JPS59156179A - Controller of thyristor motor - Google Patents

Controller of thyristor motor

Info

Publication number
JPS59156179A
JPS59156179A JP58029837A JP2983783A JPS59156179A JP S59156179 A JPS59156179 A JP S59156179A JP 58029837 A JP58029837 A JP 58029837A JP 2983783 A JP2983783 A JP 2983783A JP S59156179 A JPS59156179 A JP S59156179A
Authority
JP
Japan
Prior art keywords
current
voltage
motor
torque
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029837A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hosokawa
靖彦 細川
Naoki Morishima
直樹 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58029837A priority Critical patent/JPS59156179A/en
Priority to US06/580,180 priority patent/US4527109A/en
Priority to DE3406269A priority patent/DE3406269A1/en
Publication of JPS59156179A publication Critical patent/JPS59156179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To obtain a controller of a thyristor motor capable of maintaining a torque command and a motor generating torque in proportional relationship by compensating the variation in the power factor upon varying of the phase of a motor current by correcting a field current. CONSTITUTION:Torque generated from a synchronous motor 3 is proportional to the value obtained by dividing electric power produced by subtracting the motor input power from copper loss by the rotating speed, and the motor input is equal to the DC input of an inverter 2. Accordingly, to proportion the torque to the current Id, it is controlled so that the rotating speed wr is proportional to (Ed-2RaId), where Ed: DC voltage, Ra: armature resistance. A coefficient unit 25 generates a rotating speed proportional voltage, a voltage detector 27 detects Ed, the coefficient unit 26 calculates 2RaId, and a subtractor 28 calculates Ed-2RaId. A DC voltage controller 29 compares the both inputs, and outputs a correction signal If in a field current increasing direction when the DC voltage is larger than the reference voltag eand in the decreasing direction when smaller on the other hand.

Description

【発明の詳細な説明】 本発明は、車力変換器により同期電動機を駆動するサイ
リスタを係り、特に、′IJ機の電機子反作用を補償す
るため、主界磁に直交した起磁力を発生する補償巻線を
有するサイリスタモータの制御装置のトルク1lilJ
 ?R特性の改嘉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thyristor that drives a synchronous motor by a vehicle power converter, and in particular generates a magnetomotive force orthogonal to the main field in order to compensate for the armature reaction of an IJ machine. Torque 1lilJ of a control device for a thyristor motor with compensation winding
? This relates to modification of the R characteristic.

従来この種の装置として、第1図に示すものがあった。A conventional device of this type is shown in FIG.

