JPS5915662A - Heating controller of engine suction system - Google Patents

Heating controller of engine suction system

Info

Publication number
JPS5915662A
JPS5915662A JP57124256A JP12425682A JPS5915662A JP S5915662 A JPS5915662 A JP S5915662A JP 57124256 A JP57124256 A JP 57124256A JP 12425682 A JP12425682 A JP 12425682A JP S5915662 A JPS5915662 A JP S5915662A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
heating
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124256A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oosugi
大杉 泰弘
Hirotake Saito
斎藤 広武
Shiro Tanaka
四郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP57124256A priority Critical patent/JPS5915662A/en
Publication of JPS5915662A publication Critical patent/JPS5915662A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/10Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot liquids, e.g. lubricants or cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • F02M31/083Temperature-responsive control of the amount of exhaust gas or combustion air directed to the heat exchange surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)

Abstract

PURPOSE:To decrease density of fluid in a suction system, to reduce the suction efficiency of an engine, and to prevent lowering of an output, by installing an ON-OFF valve which closes when the temperature of cooling water rises higher than a set value, within a heating circuit. CONSTITUTION:When warming-up is completed, a thermostat 6 is opened, and a cooling circuit P is released. In this case, an auto-choke 10 holds a choke valve 21 in an open position. This causes cooling water to circulate as the thermal potential thereof is radiated to a radiator 4. In this case, if the temperature of the open air is comparatively high or an engine continues to run with a high load, a radiator 4 does not conduct a radiating action being enough to bring the temperature of cooling water to a balance, and the cooling water is increased in temperature. The cooling water, which is increased in temperature, flows also through a heating circuit R, but enables a temperature-sensitive valve 23 to close, the heating circuit R is almost closed, and only the extremely slight amount of the cooling water normally flows through a leak groove.

Description

【発明の詳細な説明】 この発明は水冷式内燃エンジンの吸気系の加熱制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating control device for an intake system of a water-cooled internal combustion engine.

水冷式の内燃エンジン、特に、自動車に搭載されれるエ
ンジンでは、吸気系の内、キャプレタより吸気マニポル
ドに続く部分を適扁に保温さぜる目的からヒートライザ
が装備される。このヒートライザにはエンジンからの冷
却水が通されており、この冷却水を用い、エンジンの放
熱を吸気系に伝達している。これにより、エンジン始動
直後や寒冷時に走行した際の混合気の燃料霧化を促進さ
せ、ドライバビリティを向上させている。ところで、エ
ンジンはその駆動が続き、冷却水温度が高くなると、潤
滑油の粘度が下り、エンジン各部の摩擦損失が低くなり
、燃費が良くなる。しかし、外気が比較的高い場合、ヒ
ートライザは高部の冷却水により加熱され続けると、こ
の加熱部と燃料の気化熱とのバランスが画より、過度に
吸気糸の気体を加熱してしまう状態が生じる。この場合
、吸気の密度が小さくなることによりエンジンの吸気効
率が低下しエンンン出力の低下を招くという不都合があ
る。
Water-cooled internal combustion engines, particularly those installed in automobiles, are equipped with a heat riser for the purpose of keeping the portion of the intake system that follows the capretor and the intake manifold appropriately warm. Cooling water from the engine is passed through this heat riser, and this cooling water is used to transfer heat radiated from the engine to the intake system. This promotes fuel atomization of the air-fuel mixture immediately after starting the engine or when driving in cold weather, improving drivability. By the way, as the engine continues to drive and the temperature of the cooling water increases, the viscosity of the lubricating oil decreases, friction loss in various parts of the engine decreases, and fuel efficiency improves. However, when the outside air is relatively high, if the heat riser continues to be heated by the cooling water at the high part, the balance between this heating part and the heat of vaporization of the fuel may be out of balance, and the gas in the intake string may be heated excessively. arise. In this case, there is a problem in that the density of the intake air decreases, resulting in a decrease in the intake efficiency of the engine, resulting in a decrease in engine output.

更に、エンジンが加熱後に停止すると、ヒートライザは
その温度を一旦降下させて再度上昇(以後途中過昇温と
記す)させ、その後徐々に常温に戻るという特質を持つ
。これはエンジン停止後に、熱容量の小さいヒートライ
ザ側が一旦冷却し、その後に熱容量の大きいエンジンの
水ジャケット側の高温水がヒートライザ側に対流してく
ることにより生じる。この場合、冷却水の途中過昇温に
よりキャブレタ内の燃料温度が過何し、ペーパロック等
を生じ、これによりエンジン再始動性が悪化する。これ
を防ぐ一手段を本出願人は、実願昭54−22949号
に開示した。これは水ジャケットとヒートライザとを、
結ぶ冷却水の循環路に水ポンプによる水圧によってのみ
開成する開閉弁を配備するというものである。しかし、
この開閉弁では、エンジン駆動時におけるヒートライザ
の過熱を防止することができないという不都合がある。
Furthermore, when the engine is stopped after being heated, the heat riser has the characteristic of once lowering the temperature, raising it again (hereinafter referred to as "overheating"), and then gradually returning to normal temperature. This occurs because after the engine is stopped, the heat riser side, which has a small heat capacity, cools down once, and then the high temperature water on the water jacket side of the engine, which has a large heat capacity, convects toward the heat riser side. In this case, the temperature of the fuel in the carburetor becomes excessive due to the excessive temperature rise of the cooling water during the process, resulting in paper lock or the like, which deteriorates the ability to restart the engine. The present applicant disclosed one means for preventing this in Utility Model Application No. 54-22949. This includes a water jacket and a heat riser.
The connecting cooling water circulation path is equipped with an on-off valve that is opened only by water pressure from a water pump. but,
This on-off valve has the disadvantage that it cannot prevent the heat riser from overheating when the engine is running.

