JPS59156953A - Manufacture of inorganic porous body - Google Patents

Manufacture of inorganic porous body

Info

Publication number
JPS59156953A
JPS59156953A JP3119383A JP3119383A JPS59156953A JP S59156953 A JPS59156953 A JP S59156953A JP 3119383 A JP3119383 A JP 3119383A JP 3119383 A JP3119383 A JP 3119383A JP S59156953 A JPS59156953 A JP S59156953A
Authority
JP
Japan
Prior art keywords
powder
granules
inorganic
combustible
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119383A
Other languages
Japanese (ja)
Other versions
JPS6348833B2 (en
Inventor
纐纈 満
太田 義博
馬島 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3119383A priority Critical patent/JPS59156953A/en
Publication of JPS59156953A publication Critical patent/JPS59156953A/en
Publication of JPS6348833B2 publication Critical patent/JPS6348833B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は吸音材などに使用する無機質多孔体の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an inorganic porous body used for sound absorbing materials and the like.

無機質多孔体はそれぞれの用途や目的に応じて多種多様
の材質や方法によって製造されているが、用途に応じた
強度、耐水性、重量、吸音性等の特性を満足すると同時
に製造コストが安価であることが要求されている。しか
しながら・従来の無機質多孔体の製造法はセラミック、
磁器等の無機材料を破砕、分級したのち融剤を添加して
成形し、さらに、焼成して焼結させる方法や無機質粉米
倉造粒したのち焼成して骨材化したのち分級し、該骨材
に融剤を添加して成形し、再度焼成して焼結させる方法
でりって、いずれも設備費用と燃料費、工数が大きく製
造コストが高いという欠点があった。また、前記した方
法により得られた骨材にセメントや水ガラス等の無機結
合剤を添加して成形し硬化させて多孔体を製造する方法
もあるが、機械的強度や耐水性が低い欠点があった。
Inorganic porous bodies are manufactured using a wide variety of materials and methods depending on their use and purpose, but they meet the characteristics of strength, water resistance, weight, sound absorption, etc. depending on the purpose, and at the same time are inexpensive to manufacture. something is required. However, the conventional manufacturing method for inorganic porous bodies is ceramic,
There are methods in which inorganic materials such as porcelain are crushed and classified, then a flux is added, molded, and then fired and sintered. The method involves adding a flux to the material, molding it, and firing it again to sinter it, but both methods have the drawbacks of high equipment costs, fuel costs, and large man-hours, resulting in high manufacturing costs. There is also a method of manufacturing a porous body by adding an inorganic binder such as cement or water glass to the aggregate obtained by the above method, molding and hardening, but this method has the disadvantage of low mechanical strength and water resistance. there were.

本発明は前記のような欠点を除くとともに各種産業から
多量に発生してその処理処分に困っている石炭灰や珪砂
等の無機質廃棄物や微粉炭、おが粉、プラスチック粉末
等の有機質廃棄物の処分と有効利用とを図ることのでき
る無機質多孔体の製造法を目的として完成されたもので
、無機質粉末に可燃物粉末を混合調整した原料粉末を造
粒したのち該造粒物に融剤を添加混合して所要形状に成
形し、次いで、この成形物を焼成することによシ前記造
粒物中の可燃物粉末を焼失させて各造粒物を無機質粉末
が焼結された多孔質粒状物に形成するとともに前記融剤
をもって各多孔質粒状物を相 。
The present invention eliminates the above-mentioned drawbacks and also solves inorganic wastes such as coal ash and silica sand, which are generated in large quantities from various industries and which are difficult to dispose of, and organic wastes such as pulverized coal, sawdust, and plastic powder. This method was developed for the purpose of producing an inorganic porous material that can be disposed of and effectively utilized.After granulating raw material powder, which is a mixture of inorganic powder and combustible powder, a fluxing agent is added to the granulated material. The combustible powder in the granules is burnt out by adding and mixing the granules and molding them into a desired shape, and then firing the molded product, thereby converting each granule into a porous structure in which the inorganic powder is sintered. While forming into granules, each porous granule is phased with the fluxing agent.