(υは商用交流電源の文流゛屯圧を直流に交換する第1
の又換器、(2)はその直流を可変周波数の交流に変換
する第2の変換器、(3)は第2の変換器により駆動さ
れる同期電動機で、電機子巻線U、V、Wと界磁巻線F
1および界磁巻線に対して直交した起磁力を作る補償巻
線Cを有する。(4)は同期電IJ 慨(3)の回転軸
の回転角に応じた位相の位置信号を出力する位置検出器
(5)//′i、位置検出器(4)の位置信号に基き、
第2の変換器(2)のゲート信号−を出力するダートア
ンプ、(6)、は速度発電機、(7)は速度指令回路、
(8)は速度指令回路(7)の速度指令信号と、速度発
電機(6)の出方信号である速度帰還1号の斧を許りこ
れを増巾する速度コントローラ、(20)は速度コント
ローラ(8)の出方であるトルク指令値に所足の係数を
掛けて、第lのf換器(1)の電流指−8−1[ばとす
る係数器、(9)は第1の変換器(υの交流入力電流を
整流し、変換器の直流電流Idcに比例した信号を検出
する電流検出器、(io)は係#、器(20)の出力信
号と、電流検出器(9)の出方である電流帰還信号との
偏差を増巾する電流コントローラ、(11)は電流コン
トローラ(10)の出力(、g号に従って、第1の変換
器(1)の点弧位相を制御するゲートパルス移相器、(
12)は界磁電流Ifの無負荷時の値Ifoを指令する
界磁指令回路、(21)は速度コントローラ(8)の出
力であるトルク指令値に所定の係数を掛けて、界磁′電
流Ifの負荷時の減磁分の補正量Δ■f金与える係数器
、(22)は界磁指令回路(12)の出力である界磁電
流の指令値と、係数器(21)の出力である補正量とを
加算し、Ifp−Ifo+ΔIfなる界磁電流指令値I
fpを求める加算器、(13)は界磁制御用コンバータ
(16つの交流入力を整流し、界磁電流Ifの大きさを
検出する電流検出器、(14)は信号If1.と電流検
出4 (13)の出力である電流検出値との偏差を増巾
する電流コンl−ローラ、(15)は電流コントローラ
(14)の出力に応じて、界磁制御用コンバータ(16
)のサイリスクの点弧位相を制御するゲートパルス移相
器、(23)は速度コントローラ(8)の出力であるト
ルク指令値に所定の係数を掛けて補償界磁の電流指令と
する係数器、(17)は補償界磁制御用コンバーク(2
4)の交流入力を整流し、補償界磁電流Icの大きさを
検出する電流検出器、(18)は係数器(23)の出方
である補償界磁電流指令値と、電流検出器(17)の出
力である電流検出値との差をとり増巾する電流コントロ
ーラ、(19)は電流コントローラ(18)の出方に応
じて、界磁制御用コンバータ(24)のサイリスクの点
弧パルスを与えるゲートパルス移相器である。
(υ is the first voltage that converts the current pressure of a commercial AC power supply to DC.
(2) is a second converter that converts the direct current into alternating current with a variable frequency; (3) is a synchronous motor driven by the second converter, with armature windings U, V, W and field winding F
1 and a compensation winding C that produces a magnetomotive force orthogonal to the field winding. (4) is based on the position signal of the position detector (5)//'i, which outputs a position signal with a phase corresponding to the rotation angle of the rotating shaft of the synchronous electric IJ (3), and the position detector (4).
A dart amplifier that outputs the gate signal of the second converter (2), (6) is a speed generator, (7) is a speed command circuit,
(8) is a speed controller that allows and amplifies the speed command signal of the speed command circuit (7) and the ax of speed feedback No. 1, which is the output signal of the speed generator (6), and (20) is the speed The torque command value output from the controller (8) is multiplied by the required coefficient, and the current finger of the l-th f converter (1) is calculated by multiplying it by the required coefficient. A current detector rectifies the AC input current of the converter (υ) and detects a signal proportional to the DC current Idc of the converter, (io) is the output signal of the converter (20), and the current detector ( 9) is a current controller that amplifies the deviation from the current feedback signal, which is the output of the current controller (11), which adjusts the firing phase of the first converter (1) according to the output of the current controller (10) Gate pulse phase shifter to control (
12) is a field command circuit that commands the no-load value Ifo of the field current If, and (21) is a field command circuit that commands the torque command value output from the speed controller (8) by a predetermined coefficient to calculate the field 'current'. If the correction amount for demagnetization when the load is Δ■f, the coefficient machine (22) is the command value of the field current which is the output of the field command circuit (12), and the output of the coefficient machine (21). By adding a certain correction amount, the field current command value I becomes Ifp-Ifo+ΔIf
Adder for calculating fp, (13) is a field control converter (current detector that rectifies 16 AC inputs and detects the magnitude of field current If, (14) is signal If1. and current detection 4 (13) The current controller roller (15) increases the deviation from the detected current value which is the output of the current controller (14), and the field control converter (16)
), a gate pulse phase shifter that controls the firing phase of the Cyrisk; (23) a coefficient unit that multiplies the torque command value output from the speed controller (8) by a predetermined coefficient to obtain a current command for the compensation field; (17) is the compensating field control converk (2
4) is a current detector that rectifies the AC input and detects the magnitude of the compensation field current Ic. A current controller (19) takes the difference from the detected current value outputted by (17) and amplifies it, and (19) gives an ignition pulse for the field control converter (24) depending on the output of the current controller (18). It is a gate pulse phase shifter.

