JPS5915884A - Analogue electronic timepiece - Google Patents

Analogue electronic timepiece

Info

Publication number
JPS5915884A
JPS5915884A JP12404682A JP12404682A JPS5915884A JP S5915884 A JPS5915884 A JP S5915884A JP 12404682 A JP12404682 A JP 12404682A JP 12404682 A JP12404682 A JP 12404682A JP S5915884 A JPS5915884 A JP S5915884A
Authority
JP
Japan
Prior art keywords
detection
coil
current
pulse
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12404682A
Other languages
Japanese (ja)
Inventor
Kenji Sakamoto
研二 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP12404682A priority Critical patent/JPS5915884A/en
Publication of JPS5915884A publication Critical patent/JPS5915884A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To secure the reliability in the detection of rotation and to realize the reduction in power consumption, by bringing one end or both ends of a coil to a released state before a detection pulse is applied to block the influence of magnetic disturbance. CONSTITUTION:When an analogue electronic timepiece is within an environment receiving an alternating magnetic field from the outside, an induction current is generated in a coil 51. When the detction of rotation is carried out in this state, the error operation of the timepiece is generated because of error detection. Therefore, when one end of the coil is brought to a released state before a detection pulse is applied, a current wave form induced in the coil comes to a shape shown by the drawing. In this case, because the coil is electrically blocked in a section To held under the released state, an induction current is not generated. Therefore, accurate detection of rotation wherein bias is not applied to a detection current 57 and the influence of a magnetic field is not received is enabled and optimum pulse width control is always enabled and the reduction in power consumption of the analogue electronic timepiece is realized.

Description

【発明の詳細な説明】 本発明は、検出パルスによってロータの回転・非回転を
検出し常に最適なパルス巾によってモータを駆動し、低
消費電力化を実現しようとするアナログ電子時計に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analog electronic timepiece that detects rotation or non-rotation of a rotor using detection pulses and always drives a motor with an optimal pulse width to achieve low power consumption.

従来、検出パルスによってステップモータのコイルに電
流を流し、ロータの回転・非回転を判定1− し、ステップモータに供給する通常時の駆動パルスの巾
をコントロールする駆動方法が提案されている。これは
常にステップモータの出力トルク状態と輪列の負荷状態
に合致する最適なパルス巾を供給し、アナログ電子時計
の低消費電力化を実現しようとするものである。
Conventionally, a driving method has been proposed in which current is passed through a coil of a step motor using a detection pulse to determine whether the rotor is rotating or not, and the width of a normal driving pulse supplied to the step motor is controlled. This aims to always supply the optimum pulse width that matches the output torque state of the step motor and the load state of the wheel train, thereby achieving lower power consumption in analog electronic watches.

第1図は、検出パルスによってロータの回転・非回転の
判定を行なおうとする場合の、コイルに印加するパルス
波形を示すものである。1は駆動パルスであシ、その時
のモータの出力トルク状態と輪列の負荷状態とから最も
適するであろうと予想されるパルス巾で出力される。2
は検出パルスであシ、該パルスによシロータの回転・非
回転が判定される。3は検出パルスによってロータが非
回転と判定された場合、運針を正常に戻すために出力さ
れる補正パルスである。
FIG. 1 shows a pulse waveform applied to a coil when determining whether the rotor is rotating or not rotating based on detection pulses. 1 is a drive pulse, which is output with a pulse width that is expected to be most suitable based on the output torque state of the motor and the load state of the wheel train at that time. 2
is a detection pulse, and it is determined by this pulse whether the rotor is rotating or not. Reference numeral 3 denotes a correction pulse that is output to return the hand movement to normal when it is determined by the detection pulse that the rotor is not rotating.

ここで検出パルスによる回転判定の原理について簡単に
述べておく。今、駆動パルス1が出力される前にロータ
の磁極の位置が第2図の様な位置にあったとする。駆動
パルス1が出力されるとコ2− イルが励磁され、これによる磁束が8の如く発生する。
Here, the principle of rotation determination using detection pulses will be briefly described. Suppose now that the magnetic poles of the rotor were in the position shown in FIG. 2 before the drive pulse 1 was output. When the driving pulse 1 is output, the coil 2 is excited, and a magnetic flux as shown in 8 is generated thereby.