瓦間に微細な連通細隙が形成された状態に結合すること
を特徴とするもので、以下、本発明の実施例を図示する
フローシートにょ9詳細に説明する(1)は主原料サイ
ロであって、該主原料サイロ(1)には主原料の無機質
粉末として例えば多社の無機質分を含有した汚泥粉末を
貯留しておく 、 (2)は副原料サイロであって、該
副原料サイロ(2)には微粉炭などの可燃物粉末を貯留
しておく。(3)は主原料サイロ(1)よシ供給される
無機質粉末を分級する分級機で、主原料サイロ(1)に
貯留され九汚泥粉末は分級機(3)によシ所定粒度例え
ば88M以上の粗粉とe・gμ以下の細粉の21Mに分
級されて前記副原料サイロ(2)に並列させた粗粉サイ
ロ(4)と細粉サイロ(5)に貯留される。そして、粗
粉サイロ(4)中の粗粉と細粉サイロ(5)中の細粉お
よび副原料サイロ(2)中の微粉炭はいずれもこれらに
含有される可燃物量を測定し、造粒および燃焼の両面か
ら考えて最適な混合比率が得られるように混合比率設定
器(6ンで比率を設定し、その比率に合せて計量機(7
)から定量的に粗粉と細粉と微粉炭とを混合機(8)に
投入することにより無機質粉末としての汚泥の粗粉と細
粉に可燃物粉末としての微粉炭を混合した原料粉末中の
可燃物量は所爺割合たとえば5〜70重量%に調整され
る。次いで、この混合調整された原料粉末は給水機(9
)により給水されてバグミキサー等の加湿混練機α0に
より水分が5〜20重駁%となるように加湿混練され、
造粒のための一次凝集が行なわれシJさらに続いて造粒
強度を上昇させるため原料粉末に対して所定割合たとえ
ば2〜S%の有機粘結剤が有機粘結剤サイロαυよシ供
給されたのちパン型ペレタイザー等の造粒機(2)で加
湿造粒1L水分10〜23重社%で粒径θ3〜20tt
rstの造粒物を得る。次いで分級機α4で所定の粒径
に分級した造粒物の嵩容積に対して所定割合たとえばa
/〜0乙侘。の融剤を融剤サイロQ41より供給し、コ
ーテイング機(2)で融剤を造粒物(4)の表面に充分
にコーティングした造粒物を得る。次いで、底部に火格
子α搬を有する箱形の焼結台車(ホ)が多数のウィンド
ボックス3])上を移動するようにした下方吸引タイプ
の焼結炉の前記焼結台車翰内に前記した融剤がコーティ
ングされた造粒物を厚さ2oo−soo闘となるように
積重しで成形機Qt9で所要形状に成形する。次に、こ
の成形物が載装された焼結台車(ホ)を駆動装置(財)
により着火室a8)に導き、該成形物の表面部を着火バ
ーナー■によシ初期着火し、さらに着火室側よシ移行す
る間にウィンドボックスψυから排ガスファン(財)に
よすSO〜/ 30 闘Aq、で下方吸引しつつ通気し
て成形物を構成する各造粒物中の可燃物粉末を自己燃焼
させれば、可燃物粉末は焼失するとともに造粒物中の無
e!質粉末は焼結して多孔質粒状物化し、これと同時に
成形物中にあって前記燃焼により溶融している前記融剤
が各多孔質粒状物を相互聞に微細な連通細隙が形成され
るように結合し、て本製品となシ、その後は移載機に)
により焼結台車輪より移載されて貯留される。なお、前
記焼成に必要な条件としては温度をたとえば1100〜
1300°Cに数分間維持するとともに下方に向って高
温熱風を流して下層の造粒物をも乾燥させ、以後これに
着火させて燃焼位置を順次下方に向って移動させ、燃焼
位置が火格子01面まで下がった時点で焼結台車(ホ)
内の成形物の全層の焼結を行う。また、本発明において
主原料となる無機質粉末としてはアルミナ、粘土、珪砂
等のように可燃物をほとんど含有しないものでも、上水
汚泥、下水汚泥等の各種汚泥粉末や石炭灰のように未燃
炭素や有機物を一部含有するものでもよく、他方、副原
料となる可燃物粉末としてはおが粉、微粉炭、プラスチ
ック粉末、有機粘結剤等の可燃性のものであればよく、
さらに、前述のような可燃物粉末を自己燃焼源せて焼結
する場合においては原料粉末中の可燃物粉末の量は5〜
/S重社%とすることが好ましい。
This method is characterized by bonding in a state in which fine communication slits are formed between the tiles.Hereinafter, (1) will be described in detail in a flow sheet 9 illustrating an embodiment of the present invention, which is a main raw material silo. The main raw material silo (1) stores, for example, sludge powder containing inorganic components from many companies as the main raw material inorganic powder, and (2) is the auxiliary raw material silo. (2) stores combustible powder such as pulverized coal. (3) is a classifier that classifies the inorganic powder supplied from the main raw material silo (1), and the nine sludge powder stored in the main raw material silo (1) is passed through the classifier (3) to a predetermined particle size of, for example, 88M or more. It is classified into coarse powder of 21M and fine powder of e.g.mu. or less, and stored in a coarse powder silo (4) and a fine powder silo (5) that are arranged in parallel with the auxiliary raw material silo (2). Then, the amount of combustibles contained in each of the coarse powder in the coarse powder silo (4), the fine powder in the fine powder silo (5), and the pulverized coal in the auxiliary raw material silo (2) is measured, and the granulated In order to obtain the optimum mixture ratio from both sides of combustion, set the ratio using the mixing ratio setting device (6-inch), and adjust the ratio using the weighing machine (7-inch) according to that ratio.
), the coarse powder, fine powder, and pulverized coal are quantitatively charged into a mixer (8) to create a raw material powder in which pulverized coal as combustible powder is mixed with coarse and fine sludge powder as inorganic powder. The amount of combustible material is adjusted to a predetermined proportion, for example, 5 to 70% by weight. Next, this mixed and adjusted raw material powder is passed through a water supply machine (9