この発明はエンジン吸気系を適確に加熱できるエンジン
吸気系の加熱制御装置を提供することを目的とする。
An object of the present invention is to provide a heating control device for an engine intake system that can accurately heat the engine intake system.

この発明によるエンジン吸気系の加熱制御装置は、水冷
式内燃エンジンの吸気系にこのエンジンの冷却水が流動
する加熱循環路と対接する加熱部を形成し、この加熱部
を用い、吸気系の流動体を冷却水の水温に応じて加熱す
るものであり、上記加熱循環路内に冷却水の水温が設定
値以上で閉じる開閉弁を取付けた構成である。
The heating control device for an engine intake system according to the present invention forms a heating section in the intake system of a water-cooled internal combustion engine that is in contact with a heating circulation path through which cooling water of the engine flows, and uses this heating section to control the flow of air in the intake system. The body is heated according to the temperature of the cooling water, and an on-off valve that closes when the temperature of the cooling water exceeds a set value is installed in the heating circuit.

このようなエンジン吸気系の加熱制御装置によれば、加
熱循環路を流れる冷却水の水温が設定値を越えると、開
閉弁が閉成作動する。このため、加熱部に達する高温の
冷却水の量が規制され、加熱部を介し吸気系内の流動体
が受ける冷却水からの加熱量は押えられる。これにより
、吸気系内の流動体がその密度を低下させ、エンジンの
吸気効率が低下し、出力ダウンを招くという事態を防止
できる。更に、ガソリンエンジンの場合、その停止時に
、加熱循環路内で生じる、冷却水による途中過昇扁によ
り、加熱部近傍のキャブレタ側の燃料内にベーパロック
を発生させるという不都合をも防止できる。
According to such an engine intake system heating control device, when the temperature of the cooling water flowing through the heating circuit exceeds a set value, the opening/closing valve is operated to close. Therefore, the amount of high-temperature cooling water that reaches the heating section is regulated, and the amount of heat received from the cooling water by the fluid in the intake system via the heating section is suppressed. This can prevent the fluid in the intake system from reducing its density, reducing the intake efficiency of the engine and causing a reduction in output. Furthermore, in the case of a gasoline engine, when the engine is stopped, it is possible to prevent the inconvenience of vapor lock occurring in the fuel on the carburetor side near the heating section due to excessive elevation caused by the cooling water in the heating circulation path.

以下、この発明を添付図面と共に説明する。The present invention will be described below with reference to the accompanying drawings.