駆動パルス1がロータを回転させるのに十分な巾を持っ
ている場合には、ロータは回転し第5図Cα1の様な位
置となり、また不十分な場合には、ロータは回転せず同
図fblの様な位置となる。ますロータが回転した場合
(第3図1(L+ )を考えてみると、外ノツチ7−α
、7−b近傍の可飽和部に於てはロータ磁石による磁束
9が左から右へと通過している。この状態で検出パルス
2によってコイルが励磁されると、これによる磁束10
が図の如く発生し、過飽和部を通mしようとする。この
時過飽和部に於ては、前記磁束10はロータ磁石による
磁束9を打ち消そうとする方向にあるため磁気抵抗は小
さく、従ってコイルのインダクタンスは大きくなる。こ
のため検出パルスによる電流(以後検出電流と呼ぶ)は
第5図Cα1の25(25’)の様に緩やかな立上シを
示す。一方、第3図1b+の如くロータが非回転である
場合、ロータ磁石による磁束IJは可飽和部を右から左
へ通過している。この状態で検出パルスによる磁束12
が可飽和部を通過し3− ようとすると、この方向にはすでに磁束が飽和かあるい
はほとんど飽和に近い状態にあるため磁束は通過しにく
い、即ち磁気抵抗は高い。従ってコイルのインダクタン
スは小さく、検出電流は第5図[cLlの24(24′
)の様に急激な立上シを示す。この第5図1alの電流
の立上シの違いを判定すれば、ロータの回転−非回転を
判定することができる。
If the width of the drive pulse 1 is sufficient to rotate the rotor, the rotor will rotate to the position shown in Figure 5 Cα1, and if it is insufficient, the rotor will not rotate and will be in the position shown in Figure 5. It will be in a position like fbl. When the rotor rotates (considering Fig. 3 1 (L+), the outer notch 7-α
, 7-b, the magnetic flux 9 due to the rotor magnet passes from left to right. When the coil is excited by the detection pulse 2 in this state, the resulting magnetic flux 10
occurs as shown in the figure, and attempts to pass through the supersaturated portion. At this time, in the supersaturation portion, the magnetic flux 10 is in a direction that tends to cancel out the magnetic flux 9 caused by the rotor magnet, so the magnetic resistance is small, and therefore the inductance of the coil is large. Therefore, the current caused by the detection pulse (hereinafter referred to as detection current) shows a gradual rise as shown at 25 (25') in Cα1 in FIG. On the other hand, when the rotor is not rotating as shown in FIG. 3, 1b+, the magnetic flux IJ due to the rotor magnet passes through the saturable portion from right to left. In this state, the magnetic flux 12 due to the detection pulse
When 3- attempts to pass through the saturable part, the magnetic flux is already saturated or almost saturated in this direction, so it is difficult for the magnetic flux to pass through, that is, the magnetic resistance is high. Therefore, the inductance of the coil is small, and the detected current is 24 (24'
) shows a sudden rise. By determining the difference in the rise of the current shown in FIG. 5 1al, it is possible to determine whether the rotor is rotating or not.

第4図はこの電流の立上シの違いを判定するだめの回路
構成例を示すものである。同図中、14゜15はPチャ
ンネルMo5FET(以後Nゲートと略す)、16,1
7,20,21はNチャンネルMO8FKT(以後Nゲ
ートと略す)、18.19はロータの回転・非回転を判
定するだめの抵抗素子(以後、検出抵抗と呼ぶ)を示す
。今、検出電流が22のループで流れたとする。Pゲー
)14.Nゲート17がOFFすることにより検出パル
スが終了すると同時にNゲー) 16 、21をONし
て検出電流をおの様に検出抵抗9に流すと、検出抵抗の
両端には電流値に比例した電圧が発生する。第5図1b
+はこのときの02点の電圧(即ち検出電圧)を示した
もの4− であj5.26.27はそれぞれ非回転・回転の場合の
検出電圧波形である。各々のピーク値をそれぞれvu、
Vrで示しである。このV$ 、Vrをコンパレータ等
の電圧比較素子によって、基準電圧vthよシ高いか低
いかを判定すれば、ロータの回転・非回転を判定するこ
とができる。
FIG. 4 shows an example of a circuit configuration for determining this difference in current rise. In the same figure, 14°15 is a P-channel Mo5FET (hereinafter abbreviated as N-gate), 16,1
7, 20, and 21 are N-channel MO8FKTs (hereinafter abbreviated as N gates), and 18 and 19 are resistance elements (hereinafter referred to as detection resistors) for determining whether the rotor is rotating or non-rotating. Now, suppose that the detection current flows in 22 loops. P game) 14. When the detection pulse ends by turning off the N gate 17, and at the same time the N gates 16 and 21 are turned on and the detection current flows through the detection resistor 9, a voltage proportional to the current value is generated across the detection resistor. occurs. Figure 5 1b
+ indicates the voltage at point 02 (ie, detected voltage) at this time, and j5, 26, and 27 indicate the detected voltage waveforms for non-rotation and rotation, respectively. Each peak value is vu,
It is indicated by Vr. By determining whether V$ and Vr are higher or lower than the reference voltage vth using a voltage comparison element such as a comparator, it is possible to determine whether the rotor is rotating or not.

