, that is, eccentricity, the accuracy of the measurement angle will decrease.

この偏心調整にはエンコーダ本体1を回転させ、トラン
クの外縁または内縁のゆらぎ、すなわち偏心を顕微鏡で
観測I〜、エンコータ゛本体1全周でllmPP以内に
偏心を調整できれば、測定角の確度は、エンコーダ本体
lの直径100mmの場合、±2″程度に抑制できる〇 上述の実施例において、第3図に示すように、同一トラ
ックに配列されるスリット群は、互に空間位相で180
0の差を持ち、また異なるトラックに配列されたスリッ
ト群の内、上下近接するスリット群間の空間位相差が9
00あるようにし、同一トランク上に配列されたスリッ
ト群に対向する4分割型ホトダイオード14の受光mD
+ とD2、及び受光面D3  とD4  との差動出
力を得、しかもこの差動出力から回転角を測定している
が、上記配+1.構成に限定きれるものでVよなく、例
えば、同一トラック上に配置されるスリット群の空間位
相は一ト述の実施例と同一にし、エンコーダ本体lのト
ラックを形成する目盛となる光透過部分6を、第1トラ
ツク3と第2トラツク4において互に空間位相vC90
0差があるようにし、検出用格子7の上ド近接するスリ
ット群8とIO,及びスリット群9と11との空間位相
差金00にしても同一作用効果が得られる。
To adjust the eccentricity, rotate the encoder body 1 and observe the fluctuation of the outer or inner edge of the trunk, that is, the eccentricity, with a microscope. If the diameter of the main body l is 100 mm, it can be suppressed to about ±2''. In the above embodiment, as shown in FIG.
0, and among slit groups arranged on different tracks, the spatial phase difference between adjacent slit groups above and below is 9.
00, and the light reception mD of the four-segment photodiode 14 facing the slit group arranged on the same trunk.
+ and D2, and the light-receiving surfaces D3 and D4, and the rotation angle is measured from this differential output, but the above arrangement +1. For example, the spatial phase of the slit groups arranged on the same track is the same as in the above-mentioned embodiments, and the light-transmitting portion 6 that becomes the scale forming the track of the encoder main body 1 is used. The spatial phase vC90 of the first track 3 and the second track 4 is mutually
The same effect can be obtained even if the spatial phase difference between the slit groups 8 and IO and the slit groups 9 and 11 which are close to each other on the top of the detection grating 7 is set to 00.

なお、上述の実施例では、トラックを2本として説明し
たが、トランクを1本にし、そのトラックに対し、検出
用格子7のスリットと4分割型ホトダイオード14の受
光面とを並列に配すようにすることも考えられる。
In the above-mentioned embodiment, the explanation was given using two tracks, but it is also possible to use one trunk and arrange the slits of the detection grating 7 and the light receiving surface of the four-segment photodiode 14 in parallel with the track. It is also possible to do so.

このように、本発明の実施例として種々のトラック3.
4、検出用格子7、ホトダイオード14の配置構成が考
えられるが、要するに、4分割型ホトダイオード140
4個の受光面D1、D2  、DB  、D4  の内
、差動出力を取る1対の受光面からの谷出力波の位相を
1800ずらせ、さらに検出信号el 、 2 、すな
わち、差動出力波の位相を互に900ずらすように、$
)ラック31.1#亙△輩坦 4と4個のスリット群8.9.10.11とが配置構成
されていf’Lば良い。
Thus, as an embodiment of the present invention, various tracks 3.
4. Although the arrangement configuration of the detection grating 7 and the photodiode 14 is conceivable, in short, the four-segment photodiode 140
Among the four light receiving surfaces D1, D2, DB, and D4, the phase of the valley output wave from a pair of light receiving surfaces that take differential output is shifted by 1800, and the detection signal el,2, that is, the differential output wave is so that the phases are shifted by 900 from each other, $
) Rack 31.1 # 躙△至面4 and four slit groups 8.9.10.11 are arranged and configured f'L is sufficient.

