JPS59158574A - Control element for minute displacement - Google Patents

Control element for minute displacement

Info

Publication number
JPS59158574A
JPS59158574A JP58031792A JP3179283A JPS59158574A JP S59158574 A JPS59158574 A JP S59158574A JP 58031792 A JP58031792 A JP 58031792A JP 3179283 A JP3179283 A JP 3179283A JP S59158574 A JPS59158574 A JP S59158574A
Authority
JP
Japan
Prior art keywords
displacement
generating member
displacement generating
magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031792A
Other languages
Japanese (ja)
Other versions
JPH0468372B2 (en
Inventor
Masashi Sahashi
政司 佐橋
Tetsuhiko Mizoguchi
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58031792A priority Critical patent/JPS59158574A/en
Publication of JPS59158574A publication Critical patent/JPS59158574A/en
Priority to JP2044406A priority patent/JPH0654817B2/en
Publication of JPH0468372B2 publication Critical patent/JPH0468372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetostriction type element, the maximum quantity of strain is large, linearity thereof is excellent and displacement hysteresis thereof is small, by using a magnetic alloy of a specific composition as a displacement generating member. CONSTITUTION:A displacement generating member 1 is constituted by 25- 40wt% iron, 0.01-15wt% manganese, 0.1-25wt% terbium and a substantial dysprosium magnetic alloy as the remainder. The displacement generating member 1 is prepared in such a manner that an alloy blank of said composition is melted through a vacuum induction heating method and changed into an ingot, the ingot is solidified in one direction at a proper G value (a temperature gradient in a solid-liquid interface phase) by a Bridgman furnace, and an acquired blank is cut and machined through a predetermined method. The length of the displacement generating member 1 is determined by the relationship of the magnitude of displacement to be controlled and the magnitude of the magnetostriction of the member. The quantity of the displacement generating member 1 displaced is transmitted over the outside of a system through a first displacement transmission shaft 4 made of a metal such as soft magnetic iron disposed brought into contact with the end section of the member and a second displacement transmission shaft 5 made of a metal such as nonmagnetic stainless steel brought into contact with the end section of the transmission shaft 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は微小変位制御素子に間シフ、史に、詳しくは、
変位発生@旧が磁歪特性及び靭性に優れた巨大磁歪の磁
性合金で構成された微小変位11.t fil素子に関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a micro-displacement control element.
Displacement generation @ Micro displacement made of a giant magnetostrictive magnetic alloy with excellent magnetostrictive properties and toughness 11. t fil element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、(々械丁作における那工鞘゛度の1ら」は目覚し
くミクロンオーダーの次元からサブミクロンオーダーの
次元に入シつつあるが、このことは電子デバイスの分宵
では既に珍しくない状況である。
In recent years, there has been a remarkable shift from the micron order dimension to the submicron order dimension, and this is already a common situation in the field of electronic devices. be.

また、メカトロニクスの時代を迎えるに及んで、超微細
加工、微小変位制御にかかる問題は上記した電子工学の
分野のみならず戦線工学の分野でも重要視されるに到っ
ている。
Furthermore, as we enter the era of mechatronics, problems related to ultra-fine processing and micro-displacement control are becoming important not only in the field of electronic engineering mentioned above but also in the field of frontline engineering.

すなわち、■計測装置、各種の機械装置にあっては現度
笈化(ζよる各構成部材の変位が不可避であシ、例えば
、インバー形合金のよりな極端に熱膨張の小δい制料金
用いた場合は別にし一〇1通常は101)pn1/ ℃
程度の変位は常に起シ1むること、■各種装置が7レキ
ンブルなi:iJ動部分(例えばジヨイント)、回転部
分(例えは歯車、モータ)を備えている場合には部相間
の接融の遊びkよる誤差を不可避的に8長とすること、
■一般に笠属は荷1′L下の変形に夕・」シては履歴を
示すこと、■各植装餘會慎械的振動から自由にすること
は限度があり、とくに装置上のものが振動発生源葡内蔵
している場合、振蛎及0・叱れに起因する距離変動を防
止することけ原理的に不可能であること、などの問題か
らして、微小変位制御素子は必要とされる。
In other words, in measuring devices and various mechanical devices, displacement of each component due to thermal expansion (ζ) is unavoidable.For example, invar type alloys with extremely small thermal expansion Except when used, 101 usually 101) pn1/℃
Displacement of approximately 1 degree always occurs; ■ When various devices are equipped with moving parts (e.g. joints) and rotating parts (e.g. gears, motors), welding between parts may occur. The error due to the play k is unavoidably set to 8 lengths,
■Generally, there are limits to the ability of caps to show the history of deformation under a load of 1'L, and to free each plant from mechanical vibrations, especially those on equipment. If the vibration source is built-in, it is impossible in principle to prevent distance fluctuations caused by vibrations and vibrations, so a minute displacement control element is not required. Ru.