第6図に、第4図の回路の各端子αlb+’#d、e、
fに加える信号を表わすタイミングチャートの従来例を
示す。
FIG. 6 shows each terminal αlb+'#d, e,
A conventional example of a timing chart representing a signal added to f is shown.

さて、との従来の方法に於て、時計に何らかの磁気的外
乱例えば交流磁界が加わった場合を考える。この時コイ
ルには第7図に示す様な周期的な誘起電流が生じ、第8
図に示す様に検出電流にバイアスとして加わる。図中路
は交流磁界による誘起電流波形、29は交流磁界が加わ
っていない時の検出電流波形、刃は交流磁界による誘起
電流がバイアスとして加わった時の検出電流波形を示す
Now, let us consider a case where some kind of magnetic disturbance, such as an alternating current magnetic field, is applied to the clock in the conventional method. At this time, a periodic induced current as shown in Fig. 7 is generated in the coil, and
As shown in the figure, it is added to the detection current as a bias. The path in the figure shows the induced current waveform due to the alternating magnetic field, the reference numeral 29 indicates the detected current waveform when no alternating magnetic field is applied, and the blade indicates the detected current waveform when the induced current due to the alternating magnetic field is applied as a bias.

さて、検出電流にバイアスとして加わる誘起電流は時々
刻々周期的に変化するかけであるが、その谷部が検出電
流に同期した場合、第9図(α1〜(cl5− に示す様に検出電流のピーク値は徐々に近くシフトして
いき、IC1の場合に最も低くなる。また逆に、誘起電
流の山部が検出電流に同期した場合、第10図1a、1
〜1,1に示す様に検出電流のピーク値は徐々に高くシ
フトしていき、IC+の場合に最も高くなる。
Now, the induced current applied as a bias to the detection current changes periodically from moment to moment, but when its valley is synchronized with the detection current, the detection current changes as shown in Figure 9 (α1 to (cl5-)). The peak value gradually shifts closer and becomes the lowest in the case of IC1.Conversely, when the peak of the induced current is synchronized with the detected current,
As shown in ~1, 1, the peak value of the detected current gradually shifts higher and becomes highest in the case of IC+.

とのことを検出電圧に変換して考えることにする。Let us consider this by converting it into a detection voltage.

前述の様に、検出抵抗R8には検出電流のピーク値に比
例した電圧が発生する。
As described above, a voltage proportional to the peak value of the detection current is generated in the detection resistor R8.

まず、回転時の検出電流のピーク値trが第11図1a
lの様に徐々に高くシフトした場合を考える。
First, the peak value tr of the detected current during rotation is shown in FIG.
Let us consider a case where the value is gradually shifted higher like l.

この時の検出電圧の様子を同図Iblに示す。図を見れ
ば分かるように、検出電流のピーク値irが31、32
 、33と徐々に上がっていくと、検出電圧のピーク値
vrも徐々に上がっていき、最悪の場合36の様にVr
が基準電圧ViLを超え、ロータは回転しているにもか
かわらず非回転と判定されてしまう。ロータが非回転で
あると判定されると、実際には回転しているにもかかわ
らず補正パルスが出される。しかし、この場合は安全側
であるため誤動作とはならず、さほど問題とはならない
The state of the detected voltage at this time is shown in FIG. As you can see from the figure, the peak value ir of the detection current is 31, 32
, 33, the peak value vr of the detection voltage also gradually increases, and in the worst case Vr as 36.
exceeds the reference voltage ViL, and the rotor is determined to be non-rotating even though it is rotating. If it is determined that the rotor is not rotating, a correction pulse is issued even though it is actually rotating. However, in this case, since it is on the safe side, there is no malfunction, and it is not a big problem.