上述のように本発明は構成してなるため、特にエンコー
ダ本体に形成した券本寺トラックと、検出用格子に形成
した4個のスリット←と、4個の受光面を→砿傘11遥
−−輌・ホトダイオード金使′用して、高祠度、高#′
度、高信頼性を有する光学エンコーダを提供することが
できる。
Since the present invention is configured as described above, in particular, the sensor track formed on the encoder body, the four slits formed on the detection grid, and the four light receiving surfaces are High purity and high #' by using gold photodiode
Therefore, it is possible to provide an optical encoder with high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略説明図、゛第2図は同
実施例のエンコーダ本体の要部拡大図、第3図は同実施
例の検出用格子の要部拡大図、第4図はエンコーダ本体
と検出用格子との関係を示す説明図、第5図は同実施例
の作用の説明図、第6図は4分割型ホトダイオードの上
面図、第7図はスリット群とスリット像の光強度分布と
の関係を示す説明tg+ 、第8図は検出信号波形を示
す説明図である。 1・・エンコータ゛本体、3・・第1トラツク、4・・
第2トラツク、6・・目盛、7・・検出川石1 (゛ 
、  8 、 9 、 10,11   ・  ・ ス
 リ )  ト 群 、  l  2・・半導体レーザ
、14・−4分割ホトダイオード、J)1  、D2 
 、D3  、D4  ” ”受光面、el  、e2
  ・・左動出力、S・・スリット。 特許用79f4人 萬世工業株式会社(他1名) 第1図 第2図 第3図 第5図
FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention, FIG. 2 is an enlarged view of the main part of the encoder main body of the same embodiment, FIG. 3 is an enlarged view of the main part of the detection grating of the same embodiment, Fig. 4 is an explanatory diagram showing the relationship between the encoder body and the detection grating, Fig. 5 is an explanatory diagram of the operation of the same embodiment, Fig. 6 is a top view of a four-segment photodiode, and Fig. 7 is a slit group and a slit group. Explanation tg+ showing the relationship with the light intensity distribution of the image, FIG. 8 is an explanatory diagram showing the detection signal waveform. 1. Encoder body, 3. 1st track, 4.
2nd track, 6...Scale, 7...Detection river stone 1 (゛
, 8, 9, 10, 11... Suri) To group, L 2... Semiconductor laser, 14... -4 division photodiode, J) 1, D2
, D3, D4 "" light-receiving surface, el, e2
...Left motion output, S...slit. Patent 79f4 Jinmansei Kogyo Co., Ltd. (1 other person) Figure 1 Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 1、 同一分割数の目盛を設けた少なくとも1本のトラ
ンクを形成したエンコーダ本体と、スリット4個を有し
、かつ前記トラックに対して配設する検出用格子と、こ
の検出用格子に実質的平行光を与える光源と、前記4個
のスリットに対向した4個の受光面にて、前記トランク
及びスリットを透過する4本の光束を各々独立して受光
し、かつ前ηピ4個の受光面の内、少なくとも2個を1
組とするホトダイオードとからなり、このホトダイオー
ドの受光面の内、組となる受光面からそれぞれ差動出力
を取り、この組となる受光面からの各出力波の位相を1
8oOずらせ、さらに2組の受光面からの各差動出力波
の位相を互に900ずらせるようK i7) i己目盛
とスリットを設けたこと全特徴とする光学エンコーダ。 2 前記トラックを複数本にした特許請求の範囲第1項
記載の光学エンコーダ。 3、 前記各スリットを、それぞれピッチが等しい複数
のスリットから構成したスリット群とした特許請求の範
囲第1項記載の光学エンコーダ。 4、 前記光源を半導体レーザーとした特許請求の範囲
第1項記載の光学エンコーダ。 5、 前記ホトダイオードを4個の受光面が1パツケー
ジとなる4分割型ホトダイオードとした特許請求の範囲
第1項記載の光学エンコーダ0 6、 前記エンコーダ本体の目盛と、検出用格子のスリ
ットを電子ビーム描画装置にて形成した特許請求の範囲
第1項記載の光学エンコーダ0
[Scope of Claims] 1. An encoder main body forming at least one trunk provided with a scale of the same number of divisions, a detection grid having four slits and disposed with respect to the track, and A light source that provides substantially parallel light to the detection grating and four light receiving surfaces facing the four slits independently receive the four beams of light that pass through the trunk and the slits, and At least two of the four light-receiving surfaces of η
It consists of a set of photodiodes, which take differential outputs from each of the light-receiving surfaces of the photodiodes, and set the phase of each output wave from the light-receiving surfaces of this set to 1.
An optical encoder having a K i7) i scale and a slit so as to shift the phase of each differential output wave from the two sets of light receiving surfaces by 800 and further shift the phase of each differential output wave from the two sets of light receiving surfaces by 900. 2. The optical encoder according to claim 1, wherein the number of tracks is plural. 3. The optical encoder according to claim 1, wherein each of the slits is a slit group consisting of a plurality of slits each having an equal pitch. 4. The optical encoder according to claim 1, wherein the light source is a semiconductor laser. 5. The optical encoder according to claim 1, wherein the photodiode is a 4-segment photodiode in which four light-receiving surfaces form one package. Optical encoder 0 according to claim 1 formed using a drawing device
JP3326983A 1983-03-01 1983-03-01 Optical encoder Pending JPS59159016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326983A JPS59159016A (en) 1983-03-01 1983-03-01 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326983A JPS59159016A (en) 1983-03-01 1983-03-01 Optical encoder