第1図には、この発明の一実施例としてのエンジン吸気
糸の加熱制御装置(以後単に加熱制御装置と記す)1を
備えたガソリンエンジン(以後単にエンジンと記す)2
を示した。エンジン2は、エンジンブロックの水ジャケ
ット(第2図参照)3の冷却水をラジエタ4に導びき大
気放熱させるという水冷式冷却装置を備える。このエン
ジンの上部には水ジャケット3と連通する開口5が形成
され、この開口5の一部はサーモスタット6を介し、ラ
ジエータ4に連通し、このラジエータの下端は水ポンプ
7の吸入口701に連通する。この水ポンプはその吐出
口702を水ジャケット3の前部に連結させる。このよ
うなラジエータ4を通る冷却循環路Pは十分な流量を確
保するような流路断面を有する。一方、水ジャケット3
および開口5を通る冷却水の他の一部は比較的流路断面
の小さい加熱循環路Rにも分流している。この加熱循環
路Rは、開口5と連通する分流管8、流入パイプ9、オ
ートチョーク10、キャブレタ11より吸気マニホルド
12下側にわたる加熱部(第2図参照)13り形成され
たヒートライザ14、流出パイプ15、下ラジエタホー
ス16、水ポンプ7とをこの順に接続して水ジャケット
3に連通している。なお、ヒートライザ14内には加熱
部に沿った加熱流路R1が形成される。更に、分流管8
にはバイパスパイプ17が接続され、その他端は流出パ
イプ15に接続される。このバイパスパイプ17の流路
断面は流入パイプ9側と比べ十分小さいため、ここを流
動する冷却水には流動抵抗が比較的多く加わる。このよ
うに、バイパスパイプ17は加熱流路部R1を回避して
冷却水を流す短絡流路部Qを形成する。なお、水ジャケ
ット3の開口5にはヒータ18に冷却水を供給する流入
ヒータホース19が接続され、このヒータの流出ヒータ
ホース20は放熱を済ませた冷却水を加熱循環路R側の
流出パイプ15に合流させる。第1図中の符号Tは水温
計を示しており、常時バイパス流路Bに取付けられてい
る。
FIG. 1 shows a gasoline engine (hereinafter simply referred to as engine) 2 equipped with an engine intake thread heating control device (hereinafter simply referred to as heating control device) 1 as an embodiment of the present invention.
showed that. The engine 2 is equipped with a water-cooled cooling system that guides cooling water from a water jacket (see FIG. 2) 3 of the engine block to a radiator 4 to radiate heat to the atmosphere. An opening 5 communicating with the water jacket 3 is formed in the upper part of this engine, a part of this opening 5 communicates with the radiator 4 via a thermostat 6, and the lower end of this radiator communicates with the inlet 701 of the water pump 7. do. This water pump connects its outlet 702 to the front part of the water jacket 3. The cooling circuit P passing through the radiator 4 has a cross section that ensures a sufficient flow rate. On the other hand, water jacket 3
The other part of the cooling water passing through the opening 5 is also diverted to the heating circulation path R, which has a relatively small flow path cross section. This heating circulation path R includes a branch pipe 8 communicating with the opening 5, an inflow pipe 9, an auto choke 10, a heat riser 14 formed in a heating section (see FIG. 2) extending from the carburetor 11 to the lower side of the intake manifold 12, and an outflow. A pipe 15, a lower radiator hose 16, and a water pump 7 are connected in this order to communicate with the water jacket 3. Note that a heating flow path R1 is formed in the heat riser 14 along the heating section. Furthermore, the branch pipe 8
A bypass pipe 17 is connected to this end, and the other end is connected to an outflow pipe 15. Since the cross section of the bypass pipe 17 is sufficiently smaller than that of the inlet pipe 9, a relatively large flow resistance is applied to the cooling water flowing therethrough. In this way, the bypass pipe 17 forms a short-circuit channel section Q through which cooling water flows, avoiding the heating channel section R1. An inflow heater hose 19 for supplying cooling water to the heater 18 is connected to the opening 5 of the water jacket 3, and an outflow heater hose 20 of this heater supplies the cooling water after heat radiation to the outflow pipe 15 on the side of the heating circulation path R. merge with. Reference numeral T in FIG. 1 indicates a water temperature gauge, which is always attached to the bypass channel B.

第2図に示すように、オートチョーク10は加熱循環路
Rの一部として形成される内室101を有し、この内室
に加熱部に突出する突部102を形成されたワックスペ
レット103を収容する。突部102はチョーク弁21
に図示しないリンクを介し連結され、冷却水の温度に応
じて伸縮するワックスペレット103の作動を伝達する
。オートチョーク10は連結パイプ22を介し、キャプ
レタ11の冷却水の流人口111に接続される。流入口
111はヒートライザ14内の加熱流露部R1と連通す
る。この加熱流路部R1は、ヒートライザ14を形成す
る流路対向壁としての加熱部13に沿って冷却水を流す
ため、この加熱部13に伝わる冷却水の熱はキャブレタ
11や吸気マニボウルド12を加熱する。第3図に示す
ように、ヒートライザ14内の加熱流路部R1の下流側
は開閉弁としてのバイパスウオータコントロールールバ
ルブ(以後単に感温弁と記す)23を介し流出パイプ1
5に接続する。感温弁23は筒枠231と、この筒枠に
伸椰1部232を固定したワックスペレット233と、
このワックスペレットの先端より延出するガイド棒23
4と、このガイド棒に摺動可能に外嵌され、かつ、ガイ
ド棒234の突端のガイド235に係止さね得る弁体2
36と、この弁体をガイド235側に弾性力で押圧する
にね237とで形成される。筒枠231のヒートライザ
14側の壁部は穴238が形成されここを冷却水が流動
する。更に、筒棒231の流出パイプ15側はガイド2
35を揩動自在に内嵌する小径室239が形成されこの
小径室と大径室240との間の段部241が弁座として
働く。
As shown in FIG. 2, the auto choke 10 has an inner chamber 101 formed as a part of a heating circulation path R, and a wax pellet 103 having a protrusion 102 that protrudes into the heating section is placed in the inner chamber. accommodate. The protrusion 102 is the choke valve 21
The wax pellets 103 are connected to each other via a link (not shown), and transmit the operation of the wax pellets 103, which expand and contract depending on the temperature of the cooling water. The auto choke 10 is connected to a cooling water flow port 111 of the capretor 11 via a connecting pipe 22. The inlet 111 communicates with the heated flow portion R1 inside the heat riser 14. This heating flow path portion R1 allows cooling water to flow along the heating portion 13 as a wall facing the flow path forming the heat riser 14, so the heat of the cooling water transmitted to this heating portion 13 heats the carburetor 11 and the intake manifold 12. do. As shown in FIG. 3, the downstream side of the heating flow path R1 in the heat riser 14 is connected to the outflow pipe 1 via a bypass water control valve (hereinafter simply referred to as a temperature-sensitive valve) 23 as an on-off valve.
Connect to 5. The temperature-sensitive valve 23 includes a cylindrical frame 231, a wax pellet 233 to which a wax pellet 1 part 232 is fixed to the cylindrical frame.
A guide rod 23 extending from the tip of this wax pellet
4, and a valve body 2 that is slidably fitted onto the guide rod and that cannot be locked to the guide 235 at the tip of the guide rod 234.
36, and a spring 237 that presses this valve body toward the guide 235 side with elastic force. A hole 238 is formed in the wall of the cylinder frame 231 on the heat riser 14 side, through which cooling water flows. Furthermore, the outflow pipe 15 side of the cylindrical rod 231 is connected to the guide 2.
A small-diameter chamber 239 is formed into which the valve 35 is slidably fitted, and a stepped portion 241 between the small-diameter chamber and the large-diameter chamber 240 functions as a valve seat.