6一 次に、非回転時の検出電流のピーク値i1Lが第12図
1α)の様に徐々に低くシフトした場合を考える。
6. First, consider the case where the peak value i1L of the detected current during non-rotation gradually shifts lower as shown in FIG. 12 (1α).

この時の検出電圧の様子を同図fb+に示す。図を見れ
ば分かるように、検出電流のピーク値inが37、38
 、39と徐々に下がっていくと、検出電圧のピーク値
V、も徐々に下がっていき、最悪の場合42の様にVU
が基準電圧Viんを下回り、ロータは非回転であるにも
かかわらず回転と判定され、補正パルスは出されない。
The state of the detected voltage at this time is shown in fb+ in the same figure. As you can see from the figure, the peak value in of the detection current is 37, 38
, 39, the peak value V of the detection voltage also gradually decreases, and in the worst case VU as 42.
is lower than the reference voltage Vi, the rotor is determined to be rotating even though it is not rotating, and no correction pulse is issued.

補正パルスが出されないまま、1秒後に極性の反転した
パルスがコイルに印加されると、これはロータを引き・
つけておく方向であるため、ロータは再び回転せず、結
局時計は偶数秒遅れとなってしまう。表示する時刻が正
規の時刻よp遅れることは、精度が絶対的々使命である
クォーツ時計においては致命的な欠陥である。
If a pulse of reverse polarity is applied to the coil after 1 second without a correction pulse, this will pull the rotor.
Because it is in the direction in which it is left on, the rotor does not rotate again, and the clock ends up being an even number of seconds behind. The fact that the displayed time is p behind the official time is a fatal flaw in quartz watches, where accuracy is an absolute mission.

以上述べた様に、従来の回転検出機構においては、磁気
的な外乱によってその信頼性が損なわれ、運針の遅れが
生ずる場合があるといった欠点を有していた。
As described above, the conventional rotation detection mechanism has the disadvantage that its reliability may be impaired by magnetic disturbances, resulting in a delay in movement of the hands.

本発明はこうした従来の欠点を除去し、磁気的7− 外乱に対しても回転検出の信頼性を確保するごとによっ
て常に最適なパルス巾制御を可能ならしめアナログ電子
時計の低消費電力化に寄与することを目的とするもので
、検出パルス印加前にコイルの一端または両端を解放状
態にして、磁気的外乱の影響を遮断するととにその特徴
を有するものである。以下図面に基づいて本発明の詳細
な説明する。
The present invention eliminates these conventional drawbacks, ensures reliability of rotation detection even in the face of magnetic disturbances, and enables optimum pulse width control at all times, contributing to lower power consumption of analog electronic watches. The purpose of this device is to open one or both ends of the coil before applying the detection pulse to block the influence of magnetic disturbances. The present invention will be described in detail below based on the drawings.

第13図は本発明を実現するための回路構成の一実施例
であフ、43 、44はPゲート、 45 、46 、
47 。
FIG. 13 shows an example of a circuit configuration for realizing the present invention, in which 43, 44 are P gates, 45, 46,
47.

48はNゲートである。また、49.50は検出抵抗素
子、51はコイルを示す。
48 is an N gate. Further, 49.50 indicates a detection resistor element, and 51 indicates a coil.

各端子a、b、c、d、tt、fK加えるべき信号を示
すタイミングチャートの一実施例を第14図に示す。こ
のタイミングチャートに従って本発明の詳細な説明する
。図中52は駆動パルスであシ、53は検出パルス、5
4は検出電圧のピーク値の違いによってロータの回転・
非回転を判定するための検出区間である。55は本発明
の核心をなす部分で、検出パルス印加前の一定区間、コ
イルの8− 一端を電気的に解放状態にしておくものである。
FIG. 14 shows an example of a timing chart showing signals to be applied to each terminal a, b, c, d, tt, fK. The present invention will be explained in detail according to this timing chart. In the figure, 52 is a driving pulse, 53 is a detection pulse, 5
4 is the rotation of the rotor due to the difference in the peak value of the detection voltage.
This is a detection interval for determining non-rotation. Reference numeral 55 is a part that forms the core of the present invention, which keeps one end of the coil 8- in an electrically open state for a certain period before the detection pulse is applied.