次に動作について説明する。位置検出器(4)、ゲート
アンズ(5)、第2の変換器(2)は電機子電流の位相
”を、界磁磁極の位相液封して、所定位相に保つように
動作する。速度発電機(6)、速度指令回路(7)、速
度コントローラ(8)は、電動機(3)の速度が速度指
令と等しくなる様に、トルク指令を発生する。係数器(
20)は電mJ機定故によって決まる、係数をトルク指
令に掛けることにより、指令どうりのトルクを発生する
のに必要な、電機子電流を指令する。
Next, the operation will be explained. The position detector (4), gate amplifier (5), and second converter (2) operate to keep the phase of the armature current at a predetermined phase by sealing the phase of the field magnetic pole. The generator (6), speed command circuit (7), and speed controller (8) generate a torque command so that the speed of the electric motor (3) becomes equal to the speed command.
20) commands the armature current necessary to generate the torque as commanded by multiplying the torque command by a coefficient determined by the electric mJ machine constant fault.

以下、(9)(1oXu) (1)によって、電流Id
cが制御される過iは、8印である。界磁指令回路(1
2)は、無負荷時の界磁電流の基準値Ifoを与え、こ
の基!$値は、係数器(21)、加算器(22)によシ
、負荷時の減磁分を補正するための界磁電流ΔIfを加
算した後、電流指令値1fpとなる。以下(13)(1
4)(15)(16)は、′電流Ifを基準値ど2り制
御する。係数器(23)は電動機定数で決凍る電機子反
作用を補償するのに要する補償電流1cを指令する。ト
ルク指令上、同期電動+pA(3)の電俊子電流Iaは
比例関係に保、たれ、電流ICもトルク指令と比例関係
に保たれるため、結局1aとIcは比例して制御される
O (17X18X19,1(24)は、電流Icを基
準値どおりに制御する。
Below, by (9) (1oXu) (1), the current Id
The excess i over which c is controlled is 8 marks. Field command circuit (1
2) gives the reference value Ifo of the field current at no load, and this base! The $ value becomes the current command value 1fp after adding the field current ΔIf for correcting the demagnetization amount during load using the coefficient unit (21) and the adder (22). Below (13) (1
4) (15) and (16) control the current If to the reference value. A coefficient unit (23) commands the compensation current 1c required to compensate for the armature reaction which is determined by the motor constant. Based on the torque command, the electric current Ia of the synchronous motor +pA (3) is kept in a proportional relationship, and the current IC is also kept in a proportional relationship with the torque command, so in the end, 1a and Ic are controlled proportionally. 17X18X19,1 (24) controls the current Ic according to the reference value.

第2図は、第1図における電#機の電圧と電流の関係を
示すベクトル図である。同メ1(a)L/i、無負荷時
におけるもの、同図(b)は負荷時における状態を示す
。他励式変換器(2) ij:、伝流のため、進み力率
で電流を供給する必要があり、このため、無負荷誘起電
圧EOに対し、Tだけ進んだ方向に電偵子電流1aを流
すように位置槙出m (4)は収りつけられている。負
荷時においては、電機子電流I’aによって、電機子反
作用X3Iaが、同図(b)に示す4向きに生じ、これ
には直軸成分と横軸成分とが合4瓦、るちところで、補
償巻線の作用にょシ生じ不電圧X’s I cは、図示
の方向に生じ、電機子反作用の゛横軸成分を補償する。
FIG. 2 is a vector diagram showing the relationship between voltage and current of the electric machine in FIG. 1. Figure 1(a) shows L/i under no load, and Figure 1(b) shows the state under load. Separately excited converter (2) ij: Due to conduction, it is necessary to supply current with a leading power factor. Therefore, the electric current 1a is applied in the direction advanced by T with respect to the no-load induced voltage EO. The position Maki (4) is fixed so that it flows smoothly. During load, armature reactions X3Ia are generated in four directions as shown in FIG. , due to the action of the compensation winding, a non-voltage X's Ic occurs in the direction shown and compensates for the transverse axis component of the armature reaction.