) and humidified and kneaded by a humidified kneader α0 such as a bag mixer so that the moisture content is 5 to 20% by weight,
Primary agglomeration for granulation is performed, and then, in order to increase the granulation strength, a predetermined proportion of an organic binder, for example 2 to S%, is supplied to the raw material powder through an organic binder silo αυ. Afterwards, use a granulator (2) such as a bread-type pelletizer to humidify and granulate 1L of moisture with a moisture content of 10-23% and a particle size of θ3-20tt.
Obtain granules of rst. Next, a predetermined proportion, for example, a
/ ~ 0 otowa. A flux is supplied from a flux silo Q41, and a granulated material is obtained in which the surface of the granulated material (4) is sufficiently coated with the flux using a coating machine (2). Next, a box-shaped sintering cart (E) having a fire grate at the bottom moves above a number of wind boxes 3). The granules coated with the fluxing agent are stacked to a thickness of about 20-200 mm and molded into a desired shape using a molding machine Qt9. Next, the sintered cart (e) loaded with this molded product is moved to a drive device (goods).
The surface of the molded product is initially ignited by the ignition burner ■, and while it is being transferred to the ignition chamber side, it is passed from the wind box ψυ to the exhaust gas fan (SO~/ If the combustible powder in each granule constituting the molded product is self-combusted by suctioning downward and aerating at 30 Aq, the combustible powder will be burnt out and the combustible powder in the granule will be removed. The solid powder is sintered into porous granules, and at the same time, the flux that is present in the molded product and melted by the combustion forms fine communicating pores between each porous granule. Connect the product so that it is connected to the product, and then transfer it to the transfer machine)
It is transferred from the sinter platform wheels and stored. The conditions necessary for the firing include a temperature of, for example, 1100-1100°C.
The temperature is maintained at 1,300°C for several minutes, and high-temperature hot air is flowed downward to dry the granules in the lower layer.Then, the granules are ignited and the combustion position is sequentially moved downward, until the combustion position is on the grate. When it gets down to the 01 level, the sintering cart (E)
All layers of the inner molded product are sintered. In addition, the inorganic powder that is the main raw material in the present invention may be one that contains almost no combustible materials, such as alumina, clay, silica sand, etc., or various sludge powders such as water sludge and sewage sludge, and unburned powders such as coal ash. It may contain some carbon or organic matter, and on the other hand, the combustible powder used as an auxiliary raw material may be any combustible material such as sawdust, pulverized coal, plastic powder, organic binder, etc.
Furthermore, in the case of sintering combustible powder using a self-combustion source as described above, the amount of combustible powder in the raw material powder is 5 to 5.
/S Jusha% is preferable.