更には、光情報処理、光記録機器の急速な発達に伴なっ
て、微小変位制御素子の必要性はますます高まっている
Furthermore, with the rapid development of optical information processing and optical recording equipment, the need for minute displacement control elements is increasing more and more.

従来から、かかる微小変位制御素子としては、変位発生
部の態様によって第1表に示すような形式のものが提案
され実用に供されている。
Hitherto, as such minute displacement control elements, the types shown in Table 1 have been proposed and put into practical use depending on the aspect of the displacement generating part.

第1表 第1表から明らかなように、従来の素子にはそれぞれ一
長一短があり必ずしも満足のいくものがなかった。
As is clear from Table 1, each of the conventional elements had advantages and disadvantages, and none were necessarily satisfactory.

このうち磁歪型は、磁性体を磁化した場合内部磁気配列
の変化に応じて該磁性体の長さが変化するという磁歪現
象を利用したものである。この現象は、従来から磁歪フ
ィルタ、磁歪センサ、超音波遅延線、磁歪振動子などの
デバイスに利用されている。
Among these, the magnetostrictive type utilizes the magnetostrictive phenomenon in which when a magnetic body is magnetized, the length of the magnetic body changes according to a change in the internal magnetic arrangement. This phenomenon has been utilized in devices such as magnetostrictive filters, magnetostrictive sensors, ultrasonic delay lines, and magnetostrictive vibrators.

この場合、これらデバイスの磁歪に基づく変位を発生さ
せる部材には、二、ケル基合金、鉄−コバルト合金、フ
ェライトなどの磁性合金が用いられている。
In this case, magnetic alloys such as 2, Kel-based alloys, iron-cobalt alloys, and ferrite are used for the members that generate displacement based on magnetostriction in these devices.

しかし々から、従来知られている磁性合金ではその変位
の絶対量が充分に大きくなく、シたがってミクロンオー
ダー又はザブミクロンオーダー・のよう々変位を制御す
る変位発生部材としては満足のいくものではなかったー
However, in conventionally known magnetic alloys, the absolute amount of displacement is not large enough, and therefore they are not satisfactory as displacement generating members for controlling displacement on the micron order or submicron order. There wasn't.

〔発明の目的〕[Purpose of the invention]

本発明は、変位発生部材に後述する新規組成の磁性合金
を用いることによって、最大歪み量((Δt / t 
) max >が大きく線形性に優れかつ変位履歴の小
さい磁歪型の微小変位制御素子の提供を目的とする。
The present invention uses a magnetic alloy with a new composition described later for the displacement generating member, thereby achieving a maximum strain amount ((Δt/t
The present invention aims to provide a magnetostrictive micro-displacement control element which has a large value of ) max > and has excellent linearity and a small displacement history.

〔発明の概要〕[Summary of the invention]

本発明の微小変位制御素子は、中空状に巻装された磁性
コイルと、該磁性コイルの中空部に同軸的に挿入されて
変位移動する変位発生部材とを備えた微小変位制御素子
であって、該変位発生部材が鉄(Fe) 25〜40重
量%、マンガン(Mn ) 0.01〜15重郊二%、
テルビウム(Tb)011〜25重量%、残部は実質的
にジスプロシウム(Dy )の磁性合金で構成されてい
ることを特徴とする。
The minute displacement control element of the present invention is a minute displacement control element comprising a magnetic coil wound in a hollow shape and a displacement generating member coaxially inserted into the hollow part of the magnetic coil and displaced. , the displacement generating member contains 25 to 40% by weight of iron (Fe) and 0.01 to 15% by weight of manganese (Mn);
It is characterized in that it is composed of a magnetic alloy of 11 to 25% by weight of terbium (Tb) and the remainder substantially of dysprosium (Dy).

まず、本発明の制御素子を、好ましい構造例を示した第
1図に則して説明する。
First, the control element of the present invention will be explained with reference to FIG. 1, which shows a preferred structural example.