このま塘だと、誘起電圧はVとなり、無負荷時Eoに比
べて低下する結果、十分な出方を得ることが出来ない。
In this case, the induced voltage becomes V, which is lower than Eo when no load is applied, and as a result, sufficient output cannot be obtained.

そのため、界磁電流をΔIfだけ増加することにより、
X5Ifを生じるようにし、無7.J、荷時と同じ、誘
起電圧Eoが得られるようにしている。
Therefore, by increasing the field current by ΔIf,
7. Let X5If occur. J, the same induced voltage Eo as when loaded is obtained.

以上の説明でわかるように、従来装置にお−いては、電
機子電流1aに比例して、舗償電流1cと界磁電流補正
値lIfを流すことにより、電機子反作用を補正してい
た。このような方法は、第2図(b)のベタト、ル関係
−図が保たれる限り正確な補正が行なわh1重電機の発
生トルクは、IaK此例するのでトルク制御も正確に行
なわれる。  −しかし、現実には、変換器(2)の転
流は瞬時的に行、なわれるのではなく、重なり期間が生
じることは周知で為゛る。この結果、電機子電流1aの
位相は一ル宝角Tよりも遅れ、この遅れ位相は、周波数
(電同期あ回転数)が、高くなるとともに無視できない
大きさ、となる。さらに位相遅れは、電機子電流1aが
大きいほど大きくなり、従ってトルク指令が変化すると
ともに、ベクトル関係のずれ方も変化する。
As can be seen from the above explanation, in the conventional device, the armature reaction is corrected by flowing the compensation current 1c and the field current correction value lIf in proportion to the armature current 1a. In such a method, accurate correction can be performed as long as the relationship diagram of FIG. - However, it is well known that in reality the commutation of the converter (2) does not take place instantaneously, but overlapping periods occur. As a result, the phase of the armature current 1a lags behind the angle T, and this lag phase becomes large enough to not be ignored as the frequency (electronic rotational speed) increases. Further, the phase lag increases as the armature current 1a increases, and accordingly, the torque command changes and the deviation of the vector relationship also changes.

このように、回転数と電懺子電流の変化とともに、電機
子電流の位相γが変化するため、電機子反作用の方向も
変化し、Ic、Δ1.fによって、正確に電機子反作用
を補償することが出来なくなる。
In this way, as the rotation speed and the armature current change, the phase γ of the armature current changes, so the direction of the armature reaction also changes, and Ic, Δ1. f makes it impossible to accurately compensate for the armature reaction.

その結果誘起電圧VもEOから太ささ、位相ともにずれ
てしまう。
As a result, the induced voltage V also deviates from EO in both thickness and phase.

従来装Mは以上のように、回転数の高い@域では、電・
磯子電流la(!:誘起電圧Vの位相関係が保てなくな
り、トルク指令に従ったトルクを得ることが出来なくな
るという欠点があ−った。
As mentioned above, the conventional M system has low electric power and
Isogo current la (!: There was a drawback that the phase relationship of the induced voltage V could not be maintained, making it impossible to obtain torque in accordance with the torque command.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電機子電流の位相変化に伴なう力
率変動を、界磁電流を補正す不ことにより補償し、トル
ク指令と、電#磯発生トルクを比例関係に保つことので
きるサイリスタモータの制御装置を提供することを目的
としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it compensates for power factor fluctuations caused by phase changes in the armature current without correcting the field current. It is an object of the present invention to provide a control device for a thyristor motor that can maintain the torque generated by the electric current in a proportional relationship.