これは可燃物粉末がS重置%未満でおると焼結するのに
必要なエネルギーが不足して多孔体の強度が低下するお
それがあり、/S重社%を越えると焼結温度の管理が困
難とな勺、流度が上昇して造粒物が溶融して多孔体の収
縮が大きくなって変形や亀裂が生じ易いからで、もし可
燃物粉末が5重量%未満の場合は、例えばガス窯等の加
熱源を持結することが好ましい。さらに、前記実施例に
おいて汚泥の細粉とを混合したのちは汚泥粉末の粒度と
可燃物粉末の社との間には一般に粗粉末中には可燃物量
が多く、細粉中には可燃物量が少ないという関係にある
ことと汚泥の細粉と粗粉とが適度に混合されている方が
造粒し易く、可燃物粉末の量と造粒性の両方を調節する
のに都合が良いからであって、汚泥粉末の粒度によって
は所定粒度以下や以上をカットするだけでもよいし、そ
のまま使用してもよい。また、造粒時並びに乾燥時に造
粒物が簡単に破壊しない程度の造粒強度を持たせるため
には、たとえばOMO、PVAなどの有機粘結剤を必要
量添加するか造粒物の表面にコーティングしておけばよ
く、この有機粘結剤は造粒−表面への融剤の付着性をよ
くする効果もある。また、本発明に用いる融剤は黒曜石
、松脂岩等の天然ガラスや入ニガラス、釉薬等であって
、溶融温度は焼結温度よりも100°C以上低いものが
好ましく、融剤の添加量は造粒物の嵩容積に対してO/
’4よシも少ないと多孔質焼成物同士の連結が不十分と
なって多孔体の強度が低下し、θ乙(より多いと多孔質
焼成物間の空隙が埋って空隙率が低下するので07〜θ
乙(程度とすることが好ましい。さらに、造粒物の成形
は加圧法、振動法等によって行うが、成形物の形状は焼
結台車や成形型の形状を変えることによって平板形、箱
形、波形等任意の形状にすることができ、製品の嵩比重
や気孔率等は造粒物の粒径、融剤の添加量、成形条件等
によって任意のものとすることができるし、上層から下
層まで均質の単一層4とせずに造粒物の粒径別、比重別
等に分けて各層を複合して成形してもよい。次に、本発
明における焼成は成形物を構成している造粒物中の可燃
性粉末を燃焼させる段階と無機質粉末を焼結して多孔質
粒状物化する段階と多孔質粒状物を融剤で結合する段階
とが単一の炉内で連続的に一実施されるようにしても複
数の炉によって段階的に実施されるようにしてもよく、
また、焼結温度は可燃物粉末の焼失温度および融剤の溶
融温度より高く、かつ無機質粉末が溶融軟化する温度以
下であることが必要である。なお、燃焼特性を調整する
ために造粒物を可燃物粉末の含有爪の異なる層からなる
複層造粒物にしてもよいし融剤に可燃物を混入してもよ
い。
This is because if the combustible powder is less than S/%, the energy required for sintering may be insufficient and the strength of the porous body may decrease; if it exceeds S/%, the sintering temperature must be controlled. This is difficult because the flow rate increases, the granules melt, and the porous body shrinks greatly, which tends to cause deformation and cracks. It is preferable to include a heating source such as a gas oven. Furthermore, after mixing the sludge powder with the fine powder in the above example, the difference between the particle size of the sludge powder and the combustible powder is that the coarse powder generally has a large amount of combustible material, and the fine powder has a large amount of combustible material. This is because it is easier to granulate when the fine powder and coarse powder of sludge are appropriately mixed, and it is convenient to adjust both the amount of combustible powder and the granulation properties. Depending on the particle size of the sludge powder, it may be sufficient to simply cut the particle size below or above a predetermined particle size, or it may be used as is. In addition, in order to have granulation strength to the extent that the granules do not easily break during granulation and drying, it is necessary to add a required amount of organic binder such as OMO or PVA, or to coat the surface of the granules. This organic binder also has the effect of improving the adhesion of the flux to the granulation surface. Further, the flux used in the present invention is natural glass such as obsidian or rosinite, glass, glaze, etc., and the melting temperature is preferably 100°C or more lower than the sintering temperature, and the amount of the flux added is O/to the bulk volume of the granules
If there is less than 4, the connection between the porous fired products will be insufficient and the strength of the porous body will decrease. 07~θ
It is preferable to form the granulated product by a pressure method, a vibration method, etc., and the shape of the molded product can be changed to a flat plate, a box shape, a box shape, etc. by changing the shape of the sintering cart or mold. It can be made into any shape such as a wave shape, and the bulk specific gravity and porosity of the product can be made arbitrary depending on the particle size of the granules, the amount of flux added, molding conditions, etc. Instead of forming a homogeneous single layer 4, each layer may be composited and molded by dividing the granules by particle size, specific gravity, etc.Next, the firing in the present invention involves forming the granules constituting the molded product. The steps of burning the combustible powder in the granules, sintering the inorganic powder to form porous granules, and bonding the porous granules with a flux are carried out continuously in a single furnace. The process may be carried out in stages or in stages using multiple furnaces.
Further, the sintering temperature needs to be higher than the burnout temperature of the combustible powder and the melting temperature of the flux, and lower than the temperature at which the inorganic powder melts and softens. Incidentally, in order to adjust the combustion characteristics, the granules may be made into multi-layer granules consisting of different layers containing combustible powder, or a combustible material may be mixed into the flux.