第1図で1は棒状の変位発生部材、2は該変位発生部を
磁化して長さ変位を発生式せるための励磁コイルである
。励磁コイル2は所定径の導線(例えばホルマル銅線)
を必要回数巻回しその内部を中空にして構成される。こ
のときのコイルの巻回数は、変位発生部材1に作用させ
るべき磁界の強さとの関係から決められる。励磁コイル
2の中空部には、所定長さを有する磁性合金の棒材が同
軸的に挿入されて変位発生部材1を構成する。
In FIG. 1, numeral 1 denotes a rod-shaped displacement generating member, and numeral 2 denotes an excitation coil for magnetizing the displacement generating portion to generate a length displacement. The excitation coil 2 is a conductor wire (for example, formal copper wire) with a predetermined diameter.
It is constructed by winding it the required number of times and making the inside hollow. The number of turns of the coil at this time is determined based on the relationship with the strength of the magnetic field to be applied to the displacement generating member 1. A magnetic alloy bar having a predetermined length is inserted coaxially into the hollow portion of the excitation coil 2 to constitute the displacement generating member 1 .

このときの該変位発生部材1の長さは、制御すべき変位
の大きさ及び該部材の磁歪の大きさとの関係から決めら
れる。また、変位発生部材1は、励磁コイル2の中空部
の中では潤滑性に富む例えばボールベアリング、黒鉛材
、テフロン材のような軸受材3によって支持されていて
、軸方向の変位が生じた場合でも容易に滑動できるよう
になっている。変位発生部材1の変位量は、該部材の端
部に当接して配設される例えば軟磁鉄製の第1の変位伝
達軸4及びつづいて該伝達軸4の端部に当接する例えば
非磁性ステンレススチール製の第2の変位伝達軸5を介
して系外に伝達される。
The length of the displacement generating member 1 at this time is determined based on the relationship between the magnitude of the displacement to be controlled and the magnitude of magnetostriction of the member. In addition, the displacement generating member 1 is supported in the hollow part of the excitation coil 2 by a bearing material 3 that is rich in lubricity, such as a ball bearing, a graphite material, or a Teflon material, and when displacement in the axial direction occurs. But it can be slid easily. The amount of displacement of the displacement generating member 1 is determined by a first displacement transmission shaft 4 made of, for example, soft magnetic iron, which is disposed in contact with an end of the member, and a first displacement transmission shaft 4 made of, for example, non-magnetic stainless steel, which is in contact with an end of the transmission shaft 4. It is transmitted to the outside of the system via the second displacement transmission shaft 5 made of steel.

励磁コイル2の外周には、変位発生部材1に磁界を印加
したときその両端部からの磁束もれを防止するために、
更には、変位発生部材1に生起する反磁界を抑制若しく
は消去して励磁コイル2の作用効率を高めるために、例
えは軟磁鉄で構成したヨークを配設することが好ましい
On the outer periphery of the excitation coil 2, in order to prevent magnetic flux from leaking from both ends when a magnetic field is applied to the displacement generating member 1,
Further, in order to suppress or eliminate the demagnetizing field generated in the displacement generating member 1 and increase the efficiency of the excitation coil 2, it is preferable to provide a yoke made of soft magnetic iron, for example.

更には、励磁コイル2で変位発生部1を磁化するに先立
ち、予め該変位発生部材1をある程度磁化してその線形
性が良好な磁歪特性領域で使用するために、励磁コイル
2の外周にバイアスコイル6を配設することが一層好ま
しい。
Furthermore, before magnetizing the displacement generating part 1 with the excitation coil 2, a bias is applied to the outer periphery of the excitation coil 2 in order to magnetize the displacement generation member 1 to some extent in advance and use it in a magnetostrictive characteristic region with good linearity. More preferably, a coil 6 is provided.

本発明の制御素子は以上のようにして栴成されているが
、その最大の特徴は変位発生部材1としてFe25〜4
0重量%、Mn 0.01 = 15 N fit %
、Tb O,1〜25重#%、残部は実質的にDyから
成る磁性合金を用いるところにある。
The control element of the present invention is manufactured as described above, but its greatest feature is that the displacement generating member 1 is made of Fe25-44
0 wt%, Mn 0.01 = 15 N fit%
, TbO, 1 to 25% by weight, and the remainder substantially consists of Dy.

以下に該磁性合金につき詳細に説明する。The magnetic alloy will be explained in detail below.

まず、Tb、Dyは極めて大きい結晶異方性を有する希
土類元素であって、磁性合金の磁歪特性を高めるために
必須な成分である。しかしながら、Tb単体、Dy単体
又はTbとDyのみから成る合金は、いずれも低温領域
では優れた磁歪特性を示すけれども、室温以上の温度領
域では磁歪を示さないという問題点を有する。
First, Tb and Dy are rare earth elements having extremely large crystal anisotropy, and are essential components for improving the magnetostriction properties of a magnetic alloy. However, although Tb alone, Dy alone, or an alloy consisting only of Tb and Dy all exhibit excellent magnetostriction properties at low temperatures, they have a problem in that they do not exhibit magnetostriction at temperatures above room temperature.