Publications (1)

Publication Number Publication Date
JPS59159016A true JPS59159016A (en) 1984-09-08

Family

ID=12381801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326983A Pending JPS59159016A (en) 1983-03-01 1983-03-01 Optical encoder

Country Status (1)

Country Link
JP (1) JPS59159016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005693A1 (en) * 1986-03-14 1987-09-24 Mitutoyo Mfg. Co., Ltd. Photoelectric displacement detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232380A (en) * 1975-09-05 1977-03-11 Yaskawa Electric Mfg Co Ltd Photoelectric type revolution speed detector
JPS5263747A (en) * 1975-11-20 1977-05-26 Fujitsu Ltd Light detector for optical encoder
JPS557648A (en) * 1978-07-04 1980-01-19 Canon Inc Photo encoder
JPS57111509A (en) * 1980-12-29 1982-07-12 Nippon Telegr & Teleph Corp <Ntt> Fine space positioning device of information retrieval device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232380A (en) * 1975-09-05 1977-03-11 Yaskawa Electric Mfg Co Ltd Photoelectric type revolution speed detector
JPS5263747A (en) * 1975-11-20 1977-05-26 Fujitsu Ltd Light detector for optical encoder
JPS557648A (en) * 1978-07-04 1980-01-19 Canon Inc Photo encoder
JPS57111509A (en) * 1980-12-29 1982-07-12 Nippon Telegr & Teleph Corp <Ntt> Fine space positioning device of information retrieval device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005693A1 (en) * 1986-03-14 1987-09-24 Mitutoyo Mfg. Co., Ltd. Photoelectric displacement detector
US4840488A (en) * 1986-03-14 1989-06-20 Mitutoyo Mfg. Co., Ltd. Photoelectric type displacement detecting instrument

Similar Documents

Publication Publication Date Title
US4340305A (en) Plate aligning
JP3478567B2 (en) Rotation information detection device
US4200395A (en) Alignment of diffraction gratings
US4656347A (en) Diffraction grating position adjuster using a grating and a reflector
KR910003830B1 (en) Standard signal generator of position detector
JP3364382B2 (en) Sample surface position measuring device and measuring method
JPS6352453B2 (en)
JPH067062B2 (en) Position detector
JP3196459B2 (en) Rotary encoder
JP3034585B2 (en) Encoder using shadow picture pattern
US6958469B2 (en) Diffraction grating interference system encoder for detecting displacement information
JPH02206720A (en) Angle measuring instrument
JPS59159016A (en) Optical encoder
JP3738742B2 (en) Optical absolute value encoder and moving device
JPS63153425A (en) Rotational quantity detecting device
JPH038097B2 (en)
JP3808192B2 (en) Movement amount measuring apparatus and movement amount measuring method
JP2002139353A (en) Optical rotary encoder
JP2827566B2 (en) Alignment apparatus, exposure apparatus, and method of manufacturing semiconductor device using the same
JPH0582729B2 (en)
JPH045142B2 (en)
JP2723502B2 (en) Positioning method
JPH0625646B2 (en) Alignment method
JPH03115809A (en) Encoder
JP2610324B2 (en) Positioning method