なお段部241には常時リーク溝242が形成されてお
り、これにより、弁体236が段部241に密着しても
冷却水が完全にストップすることを防き、感温弁23の
ハンチングを防止している。この場合、常時リーク溝2
42を弁体236に形成しても同様の効果がある。
Note that a leak groove 242 is always formed in the stepped portion 241, which prevents the cooling water from completely stopping even if the valve body 236 comes into close contact with the stepped portion 241, and prevents hunting of the temperature-sensitive valve 23. It is prevented. In this case, the leak groove 2
42 on the valve body 236 has the same effect.

第3図中の符号25はバイパス穴を示しており、こねは
ヒートライザ14内の支切り通路壁に沿った加熱流路部
R1のバイパス路を形成する。このバイパス穴25によ
り、加熱流路部R1を経てくる冷却水よりもバイパス穴
25を通ってくる冷却水が、先に、感温弁23に流入す
ることになり、水温の変化を早めにワックスペレット2
33が検出でき、その作動の立上りが早くなる利点があ
る。しかも、開弁作動初期における高温の冷却水をすみ
やかに感温弁23側に伝えることができるという利点も
ある。
Reference numeral 25 in FIG. 3 indicates a bypass hole, which forms a bypass path of the heating flow path portion R1 along the wall of the branch passage in the heat riser 14. Due to this bypass hole 25, the cooling water that passes through the bypass hole 25 flows into the temperature-sensitive valve 23 earlier than the cooling water that passes through the heating flow path section R1, so that the change in water temperature can be prevented early. pellet 2
33 can be detected, and there is an advantage that the start-up of the operation is quick. Moreover, there is an advantage that the high temperature cooling water at the initial stage of the valve opening operation can be quickly transmitted to the temperature sensitive valve 23 side.

第1図に示した加熱部制御装置1の作動を説明する。ま
ず、エンジン2が低温時始動する際、オートチョーク1
0はチョーク弁21(第2図参照)を閉位置に保持し、
サーモスタット6は閉じ、冷却循環路Pは閉鎖される。
The operation of the heating section control device 1 shown in FIG. 1 will be explained. First, when engine 2 starts at low temperature, auto choke 1
0 holds the choke valve 21 (see Figure 2) in the closed position,
The thermostat 6 is closed and the cooling circuit P is closed.

一方加熱循環路Rは感温弁23が開成されているため開
放状態にある。この後、エンジンの暖機運転と共に、冷
却水温度が上昇し、加熱循環路R側には徐々に高温化し
た冷却水が流入する。特に、加熱部13を冷却水が加熱
し、吸気系側、即ち、キャブレタ11や吸気マニホウル
ド12内の燃料の霧化を促進させることができる。
On the other hand, the heating circuit R is in an open state because the temperature-sensitive valve 23 is open. Thereafter, as the engine warms up, the temperature of the cooling water rises, and the cooling water gradually becomes hotter and flows into the heating circulation path R side. In particular, the cooling water heats the heating section 13, and atomization of fuel within the intake system, that is, the carburetor 11 and the intake manifold 12, can be promoted.

これと同時に、オートチョーク10のワックスペレット
103も冷却水により加熱され、徐々にチョーク弁21
を開位位置側に移動させる。なお、この時短絡流路部Q
にはわずかな量の冷却水が流れる。
At the same time, the wax pellets 103 of the auto choke 10 are also heated by the cooling water, and gradually the choke valve 21
Move to the open position. In addition, at this time, the short circuit flow path section Q
A small amount of cooling water flows through.

やがて暖機が完了するとサーモスタット6が開き、冷却
循環路Pが開放され、この時オートチョーク10はチョ
ーク弁21を開位置に保持する。これにより冷却水の水
温はワジエタ4に放熱されつつ循環する。この場合、外
気温が比較的高かったり、エンジンが高負荷運転を続け
ていると、冷却水温はラジエタ4の放熱作用では平衡を
保てなくなり上昇する。この高温化した冷却水は加熱循
環路Rにも流れるが、これは感温弁23を閉成作動させ
、加熱循環路Rはほとんど閉鎖され、極くわずかに常時
リーク溝242を冷却水が流動するのみとなる。
When warm-up is completed, the thermostat 6 opens and the cooling circuit P is opened, and at this time the auto choke 10 holds the choke valve 21 in the open position. As a result, the temperature of the cooling water is circulated while being radiated to the radiator 4. In this case, if the outside temperature is relatively high or if the engine continues to operate under high load, the cooling water temperature cannot be maintained in equilibrium by the heat dissipation action of the radiator 4 and increases. This heated cooling water also flows into the heating circulation path R, which closes the temperature-sensitive valve 23, so that the heating circulation path R is almost closed, and a very small amount of cooling water constantly flows through the leak groove 242. It will only be done.