一方、’rb、DyはFe、Mnなどの遷移金属とラー
ベス(Labea )型金属間化合物を形成するが、こ
のことによって、Tb、Dy、Tb−Dy合金の優れた
磁歪特性を室温まで持ち来たすことができる。これは、
広義の強磁性相がラーベス型金属間化合物に包摂される
形で室温マで安定化されるためである。例えば、取にお
いてその強磁性相の消失する温度は179”K(−94
℃)であるが、■とFeとのラーベス型金属間化合物D
lr Fe xの場合には635°K(3588C)で
ある。
On the other hand, 'rb and Dy form Labea-type intermetallic compounds with transition metals such as Fe and Mn, and this brings the excellent magnetostrictive properties of Tb, Dy, and Tb-Dy alloys to room temperature. be able to. this is,
This is because the broadly defined ferromagnetic phase is stabilized at room temperature by being included in the Laves type intermetallic compound. For example, the temperature at which the ferromagnetic phase disappears in magnets is 179"K (-94"K).
), but Laves-type intermetallic compound D of ■ and Fe
In the case of lr Fe x, it is 635°K (3588C).

各種の希土類元素とFeとのラーベス型金属間化合物の
室温(25℃)における飽和磁歪値(λ)は第2表に示
ブとおりである。
The saturation magnetostriction values (λ) of Laves type intermetallic compounds of various rare earth elements and Fe at room temperature (25° C.) are shown in Table 2.

第   2   表 第2表から明らか々ように、これらラーベス型金属間化
合物の飽和磁歪値は、従来の典型的な磁歪金属であるN
iのそれ(3ox1o−6)に比べて桁違いに大きい。
Table 2 As is clear from Table 2, the saturation magnetostriction values of these Laves type intermetallic compounds are higher than those of N, which is a typical conventional magnetostrictive metal.
It is an order of magnitude larger than that of i (3ox1o-6).

しかしながら、上記したラーベス型金属間化合物は、そ
れが単相である場合、その機械的特性、とくに加工性、
靭性が極めて劣悪であって実用性の点で問題がある。更
には、第2表に示した飽和磁歪値を得るためには数十K
Oeという強磁場・を必要とし、例えば1000e/A
程度のソレノイド型マグネットを用いて電気−磁気変換
操作を行なった場合、100八以上の大電流が必要とな
って数十謀の電力消費を不可避とするので、実用性の点
での障害は大である。
However, when the above-mentioned Laves-type intermetallic compound is a single phase, its mechanical properties, especially processability,
The toughness is extremely poor and there is a problem in terms of practicality. Furthermore, in order to obtain the saturation magnetostriction values shown in Table 2, several tens of K.
It requires a strong magnetic field of Oe, for example 1000e/A.
If an electric-magnetic conversion operation is performed using a solenoid type magnet, a large current of 1,008 or more would be required, making it unavoidable to consume several tens of tons of power, which poses a major obstacle in terms of practicality. It is.

本発明者らは、Tb 、 Dy 、 ’rb−Dy合金
の磁歪特性が優れること\1.そして、これら元素とF
e、Mnとのラーベス型金属間化合物は室温での安定な
磁歪特性を保障し得ること、という2点全前提として後
述する種々の検討を加えることにより、微小変位制御素
子の変位発生部材として有用な合金組成を見出すに到っ
た。
The present inventors discovered that the magnetostrictive properties of Tb, Dy, and 'rb-Dy alloys are excellent\1. And these elements and F
The Laves-type intermetallic compound with e and Mn can guarantee stable magnetostrictive properties at room temperature, and by adding various studies described later, we have found that it is useful as a displacement generating member for micro displacement control elements. We have found a suitable alloy composition.

まず、(TbyDy(1−、) )ta3(Fe、−、
Mnり2(x ! !/はそれぞれMn濃度、Tb濃度
を表わす。)で示される合金につき、そのx、yをそれ
ぞれ変動させたときの磁歪特性を測定した。その結果の
一部を第2図及び第3図に示す。図で磁歪特性の次元は
Z ”’ Ot y ”’ Oのものすなわち、Dy0
33Fe2のラーベス型金属間化合物の室温における磁
歪特性を10としたときの相対値で示しである。
First, (TbyDy(1-,))ta3(Fe,-,
Magnetostrictive properties of an alloy represented by Mn 2 (x ! !/ represent Mn concentration and Tb concentration, respectively) were measured while varying x and y, respectively. Some of the results are shown in FIGS. 2 and 3. In the figure, the dimension of the magnetostrictive property is that of Z ``' Ot y ''' O, that is, Dy0
It is shown as a relative value when the magnetostriction property of the Laves type intermetallic compound of 33Fe2 at room temperature is set to 10.