以上の説明から明らかなように、本発明は無機質粉末に
可燃物粉末を添加調整した原料粉末をもって造粒物を得
たうえこれを焼成することなく融剤を添加して所要形状
に成形し、この成形後に行われる一回の焼成によって成
形物を構成する粒状物を多孔質粒状物に焼結するととも
に融剤をもって各多孔質粒状物相互間に連通細隙が形成
された状態に結合して無機質多孔体を得ようとするもの
で焼成工程が一回のみでよいので、燃料を大幅に節減す
ることができて製造コストを大幅に低減することができ
、また、本発明方法によって得られた製品は無数の気泡
を有する多孔質粒子と各多孔質粒子相互間に形成される
連通細隙とによって軽量化されていて取扱上便利なうえ
に強度、耐水性、吸音性等にも優れたものとなりさらに
、各種産業から多量に発生してその処理処分に°困って
いる石炭灰や珪砂などの無機質廃棄物を主原料としての
無機質粉末に利用できるうえに副原料としての可燃物粉
末に微粉炭、おが粉等の有機質廃棄物を利用できるので
、廃棄物の処分と有効利用とをはかることができ、製品
が強度の大な多孔体であるので、吸音材、耐火材、断熱
材、建材等幅広(/)用途をもつ利点と相俟ち産業上極
めて有用である。
As is clear from the above description, the present invention obtains granules using raw material powder prepared by adding combustible powder to inorganic powder, and then shapes the granules into a desired shape by adding a flux without firing them. After this molding, a single firing is performed to sinter the granules constituting the molded product into porous granules and bond them with a flux so that communicating slits are formed between each porous granule. Since the firing process is required only once in order to obtain an inorganic porous material, it is possible to significantly save fuel and reduce manufacturing costs. The product is made of porous particles with countless air bubbles and communicating pores formed between each porous particle, making it lightweight and easy to handle, and also has excellent strength, water resistance, sound absorption, etc. Furthermore, inorganic wastes such as coal ash and silica sand, which are generated in large quantities from various industries and have difficulty in processing and disposing of, can be used as inorganic powders as main raw materials, and pulverized coal can be used as combustible powders as secondary raw materials. Since organic waste such as sawdust can be used, it is possible to dispose of waste and use it effectively.Since the product is a porous material with high strength, it can be used as sound absorbing materials, fireproof materials, insulation materials, and building materials. Combined with the advantage of having equal width (/) uses, it is extremely useful in industry.