この場合、加熱循環路Rに流入していた冷却水の多くは
短絡流路部Qに回避して流入することになる。このよう
に、冷却水が高胤化すると加熱循環路Rが閉鎖され、加
熱部13を加熱する冷却水は加熱流路部R1を流動ぜず
、過腿な加熱部J3の加熱は押えられる。このため、エ
ンジン2の混合気が過度に加熱され、吸気効率を悪くす
るという不都合は防止される。
In this case, most of the cooling water that had flowed into the heating circulation path R will instead flow into the short-circuit flow path section Q. In this way, when the cooling water becomes hot, the heating circulation path R is closed, the cooling water that heats the heating section 13 does not flow through the heating flow path section R1, and the heating of the excessive heating section J3 is suppressed. Therefore, the disadvantage that the air-fuel mixture of the engine 2 is excessively heated and the intake efficiency is deteriorated is prevented.

この欲、加熱部13が燃料の気化熱吸収により低温化し
たり、あるいは低負荷運転や外気温の低下等により冷却
水温が下がると再び感温弁23は開成し、加熱菌環跪R
は開放される。
When the temperature of the heating section 13 decreases due to absorption of fuel vaporization heat, or when the cooling water temperature decreases due to low-load operation or a drop in outside temperature, the temperature-sensitive valve 23 opens again, and the heated bacteria circle knee R.
will be released.

更に、エンジン2を停止させた際には冷却水の流れは一
旦止まる。これと同時に熱容量の比較的小さいヒートラ
イザ14は冷却され、加熱流路部R1近傍は低温化する
。すると、この加熱流路部R1には水ジャケット3側に
より高温の冷却水が対流してくるため再度高温化するが
、ただちに感温弁23が閉成し、加熱流路部R1への高
温の冷却水の流入は阻止される。このため、従来装置の
ように冷却水の途中過+イ謳によりキャブレタJl内の
燃料が加熱され、ベーパロックを生じ、エンジンの再始
動性を悪化させるということを防止できる。
Furthermore, when the engine 2 is stopped, the flow of cooling water is temporarily stopped. At the same time, the heat riser 14, which has a relatively small heat capacity, is cooled, and the temperature in the vicinity of the heating flow path portion R1 decreases. Then, high-temperature cooling water convects from the water jacket 3 side into this heating passage R1, causing the temperature to rise again, but the temperature-sensitive valve 23 immediately closes and the high temperature flows into the heating passage R1. Inflow of cooling water is blocked. Therefore, it is possible to prevent the fuel in the carburetor Jl from being heated due to the intermediate flow of cooling water, causing vapor lock, and deteriorating the restartability of the engine, as in the conventional device.

更に、外気の高い場合において、感温弁23の閉成する
温度をできるだけ低く設定し(たたし、オートチョーク
10の作動開始温度よりは高くする必安がある)、これ
により加熱流露部R1に達する冷却水の水温を低く押え
、エンジンの吸気効率低下を防止し、外気高温時の出力
アップを計れる。
Furthermore, when the outside air is high, the temperature at which the temperature-sensitive valve 23 closes is set as low as possible (although it must be higher than the temperature at which the auto choke 10 starts operating), thereby increasing the temperature of the heated flow dew portion R1. By keeping the coolant temperature low, which prevents the engine's intake efficiency from decreasing, it is possible to increase output when the outside air is hot.

逆に、通常連転時において、感温弁23の開成する温度
をできるだけ高く設定(現状では82℃乃至88℃程度
だが、こねを100℃程度とする)することにより、燃
料気化を促進させて出力向上させることかできる。この
場合、燃費や尚確時の再始動性も改善され得る。
On the other hand, during normal continuous operation, fuel vaporization can be promoted by setting the temperature at which the temperature-sensitive valve 23 opens as high as possible (currently it is about 82 to 88 degrees Celsius, but the kneading temperature is about 100 degrees Celsius). It is possible to improve the output. In this case, fuel efficiency and restartability when the engine is still running can be improved.

第4図、第5図、第6図、第7図にはこの発明の他の実
施例としての加熱制御装置をそれぞれ示した。これら加
熱制御装置は第1図の加熱制御装置1と同一部材を含む
ため、以下の説明では同一部材には同一符号を付し、重
複説明を略す。
FIG. 4, FIG. 5, FIG. 6, and FIG. 7 show heating control devices as other embodiments of the present invention, respectively. Since these heating control devices include the same members as the heating control device 1 shown in FIG. 1, in the following explanation, the same members are given the same reference numerals and redundant explanation will be omitted.