第2図から明らか々ように、Mnの合金化は、室温、低
磁場側(2KOe以下)での磁歪特性において、v−0
2、すなわちTb13重量%以下の領域で磁歪特性の顕
著な向上が見られる。とくに、z−=0.2 + y=
、0.2の合金;(Tbo、2Dy。、8)□、、53
(Feo3Mno2)2は、現在磁歪特性が最大のもの
として知られている、T b o、s Dyo、7 F
 e 2の値を上回シ、しかもその靭性が著しく改善さ
れていることが判明した。
As is clear from Fig. 2, Mn alloying has a v-0
2, that is, a remarkable improvement in magnetostrictive properties is observed in the region of Tb of 13% by weight or less. In particular, z-=0.2 + y=
, 0.2 alloy; (Tbo, 2Dy., 8) □, 53
(Feo3Mno2)2 is T b o, s Dyo, 7 F, which is currently known to have the largest magnetostrictive property.
It was found that the value of e 2 was exceeded, and the toughness was significantly improved.

また、第3図から明らかなように、Xの大小によらずD
yのTbによる合金化に伴い得られた合金はその磁歪特
性が者しく向上している。とくにX−0,2においてT
b合金化の効果は顕著である。
Also, as is clear from Figure 3, regardless of the size of
The alloy obtained by alloying y with Tb has significantly improved magnetostrictive properties. Especially at X-0,2 T
The effect of b-alloying is remarkable.

本発明にかかる磁性合金は、以上の実験経過を背景に開
発されたTb −Dy−Fe−Mn系のものである。
The magnetic alloy according to the present invention is a Tb-Dy-Fe-Mn based magnetic alloy developed based on the above experimental progress.

該磁性合金において、Fe、Mnは’rb、pyとラー
ベス型金属間化合物を形成してT b 、Dy + T
 b−D y合金の優れた磁歪特性を室温以上の温度領
域で安定化・向上せしめる。そのとき、Feの組成比が
25重置火未満の場合には充分な磁歪特性が得られず、
また、40重量系を超えると合金の靭性が著しく劣化し
て脆弱となってしまう。IVinはその組成比0.01
重量%以上から磁歪特性向上の効果を発揮するがその組
成比が25重量ガを超えると逆に磁歪特性の劣化を招く
In the magnetic alloy, Fe and Mn form a Laves type intermetallic compound with 'rb and py to form T b , Dy + T
The excellent magnetostrictive properties of the b-D y alloy are stabilized and improved in the temperature range above room temperature. At that time, if the composition ratio of Fe is less than 25 times, sufficient magnetostrictive properties cannot be obtained,
Moreover, if the weight exceeds 40%, the toughness of the alloy will deteriorate significantly and it will become brittle. IVin has a composition ratio of 0.01
If the composition ratio exceeds 25% by weight, the magnetostrictive properties will be deteriorated.

TbはDyと合金化することl/(よ’)、Dy単独の
場合よりも全体の磁歪特性を高める。組成比が01重量
%以上からその効果を発揮するが、25重置火を超える
と逆に磁性特性の劣化を招いてしまう。
When Tb is alloyed with Dy, the overall magnetostriction properties are improved more than when Dy is used alone. The effect is exhibited when the composition ratio is 0.1% by weight or more, but if the composition ratio exceeds 25 times, the magnetic properties deteriorate.

本発明にかかる磁性合金において、その残部はDyTm
<成されるが、合金調製時に不可避的に付随する微量の
混入物(例えば、C,O,N、希土類I Y ILa 
)が存在しても何らの不都合はない。
In the magnetic alloy according to the present invention, the balance is DyTm
However, trace amounts of contaminants that inevitably accompany the alloy preparation (e.g., C, O, N, rare earth I Y ILa
) exists, there is no problem.

本発明にかかる変位発生部材は、上記した組成の合金素
材を例えば真空誘導加熱法で溶解した後インゴットにし
、このインゴットを例えばブリ。
The displacement generating member according to the present invention is produced by melting an alloy material having the above-mentioned composition, for example, by a vacuum induction heating method, and then forming the ingot into an ingot, for example, a yellowtail.

ヂマン炉で適宜々G値(固液界面相での温度勾配)で一
方向凝固させ、ついで得られた素材に所定の切削加工を
施して作成することができる。
It can be produced by unidirectionally solidifying the material in a Diman furnace at an appropriate G value (temperature gradient at the solid-liquid interfacial phase), and then subjecting the obtained material to a predetermined cutting process.