第3図は、本発明の一実施例を示す構成図である。FIG. 3 is a configuration diagram showing an embodiment of the present invention.

第3図において、部品番号の(1)〜(24)は第1図
に番 示した同−s号のものと同じである。(25)は速度発
電機(6)の出力である速度に比例した電圧に、所定の
係数を掛けて、無負荷時の直流電圧基準を与える係数器
、(26)は速度コントローラ(8)の出力であるトル
ク指令に所定の係数を掛けて、電圧降下分とする係数器
、(27)は第2の変換器(2)の直流端子間の電圧を
検出する電圧検出器゛1、(28)は電圧検出器(27
)で検出された直流電圧より、係数器(26)の出力で
ある電圧降下分を差し引く減算器、(29)は減算器(
28)の出力である直流電圧から係数器(25)の出力
である直流電圧の基準値を引いた偏差を増申し、界磁の
補正信号ΔIfを求める直流電圧コントローラ、(22
)は界磁指令回路(12)の出力である界磁電流指令値
1foと直流電圧コントローラ(29)の出力である補
正信号ΔIfとを加算し、新しい指令値Ifpを求める
加算器である。
In FIG. 3, part numbers (1) to (24) are the same as the parts numbered -s shown in FIG. (25) is a coefficient multiplier that multiplies the voltage proportional to the speed, which is the output of the speed generator (6), by a predetermined coefficient to provide a DC voltage reference at no-load. (26) is the speed controller (8). (27) is a voltage detector (28) that detects the voltage between the DC terminals of the second converter (2). ) is the voltage detector (27
) is a subtracter that subtracts the voltage drop output from the coefficient unit (26) from the DC voltage detected by the subtractor (29).
a DC voltage controller that calculates a field correction signal ΔIf by increasing the deviation obtained by subtracting the reference value of the DC voltage that is the output of the coefficient unit (25) from the DC voltage that is the output of (28);
) is an adder that adds the field current command value 1fo, which is the output of the field command circuit (12), and the correction signal ΔIf, which is the output of the DC voltage controller (29), to obtain a new command value Ifp.

次に動作について説明する。同期電動機(3)の発生す
るトルクは、電動機入力電力から銅損を差しり1いた電
力を回転数で割ったものに比例する。一方電動機入力は
、第2の変換器(2)の直流入力に等しい。いま直流電
圧(5Ed直流電thkId1回転角速度をωr1−相
分の同期電動機電機子抵抗をRaとおけばトルクは次式
で表わされる。
Next, the operation will be explained. The torque generated by the synchronous motor (3) is proportional to the power obtained by subtracting the copper loss from the motor input power and dividing the power by the number of revolutions. The motor input, on the other hand, is equal to the DC input of the second converter (2). Now, if the DC voltage (5Ed DC current thkId1 rotational angular velocity and ωr1-phase synchronous motor armature resistance is Ra), the torque is expressed by the following equation.

TL:ユ (EdId−2RaId2〕       
          (1)ωr これを書き直すと、次式となる。
TL: Yu (EdId-2RaId2)
(1) ωr Rewriting this gives the following equation.

′l゛=ユId (Ed−1aId)      (2
)ωr この式から、トルクが電流Idに比例して発生するため
には、回転数ωrと、(団−2Ra I d )とが比
例するように制御すればよいことがわかる。
'l゛=yuId (Ed-1aId) (2
) ωr From this equation, it can be seen that in order for the torque to be generated in proportion to the current Id, it is necessary to control the rotational speed ωr and (group −2Ra I d ) so that they are proportional.