第4図に示した加熱制呻装屓27加熱循環路R中の加熱
流路部R1を迂回するバイパス路をバイパス管28で形
成した。この場合、感温弁23が閉成し、高温の冷却水
が流入パイプ9、オートチョーク10、バイパス管28
を経て流出パイプ15に流入することになり、加熱循環
路Rの全域を閉鎖することがないため、名流路内に蒸気
発生によるエア溜りの発生が少なく、特に、オートチョ
ークの内室101の蒸気をバイパス管28へ押し流すこ
とができ、オートチョークの誤作動を防止できる。な]
A6バイパス管28に第1図で示したと同様の感温弁2
9を取利ければ、(第4図に一点鎖線で示した)加熱流
路部路線R1とオートチョーク10とに流入する冷却水
の水温を細まかく調穎できる。
A bypass pipe 28 was formed to bypass the heating flow path portion R1 in the heating circulation path R of the heating control device 27 shown in FIG. In this case, the temperature-sensitive valve 23 closes and the high temperature cooling water flows through the inflow pipe 9, the auto choke 10, and the bypass pipe 28.
Since the entire heating circulation path R is not closed, there is less air accumulation due to steam generation in the flow path, and in particular, the steam in the inner chamber 101 of the auto choke is can be forced into the bypass pipe 28, and malfunction of the auto choke can be prevented. ]
A temperature-sensitive valve 2 similar to that shown in FIG. 1 is attached to the A6 bypass pipe 28.
9, it is possible to finely adjust the temperature of the cooling water flowing into the heating flow path line R1 (indicated by a dashed line in FIG. 4) and the auto choke 10.

更に、バイパス管28に感温弁29に代えて、設定水圧
で開成するウォータカットバルブ(図示せず)を取付け
てもよい。この場合、このウォータカットバルブか感温
弁27のいずれかが故障していてもオートチョーク10
の流れを確保でき、オートチョークの内慴101 K蒸
気が溜まり、この蒸気(水との比熱の差)により誤作動
するということを防げる。
Furthermore, instead of the temperature-sensitive valve 29, a water cut valve (not shown) that opens at a set water pressure may be installed in the bypass pipe 28. In this case, even if either the water cut valve or the temperature sensing valve 27 is out of order, the auto choke 10
This prevents 101K steam from accumulating inside the auto choke and malfunctioning due to the difference in specific heat from water.

更にまた、加熱流路線R1とバイパス管28との合流位
置により下流側に設定水圧で開成するウオータカットパ
ルプ(第4図に一転鎖線で示した)30を取付けてもよ
い。この場合、エンジン停止時に加熱熱循環路Rをただ
ちに閉鎖でき、しかも、感温弁23の作動を妨げること
もなく両弁に効果を共に得られる。
Furthermore, a water-cut pulp 30 (indicated by a double-dashed line in FIG. 4), which is opened at a set water pressure, may be installed on the downstream side of the confluence position of the heating flow line R1 and the bypass pipe 28. In this case, the heating heat circulation path R can be immediately closed when the engine is stopped, and the effect can be obtained on both valves without interfering with the operation of the temperature-sensitive valve 23.

第5図に示した加熱制御装置31は加熱流路部R1の上
流側であるキャブレタの流入ぐち411に感温弁23を
取付けている。このため、ヒートライザ14の人工水温
を検知でき、ヒートライザ流入冷却水の水温を特に精度
よく調製できる。なお、第5図に一点鎖線で示すように
、流入パイプ9を分流管8より外し、流出ヒータホース
20に合流状に連結し、流出パイプ15を分流管8に連
結し、加熱流路部R1の冷却水を逆流させてもよい。こ
の場合、感温弁23は逆向きに取付けられ(図示せず)
、これにより、オートチョーク入口水温を特に正確に検
知することになり、オートチョーク内室101への蒸気
の流入を防止し易く、しかもオートチョーク10に対す
る水温肌荒を行ない易い。
The heating control device 31 shown in FIG. 5 has a temperature-sensitive valve 23 attached to the inflow groove 411 of the carburetor, which is on the upstream side of the heating flow path portion R1. Therefore, the artificial water temperature of the heat riser 14 can be detected, and the temperature of the cooling water flowing into the heat riser can be adjusted particularly accurately. In addition, as shown by the dashed line in FIG. 5, the inflow pipe 9 is removed from the branch pipe 8 and connected to the outflow heater hose 20 in a merging manner, the outflow pipe 15 is connected to the branch pipe 8, and the heating flow path section R1 is connected to the outflow heater hose 20. The cooling water may be allowed to flow back. In this case, the temperature-sensitive valve 23 is installed in the opposite direction (not shown).
As a result, the auto choke inlet water temperature can be detected particularly accurately, making it easier to prevent steam from flowing into the auto choke inner chamber 101, and also making it easier to cause the water temperature to become rough on the auto choke 10.

第6図に示した加熱側制御装置32は、分流管8より流
入パイプ9に流入する冷却水の一部を流入出パイプ15
側にも分流させるよう、流出パイプ15を分流管8に連
結する。そして、ヒートライザ14とオ−トチョーク1
0を結ぶ連結パイプ22に、新たに、第2流出バイプ3
3を接続し、その下流端を流出ヒータホース20に合流
状に連結する。そしてヒートライザ14側とオートチョ
ーク10側より共に流下してくる冷却水の流れを断続す
る感温弁(第1図で説明したと同様のもの)23を第2
流出パイプ33と連結パイプ22との連結位置に取付け
る。この場合、ヒートライザ14側とオートチョーク1
0側とと流れる冷却水を同じ温度に調製することができ
る。
The heating side control device 32 shown in FIG.
The outflow pipe 15 is connected to the diverter pipe 8 so that the flow is diverted to the side as well. And heat riser 14 and auto choke 1
A new second outflow pipe 3 is added to the connection pipe 22 that connects the
3, and its downstream end is connected to the outflow heater hose 20 in a merging manner. Then, a temperature-sensitive valve 23 (similar to the one explained in FIG.
It is installed at the connection position between the outflow pipe 33 and the connection pipe 22. In this case, the heat riser 14 side and the auto choke 1
The cooling water flowing on the 0 side and the cooling water flowing on the 0 side can be adjusted to the same temperature.