実施例/ 上水汚泥処理装置よυ得られた若干の可燃物を含有した
上水汚泥の粉末を主原料となる無機質粉末として利用し
てこれに可燃物粉末としての微粉炭とυ幻を添加して可
燃物量が5〜/S重社%の原料粉末とし、次に、この原
料粉末r(水を含水率が15%となるよう添加調整した
うえパン型ペレタイザーによシ03〜10闘φの造粒物
に造粒した条警 。次いで、この造粒物p嵩容積  /〜0乙(の釉薬を
膨剤として添加してコーティングし・この融剤がコーテ
ィングされた造粒物を下方吸収タイプの焼結炉の角形の
焼結台車中に300 mMの厚さに充填しそ成形し、表
面を点火バーナーによ→約3分M」予熱して着火したの
ちさらに着火室より移行する間にウィンドボックスから
排ガスファンによシ下方に50〜/ 00 tgmAq
で吸引しつつ通気して約70分間1100〜1300°
Cで自己燃焼により焼結させた。このようKして得られ
た5種の無機質多孔体の特性は表において試料A/〜A
、5′に記載したとおシである。
Example: Clean water sludge powder containing some combustibles obtained from a clean water sludge treatment equipment is used as an inorganic powder as the main raw material, and pulverized coal and genus are added as combustible powder. Next, this raw material powder R (water was added and adjusted so that the water content was 15%), and then it was put into a pan-type pelletizer for 03 to 10 mm. The granulated material is granulated.Next, a glaze with a bulk volume of p/~0 (of the granulated material) is added as a swelling agent and coated, and the flux absorbs the coated granulated material downward. The material was filled into a rectangular sintering cart in a type of sintering furnace to a thickness of 300 mm, and the surface was preheated and ignited with an ignition burner for approximately 3 minutes. 50 ~ / 00 tgmAq downward from the wind box to the exhaust gas fan
1100-1300° for about 70 minutes with suction and ventilation.
It was sintered by self-combustion at C. The properties of the five types of inorganic porous materials obtained in this way are shown in the table for samples A/~A.
, 5'.