このよう々動作をすることによυ以下の様な効果がある
By operating in this way, there are the following effects.

今、アナログ電子時計が外部からの交流磁界を受ける環
境中で使用されていたとする。この時コイル51には第
7図に示すような誘起電流が生じる。
Suppose that an analog electronic watch is being used in an environment where it is exposed to an external alternating magnetic field. At this time, an induced current as shown in FIG. 7 is generated in the coil 51.

従来の方法で回転検出を行なったのでは、前述の様に誤
検出のため時計の誤動作を生じる恐れがある。この時、
本発明に従って検出パルスの印加前にコイルの一端を解
放状態にすると、コイルに誘起される電流波形は第15
図の様になる。図中56は交流磁界による誘起電流波形
、57は検出電流を示す。またToはコイルが解放状態
にある区間を示す。この時はコイルが電気的に遮断され
ているために、誘起電流は生じない。従って検出電流5
7にはバイアスがかからず、磁界の影響を、受けない正
確な回転検出ができる。
If the rotation is detected using the conventional method, there is a risk that the watch will malfunction due to erroneous detection as described above. At this time,
According to the present invention, when one end of the coil is released before applying the detection pulse, the current waveform induced in the coil is
It will look like the figure. In the figure, 56 indicates an induced current waveform due to an alternating magnetic field, and 57 indicates a detected current. Further, To indicates a section in which the coil is in a released state. At this time, the coil is electrically cut off, so no induced current is generated. Therefore, the detection current 5
7 is not biased and can accurately detect rotation without being affected by magnetic fields.

以上の説明に於て、コイルの一端を解放する(例えば0
!側をOFFする)ものとして説明したが、コイルの両
端を解放(01+0zt−同時にOFF9− )するものとしても本発明の域を出るものではない。
In the above explanation, one end of the coil is released (for example, 0
! Although the explanation has been made assuming that both ends of the coil are opened (01+0zt- and OFF9- at the same time), the present invention does not go beyond the scope of the present invention.

以上述べてきた様に本発明によれば、磁気的な外乱が加
わった場合でも常に最適なパルス巾制御が可能であシ、
アナログ電子時計の低消費電流化を実現していく上での
効果は極めて大である。また、回路構成においても、従
来のものにわずかなデジタル回路を付加するだけで、他
にコストアップの要因となるものは何もない。
As described above, according to the present invention, optimal pulse width control is always possible even when magnetic disturbances are applied.
The effect in realizing lower current consumption of analog electronic watches is extremely large. Furthermore, in the circuit configuration, only a small number of digital circuits are added to the conventional one, and there is nothing else that would increase the cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコイルに印加するパルス波形を示す図。 第2.第3図fα11b1¥iステップモータの動作説
明図。 第4図は従来の駆動回路と検出回路。第5図は1α)が
検出電流波形、
FIG. 1 is a diagram showing a pulse waveform applied to a coil. Second. FIG. 3 is an explanatory diagram of the operation of the fα11b1\i step motor. Figure 4 shows a conventional drive circuit and detection circuit. In Figure 5, 1α) is the detected current waveform,

【b)が検出電圧波形を示す図。第6図
は従来例のタイミングチャート。第7図は交流磁界忙よ
ってコイルに誘起される電流波形図。 第8.第9Cα1lb1ic+ 、第1O図bzl I
b】l clはコイルニ誘起される電流波形と検出電流
波形を示す図。第11 。 第12図は【α1が検出電流波形の変動を示す図で、(
b1 Hl− が検出電圧波形の変動を示す図。第13図は本発明の一
実施例を示す回路構成図。第14図は本発明による回路
を動作させるためのタイミングチャート。 第15図はコイルに誘起される電流波形と検出電流波形
を示す図。 4・・ロータ 5・・ステータ 6豐・内ノツチ 7・
・外ノツチ 13・・コイル 以   上 出願人 株式会社諏訪精工舎 11− 458− 一″″            O) −〇    ]3 d L C七  の $ θ← −+O目 毬 O←  →0    ■←  −÷■ ぺ5」 −4ぐ−−
[b] is a diagram showing a detected voltage waveform. FIG. 6 is a timing chart of a conventional example. Figure 7 is a diagram of current waveforms induced in the coil by the alternating magnetic field. 8th. 9th Cα1lb1ic+, 1st O bzl I
b] cl is a diagram showing the current waveform induced in the coil and the detected current waveform. 11th. Figure 12 is a diagram where [α1 shows the fluctuation of the detected current waveform,
b1 Hl- is a diagram showing fluctuations in the detected voltage waveform. FIG. 13 is a circuit configuration diagram showing an embodiment of the present invention. FIG. 14 is a timing chart for operating the circuit according to the present invention. FIG. 15 is a diagram showing the current waveform induced in the coil and the detected current waveform. 4. Rotor 5. Stator 6. Inner notch 7.
・Outside notch 13... Coil and above Applicant Suwa Seikosha Co., Ltd. 11-458-1″″ O) −〇 ]3 d L C7 $ θ← −+O Memari O← →0 ■← −÷■ Pe5" -4gu--