この部材を第1図に示したコイル部と組合せることによ
って本発明の微小変位制御素子が製造される。
By combining this member with the coil portion shown in FIG. 1, the minute displacement control element of the present invention is manufactured.

実施例1〜14 鄭3表に示した組成の、30種類の合金試料を用意し、
これらをそれぞれ真空誘導加熱法で溶解した。溶湯を冷
却してインゴットとした後、これを内径12司長さ25
0WBのアルミナ管の中に装入し、タンタルヒータを備
えた改良ブリ、ヂマン炉によシ、アルゴン雰囲気中、6
0 謔/hrの定速度で一方向凝固させた。このときの
固液界面近傍におけるG値は約80℃/のtであった。
Examples 1 to 14 Thirty types of alloy samples having the compositions shown in Table 3 were prepared,
Each of these was melted using a vacuum induction heating method. After cooling the molten metal and making it into an ingot, it is made into an ingot with an inner diameter of 12 and a length of 25.
Charged into an 0WB alumina tube and placed in a modified alimentary furnace equipped with a tantalum heater in an argon atmosphere, 6
Unidirectional solidification was performed at a constant rate of 0.0 m/hr. At this time, the G value near the solid-liquid interface was approximately 80° C./t.

得られた一方向凝固材の凝固方位は、それぞれ立方晶ラ
ーベス化合物の結晶方位にして略(111)磁化容易軸
であった。
The solidification orientation of the obtained unidirectionally solidified material was approximately the (111) easy axis of magnetization, which is the crystal orientation of the cubic Laves compound.

各一方向凝固材に80’ 0 ’Cで12’0時間均一
化処理を施した後、直径8rrrm長さ1007nlの
丸棒を切削加工して変位発生部材とした。試料番号1〜
14が本発明にかかる実施例で他は比較例である。
Each one-way solidified material was homogenized at 80'0'C for 12'0 hours, and then a round bar with a diameter of 8rrrm and a length of 1007nl was cut into a displacement generating member. Sample number 1~
No. 14 is an example according to the present invention, and the others are comparative examples.

これら丸棒を用いて、紀1図に示した構造の微小変位制
御素子を組立て、各素子の特性を調べた。
Using these round bars, we assembled minute displacement control elements with the structure shown in Fig. 1, and investigated the characteristics of each element.

ここで、軸受材は外径10爺内径8w+長さ1001N
lのデフ−ロン類の筒、励磁コイルは直径1能のホルマ
ル銅線をテフロン筒の外周に2万回/mて巻回し、全直
流抵抗値5Ω、励磁能力2500s/Aのもの、その外
周に配設されたバイアスコイルは1万回/mの巻回数で
励磁能力1250e /Aのものであった。
Here, the bearing material is outer diameter 10mm, inner diameter 8w + length 1001N.
The excitation coil is a 1-diameter formal copper wire wound around the outer circumference of the Teflon tube at a rate of 20,000 turns/m, with a total DC resistance of 5 Ω and an excitation capacity of 2500 s/A. The bias coil disposed in the tube had a number of turns of 10,000 turns/m and an excitation capacity of 1250 e/A.

制御素子の特性評価は、バイアスコイルにIAの電流を
流し1250eのバイアス磁場下で行りつた。
Characteristic evaluation of the control element was carried out under a bias magnetic field of 1250e by passing a current of IA through the bias coil.

この状態で励磁コイルに0.5 A (入力電力6W)
の駆動電流を流し、このときの棒材の変位楚、(μm)
を測定した。その結果を第3表に示した。
In this state, 0.5 A (input power 6W) is applied to the excitation coil.
When a driving current of is applied, the displacement of the bar at this time is (μm)
was measured. The results are shown in Table 3.

菓3表 実施例15 実施例9の変位発生部材、比較例29.30の変位発生
部材をそれぞれ組み込んだ微小変位制御素子につき、実
施例1〜14のバイアス磁場下で各種の駆動電流を流し
、そのときの変位量から歪み値(ε:Δl/l )を算
出した。結果を第4図に示した。
Table 3 Example 15 Various drive currents were passed under the bias magnetic field of Examples 1 to 14 to micro displacement control elements incorporating the displacement generating member of Example 9 and the displacement generating member of Comparative Examples 29 and 30, respectively. A strain value (ε:Δl/l) was calculated from the amount of displacement at that time. The results are shown in Figure 4.

図から明らかなように、本発明にかかる磁性合金は、励
磁コイルへの駆動電流が大きくなくても(すなわち、使
用電力が小さくても)歪み値が太きい。またその線形性
も優れている。
As is clear from the figure, the magnetic alloy according to the present invention has a large strain value even if the drive current to the excitation coil is not large (that is, even if the power used is small). It also has excellent linearity.