実施例2 前記実施例1と同様の無機質粉末に可燃物粉末としての
微粉炭と微量の(9)を添加して可燃物量が2重社%お
よび20重量%となるよう調整した2種の原料粉末によ
シ造粒したうえ融剤をコーティングした造粒物を耐火性
型に入れて厚さlOO朋に成iし、加熱源および温度制
御装置を設けた炉内に入れて7200°Cの温度で焼結
させた。このようにして得られた2種の無機質多孔体の
特性は表において試料A≦、A7に記載したとおシであ
る。
Example 2 Two types of raw materials prepared by adding pulverized coal as a combustible powder and a trace amount of (9) to the same inorganic powder as in Example 1 so that the amount of combustible material was adjusted to be 20% by weight and 20% by weight. The granules, which were granulated into powder and coated with a flux, were placed in a fireproof mold to a thickness of 100 mm, and then placed in a furnace equipped with a heating source and temperature control device at 7200°C. Sintered at temperature. The properties of the two types of inorganic porous bodies thus obtained are as described in the table for sample A≦, A7.

実施例3 石炭焚きボイラーの集m機によシ捕集された未燃炭素を
含有した石炭灰を分級して得た粒径t4!μ以下で未燃
炭素量が5%以下の石炭灰細粉と、%の原料粉末を得た
。この原料粉末をバグミキサーによシ加湿混練したのち
パン型ペレタイザーで加湿造粒し、水分/j〜30%、
粒径2〜20触φの造粒物とし、この造粒物の嵩容積に
対して03臀。の釉薬を融剤として添加して表面に融剤
がコーティングされた造粒物を得た。この造粒物を下方
吸引タイプの焼結炉の焼結台車中K 200 tttm
の厚さに成形し表面を点火バーナーにより約2分向予熱
して着火したのちさらに着火室より移行する間にウィン
ドボックスから排ガスファンによシ下方に/ OQ *
1Af1で吸引しつつ通気し約70分間1100〜/ 
300 ’Cで自己燃焼させて焼結させた。
Example 3 Particle size t4 obtained by classifying coal ash containing unburned carbon collected by a collector of a coal-fired boiler! Coal ash fine powder with an unburned carbon content of 5% or less and raw material powder of 5% or less were obtained. This raw material powder was humidified and kneaded using a bag mixer, and then humidified and granulated using a pan-type pelletizer.
The granules have a particle size of 2 to 20 mm, and the bulk volume of the granules is 0.3 mm. The glaze was added as a fluxing agent to obtain a granulated product whose surface was coated with the fluxing agent. The granules were transferred to a sintering cart of a downward suction type sintering furnace.
The surface is preheated for about 2 minutes with an ignition burner, ignited, and then transferred downward from the wind box to the exhaust gas fan while moving from the ignition chamber. / OQ *
Ventilate while suctioning at 1Af1 for about 70 minutes at 1100~/
It was sintered by self-combustion at 300'C.

このようにして得られた2種の無機質多孔体の特性は表
においてAざ、A9に記載したとおシである0 なお、参考までに可燃物粉末を無機質粉末に混合調整し
た原料粉末を造粒後ロータリーキルン等で焼成して多孔
質の骨材とし、この骨材に融剤を添加して所要形状に成
形後との成形物を再度焼成して無機質多孔体とし、その
特性を表において参考例A / 0として記載した。
The properties of the two types of inorganic porous bodies obtained in this way are as described in A and A9 in the table. After that, it is fired in a rotary kiln etc. to make a porous aggregate, a flux is added to this aggregate, and after forming into the desired shape, the molded product is fired again to make an inorganic porous body, and its properties are shown in the table as a reference example. Written as A/0.