第7図に示した加熱制御装置34は加熱流路部R1自体
を2つに分け、流入パイプ9からの冷却水を2つに分流
した後、流出パイプ15側に流すことができる。即ち、
ヒートライザ14には2つの流路が設げられ、これらは
共に感温弁35を経て流出する。
The heating control device 34 shown in FIG. 7 divides the heating flow path portion R1 itself into two parts, and after dividing the cooling water from the inflow pipe 9 into two parts, can flow the cooling water to the outflow pipe 15 side. That is,
The heat riser 14 is provided with two flow paths, both of which flow out through the temperature-sensitive valve 35.

この感温弁35は第3図で説明した感温弁23と同一部
材を多く含むため同一部側には同一符号を付し、その説
明を略す。第8図に示すように、感温弁35は、そのワ
ックスペレット233側をヒートライザ14の内内側に
位置させ、小径室239の先端側を第2大径室351に
連通可能であり、小径室239の中央に流出パイプ15
が連結される。第2大径室351は第2流管352と共
に加熱流路部R1の分流路を形成する。感温弁35はガ
イド棒234を比較的長く失出させており、その根元側
にばね237で押圧される弁体236を外嵌し、先端は
第2大径至351と小径室239とを断続させる第2弁
体353と対向している。この第2弁体353はばね、
354の弾性力で弁座355に押圧されており、ワック
スペレット233が冷却水の温厚を検知してガイド棒2
34をリフトさせる際に開閉操作される。第8図に示す
ように、ガイド棒234はホームポジションHにおいて
弁体236を段部241より離脱させる。そして冷却水
温度に応じ、第9図に示すようにリフトする。
Since this temperature-sensitive valve 35 includes many of the same members as the temperature-sensitive valve 23 described in FIG. 3, the same parts are denoted by the same reference numerals, and the explanation thereof will be omitted. As shown in FIG. 8, the temperature-sensitive valve 35 has its wax pellet 233 side located inside the heat riser 14, and the tip side of the small diameter chamber 239 can communicate with the second large diameter chamber 351. Outflow pipe 15 in the center of 239
are concatenated. The second large diameter chamber 351 and the second flow tube 352 form a branch flow path of the heating flow path portion R1. The temperature-sensitive valve 35 has a relatively long guide rod 234, and a valve body 236 pressed by a spring 237 is fitted on the base side of the valve body 236, and the tip has a second large diameter to 351 and a small diameter chamber 239. It faces the second valve body 353 that makes the valve disconnect. This second valve body 353 is a spring,
354 is pressed against the valve seat 355, and the wax pellet 233 detects the warmth and thickness of the cooling water and moves the guide rod 2.
It is opened and closed when lifting 34. As shown in FIG. 8, the guide rod 234 separates the valve body 236 from the stepped portion 241 at the home position H. Then, it is lifted as shown in FIG. 9 depending on the cooling water temperature.

このため、ほぼ、冷却水が70℃に達するまでの間にお
いて、加熱流路部R1は冷却水を大径部240を通し流
出させる。そして、70℃より100℃までの間では、
ほぼ冷却水の流動は停止する。
Therefore, until the cooling water reaches 70° C., the heating flow path portion R1 causes the cooling water to flow out through the large diameter portion 240. And between 70℃ and 100℃,
The flow of cooling water almost stops.

100℃以上では、ガイド柿234が第2弁体353を
押し開き、冷却水は第2大径部351を通り、流出パイ
プ15に流入する。このような加熱制御装置34は一端
停止した冷却水が外部より更に加熱を受ける場合、たと
えば俳ガス還元装置(以後単にEGRと記す)の俳ガス
通路(図示せず)により加熱さね、冷却水が異常に高温
化するものに有効である。
At temperatures above 100° C., the guide persimmon 234 pushes open the second valve body 353 and the cooling water passes through the second large diameter portion 351 and flows into the outflow pipe 15. When the cooling water that has been temporarily stopped is further heated from the outside, the heating control device 34 does not heat the cooling water by, for example, a gas passage (not shown) of a gas reduction device (hereinafter simply referred to as EGR). It is effective for things that get abnormally high in temperature.