比較例31.32 第1図の素子の変位発生部材として0.9 Pb (M
g1Nb2)03−0. I Pb’r+05 (0,
9PR41N−0,1FT)なる組成の電歪材料、ジル
コン酸鉛(PZT −’8 )の圧電材料を用いてその
歪み値を測定した。その結果を第5図に示した。
Comparative Example 31.32 0.9 Pb (M
g1Nb2)03-0. I Pb'r+05 (0,
The strain values were measured using an electrostrictive material having a composition of 9PR41N-0,1FT) and a piezoelectric material of lead zirconate (PZT-'8). The results are shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の微小変位制御素
子は、■変位発生部材の歪み量が大きく、■線形性に優
れており、■変位履歴が著しく小さく、■小さい入力電
力で作動することができ、■歪み量が大きいことにより
素子全体を小型化することができるなどの第11点を有
しているので、サブミクロンオーダーの精密制御を必要
とする光情報処理、光記録機器、精密工作機器の分野で
の有用性は極めて犬である。
As is clear from the above explanation, the micro displacement control element of the present invention: ■ has a large amount of distortion in the displacement generating member, ■ has excellent linearity, ■ has a significantly small displacement history, and ■ operates with small input power. It has the eleventh point of being able to miniaturize the entire device due to the large amount of distortion, so it is suitable for optical information processing, optical recording equipment, etc. that require precision control on the submicron order, Its usefulness in the field of precision machine tools is extremely limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微小変位制御素子の好ましい1例を示
す一部切欠模式図である。第2図、第3図はそれぞれ(
TbyDy(1−、))、33(Fe、−2!Mnケ)
2のX。 yと磁性特性との関係図である。第4図は駆動電流と歪
み量との関係図、第5図は比較のために示した電歪材料
、圧電材料の電界の大きさと歪み量との関係図である。 1・・・変位発生部材、  2・・・励磁コイル、  
3・・・軸受材、4,5・・・変位伝達軸、  6・・
・バイアスコイル。 第10 ■ 第2ム1 x(Mn濃友)□ 第3図 y(Tb濃、L)− 第4Iづ 渇[動霞胤(A)− 第5図
FIG. 1 is a partially cutaway schematic diagram showing a preferred example of the minute displacement control element of the present invention. Figures 2 and 3 are respectively (
TbyDy(1-,)), 33(Fe,-2!Mnke)
2 X. FIG. 3 is a diagram showing the relationship between y and magnetic properties. FIG. 4 is a diagram showing the relationship between the drive current and the amount of strain, and FIG. 5 is a diagram showing the relationship between the magnitude of the electric field and the amount of strain for electrostrictive materials and piezoelectric materials shown for comparison. 1... Displacement generating member, 2... Excitation coil,
3... Bearing material, 4, 5... Displacement transmission shaft, 6...
・Bias coil. 10th ■ 2nd M1

Claims (1)

【特許請求の範囲】[Claims] 中空状に巻装された磁性コイノドと、該磁性コイルの中
空部に同軸的に挿入されて俊位移則する変位発生部材と
を備えた微小変位制御1才、子において、該変位発生部
材が、鉄25〜40重景%、マンガン0.0 ’J〜1
5 M !%、テルビウム01〜25重声″%、残部i
j: 寅ff的にジスプロシウムの磁性合金で構成され
ていることを特徴とする微小変位制御1素子。
In a 1-year-old child, the minute displacement control device includes a magnetic coil wound in a hollow shape and a displacement generating member that is coaxially inserted into the hollow part of the magnetic coil and shifts the position. Iron 25~40%, manganese 0.0'J~1
5M! %, terbium 01-25 doublet''%, remainder i
j: A minute displacement control element characterized by being made of a magnetic alloy of dysprosium.
JP58031792A 1983-03-01 1983-03-01 Control element for minute displacement Granted JPS59158574A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58031792A JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement
JP2044406A JPH0654817B2 (en) 1983-03-01 1990-02-27 Displacement generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031792A JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2044406A Division JPH0654817B2 (en) 1983-03-01 1990-02-27 Displacement generating element

Publications (2)

Publication Number Publication Date
JPS59158574A true JPS59158574A (en) 1984-09-08
JPH0468372B2 JPH0468372B2 (en) 1992-11-02

Family

ID=12340916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031792A Granted JPS59158574A (en) 1983-03-01 1983-03-01 Control element for minute displacement

Country Status (1)