下表によれば本発明方法である試料!/〜煮りと参考例
である試料A10とはそ′の特性においてはよく似たも
のである。しかしながら、表示はされていないが試料A
/”−A9の無機質多孔体を製機質多孔体を製造するに
は焼成工程が2度あるため重油使用量が約3004であ
シ、本発明方法が参考例に比べて燃料を%以下に削減す
ることができ、品質のよい製品を低コストで製造できる
特長がある。
According to the table below, the samples according to the method of the present invention! The characteristics of the sample A10, which is a reference example, are very similar to that of the sample A10. However, although it is not displayed, sample A
/''-A9 Inorganic porous body There are two firing steps to produce the organic porous body, so the amount of heavy oil used is approximately 3004%, and the method of the present invention reduces the fuel consumption to less than 30% compared to the reference example. It has the advantage of being able to reduce costs and produce high-quality products at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すフローシートである。 The drawing is a flow sheet showing an embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] 無機質粉末に可燃物粉末を混合調整した原料粉末を造粒
したのち該造粒物に融剤を添加混合して所要形状に成形
し、次いで、この成形物を焼成することによシ前記造粒
物中の可燃物粉末を焼失させて各造粒物を無機質粉末が
焼結された多孔質粒状物に形成するとともに前記融剤を
もって各多孔質粒状物を相互間に微細な連通細隙が形成
された状態に結合することを特徴とする無機質多孔体の
製造法。
After granulating raw material powder prepared by mixing and adjusting combustible powder with inorganic powder, adding and mixing a flux to the granules and molding them into a desired shape, then firing this molded product to produce the granules. The combustible powder in the material is burned out to form each granule into a porous granule in which inorganic powder is sintered, and the flux is used to form fine communicating slits between each porous granule. 1. A method for producing an inorganic porous material characterized by bonding in an inorganic porous state.
JP3119383A 1983-02-25 1983-02-25 Manufacture of inorganic porous body Granted JPS59156953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119383A JPS59156953A (en) 1983-02-25 1983-02-25 Manufacture of inorganic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119383A JPS59156953A (en) 1983-02-25 1983-02-25 Manufacture of inorganic porous body

Publications (2)

Publication Number Publication Date
JPS59156953A true JPS59156953A (en) 1984-09-06
JPS6348833B2 JPS6348833B2 (en) 1988-09-30

Family

ID=12324585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119383A Granted JPS59156953A (en) 1983-02-25 1983-02-25 Manufacture of inorganic porous body

Country Status (1)

Country Link
JP (1) JPS59156953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221770A (en) * 1985-07-18 1987-01-30 滋賀県 Manufacture of water-permeable tile
JPH0193477A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221770A (en) * 1985-07-18 1987-01-30 滋賀県 Manufacture of water-permeable tile
JPH0154310B2 (en) * 1985-07-18 1989-11-17 Shigaken
JPH0193477A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics

Also Published As

Publication number Publication date
JPS6348833B2 (en) 1988-09-30

Similar Documents

Publication Publication Date Title
CA2637101A1 (en) Pyroprocessed aggregates comprising iba and low calcium silicoaluminous materials and methods for producing such aggregates
JPS6237325A (en) Calcined lump ore and its production
JPS59156953A (en) Manufacture of inorganic porous body
GB2061241A (en) Bricks containing pulverised fuel ash and their manufacture
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JPH0359026B2 (en)
JP2851460B2 (en) Manufacturing method of artificial lightweight aggregate
JPH06227853A (en) Body composition for ceramic
JP3892545B2 (en) Lightweight aggregate manufacturing method
JPS5892490A (en) Method of sintering coal ash contg. unburned carbon
JPH05294692A (en) Production of artificial lightweight aggregate from construction sludge
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP2000034179A (en) Production of water-holding granular sintered compact
CA1048063A (en) Spherical aggregates
JPH07118077A (en) Production of porous aggregate
JP2625218B2 (en) Method for firing coal ash granules
JPH01172246A (en) Production of artificial lightweight aggregate
CA1221674A (en) Desulfurizing method for combustion exhaust gases
JPS59195572A (en) Manufacture of lightweight aggregate
JPS62256747A (en) Manufacture of lightweight aggregate
JPH0741343A (en) Artificial lightweight aggregate composed mainly of coal ash
JPH05229858A (en) Production of artificial lightweight aggregate
JPS5892489A (en) Treatment of coal ash contg. unburned carbon
JPS62256746A (en) Manufacture of lightweight aggregate
JPS6210959B2 (en)