即ち、EGRの並設された加熱流路部R1を流れる高温
冷却水は感温弁35の作動と共に一旦止められる。その
後、EGRの作動により俳ガス通路を高温の俳ガスが流
れるとその熱がキャブレタ11やヒートライザ14に伝
わり、停止している冷却水が高温化する。すると感温弁
35は第2弁体353を開いて冷却水を流動させその異
常高温化を止め、エンジンの吸気効率の悪化を防止する
という利点がある。
That is, the high-temperature cooling water flowing through the heating flow path portion R1 in which the EGRs are arranged in parallel is temporarily stopped when the temperature-sensitive valve 35 is activated. Thereafter, when high-temperature gas flows through the gas passage due to EGR operation, the heat is transmitted to the carburetor 11 and heat riser 14, and the temperature of the stopped cooling water increases. Then, the temperature-sensitive valve 35 opens the second valve body 353 to allow the cooling water to flow, thereby stopping the abnormally high temperature of the cooling water, which has the advantage of preventing deterioration of the intake efficiency of the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図、第5図、第6図、第7図はこの発明の
各々異なる実施例としての加熱制御装置の概略図、第2
図は第1図の加熱制御装置の要部拡大断面図、第3図は
第1図の加熱制御装置に用いる感温弁の断面図、第8図
は第7図中の感温弁の拡大断面図、第9図は第8図の感
温弁の作動特性図をそれぞれ示している。 1、27、31、32、34・・・加熱制御装置、2・
・・エンジン、11・・・キャブレタ、12・・・吸気
マニホルド、13・・・加熱部、14・・・ヒートライ
ザ、23、29、35・・・感温弁、R・・・加熱循環
1, 4, 5, 6, and 7 are schematic diagrams of heating control devices as different embodiments of the present invention, and FIG.
The figure is an enlarged sectional view of the main part of the heating control device shown in Fig. 1, Fig. 3 is a sectional view of the temperature-sensitive valve used in the heating control device shown in Fig. 1, and Fig. 8 is an enlarged view of the temperature-sensitive valve in Fig. 7. The cross-sectional view and FIG. 9 respectively show operating characteristic diagrams of the temperature-sensitive valve of FIG. 8. 1, 27, 31, 32, 34... heating control device, 2.
... Engine, 11 ... Carburetor, 12 ... Intake manifold, 13 ... Heating section, 14 ... Heat riser, 23, 29, 35 ... Temperature-sensitive valve, R ... Heating circulation path

Claims (1)

【特許請求の範囲】[Claims] 水冷式内燃エンジンの吸気系に、このエンジンの冷却水
が流動する加熱循環路と対接する加熱部を形成し、この
加熱部を用い、上記吸気系内の流動体を冷却水の水温に
応じて加熱するエンジン吸気系の加熱制御装置において
、上記加熱循環路内に、冷却水の水温が設定値以上で閉
じる開閉弁を取付けたことと特徴とするエンジン吸気系
の加熱制御装置。
A heating part is formed in the intake system of a water-cooled internal combustion engine and is in contact with a heating circulation path through which the engine's cooling water flows, and this heating part is used to control the fluid in the intake system according to the temperature of the cooling water. A heating control device for an engine intake system that heats an engine intake system, characterized in that an on-off valve that closes when the temperature of the cooling water exceeds a set value is installed in the heating circulation path.
JP57124256A 1982-07-16 1982-07-16 Heating controller of engine suction system Pending JPS5915662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124256A JPS5915662A (en) 1982-07-16 1982-07-16 Heating controller of engine suction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124256A JPS5915662A (en) 1982-07-16 1982-07-16 Heating controller of engine suction system

Publications (1)

Publication Number Publication Date
JPS5915662A true JPS5915662A (en) 1984-01-26

Family

ID=14880822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124256A Pending JPS5915662A (en) 1982-07-16 1982-07-16 Heating controller of engine suction system

Country Status (1)

Country Link
JP (1) JPS5915662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145976U (en) * 1988-03-31 1989-10-06
JPH0349356U (en) * 1989-09-21 1991-05-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537514B2 (en) * 1972-01-13 1978-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537514B2 (en) * 1972-01-13 1978-03-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145976U (en) * 1988-03-31 1989-10-06
JPH0349356U (en) * 1989-09-21 1991-05-14

Similar Documents

Publication Publication Date Title
EP0580934B1 (en) Cooling system for an automotive engine
JPS6239251B2 (en)
JP2007107522A (en) Cooling system for combustion engine
US5655506A (en) System for preheating intake air for an internal combustion engine
US4095575A (en) Internal combustion engine
US6758171B2 (en) Engine cooling system with two thermostats
JP2016164404A (en) Cooling device for vehicular internal combustion engine, and control method
KR100622472B1 (en) a system for cooling an engine
KR100482547B1 (en) A system for cooling an engine
JPH07139350A (en) Cooling system for internal combustion engine
JPS5915662A (en) Heating controller of engine suction system
JP2013072350A (en) Cooling device of engine
JP2014145326A (en) Internal combustion engine
GB2286039A (en) Engine cooling system
KR102359941B1 (en) Engine cooling system
JPS5915663A (en) Heating controller of suction system of engine
JPS6114588Y2 (en)
JPS60128968A (en) Suction heating mechanism for internal-combustion engine
JP2575514Y2 (en) Automatic transmission
CN107975413A (en) Internal combustion engine cooling circulation system with heating boiler
KR100428217B1 (en) Engine cooling system
JP7488134B2 (en) Cooling System
JP2005214075A (en) Cooling device of internal combustion engine
JPS64573B2 (en)
WO2022184021A1 (en) Vehicle and engine thereof