Country Link
JP (1) JPS59158574A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109946A (en) * 1985-10-28 1987-05-21 アイオワ・ステイト・ユニバ−シテイ・リサ−チ・フアウンデ−シヨン・インコ−ポレイテツド Production of magnetostriction rod from rare earth element/iron alloy
JPS6434631A (en) * 1987-07-30 1989-02-06 Sentan Kako Kikai Gijutsu Shin Actuator of ultra magnetic strain member
JPH02237085A (en) * 1983-03-01 1990-09-19 Toshiba Corp Displacement generating element
JPH02288278A (en) * 1989-04-28 1990-11-28 Toshiba Corp Magnetostrictive type actuator
JPH02297604A (en) * 1989-04-26 1990-12-10 Uk Government Adaptive control system
JPH0337182A (en) * 1989-06-30 1991-02-18 Nkk Corp Production of big magnetostrictive alloy rod
US5110376A (en) * 1988-09-29 1992-05-05 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
US5223046A (en) * 1988-09-29 1993-06-29 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364798A (en) * 1976-11-19 1978-06-09 Shingijutsu Kaihatsu Jigyodan Electric magntostrictive convertor
JPS55134150A (en) * 1979-04-05 1980-10-18 Toshiba Corp Terbium- and dysprosium-base macro-magnetostrictive alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364798A (en) * 1976-11-19 1978-06-09 Shingijutsu Kaihatsu Jigyodan Electric magntostrictive convertor
JPS55134150A (en) * 1979-04-05 1980-10-18 Toshiba Corp Terbium- and dysprosium-base macro-magnetostrictive alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237085A (en) * 1983-03-01 1990-09-19 Toshiba Corp Displacement generating element
JPS62109946A (en) * 1985-10-28 1987-05-21 アイオワ・ステイト・ユニバ−シテイ・リサ−チ・フアウンデ−シヨン・インコ−ポレイテツド Production of magnetostriction rod from rare earth element/iron alloy
JPS6434631A (en) * 1987-07-30 1989-02-06 Sentan Kako Kikai Gijutsu Shin Actuator of ultra magnetic strain member
US5110376A (en) * 1988-09-29 1992-05-05 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
US5223046A (en) * 1988-09-29 1993-06-29 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
JPH02297604A (en) * 1989-04-26 1990-12-10 Uk Government Adaptive control system
JPH02288278A (en) * 1989-04-28 1990-11-28 Toshiba Corp Magnetostrictive type actuator
JPH0337182A (en) * 1989-06-30 1991-02-18 Nkk Corp Production of big magnetostrictive alloy rod
JPH062635B2 (en) * 1989-06-30 1994-01-12 日本鋼管株式会社 Giant magnetostrictive alloy rod manufacturing method

Also Published As

Publication number Publication date
JPH0468372B2 (en) 1992-11-02

Similar Documents

Publication Publication Date Title
Zhou et al. Structure and magnetic properties of SmCo 7− x Ti x with TbCu 7-type structure
KR20000005296A (en) Bonded magnet with low losses and easy saturation
JP6929005B2 (en) Ultra-low cobalt iron-cobalt magnetic alloy
JPH0368108B2 (en)
CN103155054A (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
Pinkerton et al. Magnetostrictive SmFe 2/metal composites
JP2001508129A (en) Amorphous Fe-B-Si-C alloy with soft magnetic properties useful for low frequency applications
WO2001055687A2 (en) MAGNETOSTRICTIVE DEVICES AND METHODS USING HIGH MAGNETOSTRICTION, HIGH STRENGTH FeGa ALLOYS
JPS59158574A (en) Control element for minute displacement
JP3452210B2 (en) Manufacturing method of magnetostrictive material
JPH03183738A (en) Rare earth-cobalt series supermagnetostrictive alloy
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JPH02237085A (en) Displacement generating element
US20160319412A1 (en) Tunable Anisotropy of Co-Based Nanocomposites for Magnetic Field Sensing and Inductor Applications
JPS59100254A (en) High saturation magnetization and low magnetostriction iron-boron solid solution alloy
Imamura et al. Fe–Mn–Si/6.5 wt% Si–Fe bilayer ribbons produced by using the melt-spinning technique
JPH11297521A (en) Nano-crystalline high-magnetostrictive alloy and sensor using the alloy
Miyazaki et al. Magnetic properties of rapidly quenched Fe—Si alloys
JP2679069B2 (en) High squareness ratio soft magnetic material
Mitra et al. Influence of stress and stress‐flash annealing on the magnetic properties of amorphous Fe77. 5Si7. 5B15 wire
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
JP2004207365A (en) Magnetic circuit material and method of manufacturing the same
Han et al. Characterization of a Fe-based soft magnetic alloy system with high saturation magnetization