Claims (1)

【特許請求の範囲】[Claims] 少なくともステータ、ロータ、コイルにより構成される
ステップモータを有し、前記コイルに流した検出電流の
値を検出抵抗に発生する電圧に変換することによってロ
ータの回転・非回転を判定するアナログ電子時計忙於て
、前記検出電流を流す直前に前記コイルの一端または両
端を解放することを特徴とするアナログ電子時計。
An analog electronic clock that has a step motor composed of at least a stator, a rotor, and a coil, and determines whether the rotor is rotating or not by converting the value of a detection current passed through the coil into a voltage generated in a detection resistor. An analog electronic timepiece characterized in that one or both ends of the coil are released immediately before the detection current is applied.
JP12404682A 1982-07-16 1982-07-16 Analogue electronic timepiece Pending JPS5915884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12404682A JPS5915884A (en) 1982-07-16 1982-07-16 Analogue electronic timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12404682A JPS5915884A (en) 1982-07-16 1982-07-16 Analogue electronic timepiece

Publications (1)

Publication Number Publication Date
JPS5915884A true JPS5915884A (en) 1984-01-26

Family

ID=14875654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12404682A Pending JPS5915884A (en) 1982-07-16 1982-07-16 Analogue electronic timepiece

Country Status (1)

Country Link
JP (1) JPS5915884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173037A (en) * 2016-03-22 2017-09-28 カシオ計算機株式会社 Rotation detecting device and electronic clock
JP2021006816A (en) * 2016-03-22 2021-01-21 カシオ計算機株式会社 Rotation detecting device and electronic clock

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173037A (en) * 2016-03-22 2017-09-28 カシオ計算機株式会社 Rotation detecting device and electronic clock
JP2021006816A (en) * 2016-03-22 2021-01-21 カシオ計算機株式会社 Rotation detecting device and electronic clock
US11619912B2 (en) 2016-03-22 2023-04-04 Casio Computer Co., Ltd. Driving device and electronic timepiece

Similar Documents

Publication Publication Date Title
US4212156A (en) Step motor control mechanism for electronic timepiece
US4382691A (en) Electronic watch
US4129981A (en) Electronic timepiece
JPS6154189B2 (en)
JPS629877B2 (en)
US4688948A (en) Electronic analogue timepiece of DC magnetic field detection type
GB1592896A (en) Electronic timepieces with stepping motordriven analogue time displays
JPS5915884A (en) Analogue electronic timepiece
US4312058A (en) Electronic watch
GB1592900A (en) Electronic timepieces having stepping motor-driven analogue time displays
JPH08179060A (en) Electronic timepiece
US20060186853A1 (en) Method for identifying the rotation of a stepper motor driving at least one hand of a clock
JPS6258476B2 (en)
JP4451676B2 (en) Electronic clock
JPS6115384B2 (en)
GB1571260A (en) Electronic timepiece
US4507599A (en) Method and device for controlling a stepping motor
US4912689A (en) Compensating circuitry for an electronic watch
JP3601268B2 (en) Electronically controlled mechanical clock
US11294334B2 (en) Electronic timepiece, movement, and motor control circuit for a timepiece
GB2067795A (en) Improvements in or Relating to Stepping Motor Driven Electronic Timepieces
US20040001390A1 (en) Electronic timepiece
JPS6128317B2 (en)
FR2436377A1 (en) DEVICE FOR MEASURING THE LOAD OF THE GEAR TRAIN OF A WATCH
JPS6137587B2 (en)