(25)〜(29)の部分は、この比例関係を保つよう
に界磁電流を変化させるためのフィードバック制御系を
構成している。即ち一係数’a (25)は回転数ωX
に比例した電圧を発生し、電圧検出に4 (27)は電
流電圧Edを検出口、係数器(26)は2RaIdを演
算し、減算器(28)はEd−2RaIdを演算する。
The parts (25) to (29) constitute a feedback control system for changing the field current so as to maintain this proportional relationship. That is, one coefficient 'a (25) is the rotation speed ωX
4 (27) detects the current voltage Ed, the coefficient unit (26) calculates 2RaId, and the subtractor (28) calculates Ed-2RaId.

直流電圧コントローラ(29)はこれら面入力を比較し
て、もし増加させる方向に補正信号ΔIfを出力し、;
に基準値よりも小さくなれば、減少させる方向に補正信
号ΔTfを出力する。その結果、直流電圧が変化して、
減算器(28)の出力が係数器(25)の出力と常時一
致するように制御が行なわれる。
The DC voltage controller (29) compares these surface inputs and outputs a correction signal ΔIf in the direction of increasing;
If it becomes smaller than the reference value, a correction signal ΔTf is outputted in the direction of decreasing it. As a result, the DC voltage changes,
Control is performed so that the output of the subtracter (28) always matches the output of the coefficient unit (25).

第4図はこの動作を説明するベクトル図である。FIG. 4 is a vector diagram explaining this operation.

第4図(a)において、OPは位置検出器(4)の位置
信号によ仄設定された電機子電流ベクトルIaの基準位
相Tを示しており、夫際には転流型なりのため、これよ
り、少し遅れた位相TIに電流Jaが流れる。
In FIG. 4(a), OP indicates the reference phase T of the armature current vector Ia, which is slightly set by the position signal of the position detector (4), and since it is a commutation type, Current Ja flows in phase TI slightly delayed from this.

その結果誘起電圧VとIaとの位相差が小さくなり゛、
力率が良くなる方向になるのでトルクはトルクの指令値
よりも大きくなる。
As a result, the phase difference between the induced voltage V and Ia becomes smaller.
Since the power factor becomes better, the torque becomes larger than the torque command value.

す いま、説明を簡単に二るため電機子抵抗Raを無視す机
伝ま、誘起重圧Vと電機子電流Iaとのなす角をθとす
れば、cosθは力率であり、直流電圧Edは、 Ed=1.35Vcosθ           (3
)となることは周知である。この式は直流電圧Edが、
誘起電圧のベクトルVのIa力方向成分に比例している
ことを示している。したがって(2)式よシトルクの大
きさもこの方向成分(図中にEdと仮に書いた)に比例
して変化する。
For the sake of simplicity, the armature resistance Ra is ignored.If the angle between the induced load V and the armature current Ia is θ, cosθ is the power factor, and the DC voltage Ed is , Ed=1.35Vcosθ (3
) is well known. This formula shows that the DC voltage Ed is
This shows that it is proportional to the Ia force direction component of the induced voltage vector V. Therefore, according to equation (2), the magnitude of the shift torque also changes in proportion to this directional component (tentatively written as Ed in the figure).

第4図(b)において、所望のトルクを発生するだめの
直流電圧をEd、このときの誘起電圧ケン1界唾電2几
をIfとする。いま仮に界磁指令回路(12)から指令
される界磁の電流がIfより少ないHlとなってに、−
Iたとしよう。このとき、X5lf1はX5Ifよりも
小さくなるために、誘起電圧はVlとなる。その結果、
直流電圧はVxのIa方向成分であるEdlまで減少す
る。(実1祭には、転流■なり角もわずかに変動するの
でIaのベクトル方向もわずかに変化するが、説明をい
たずらに複雑にしないため、ここでは無視しておく。ン
乙の結果減算器(28)の出力は、係数器(25)の基
準値hdよジも小さくなジ、直流電圧コントローラ(2
9)が正の出力;を出す。
In FIG. 4(b), the DC voltage required to generate the desired torque is Ed, and the induced voltage at this time is If. Now, if the field current commanded from the field command circuit (12) becomes Hl which is less than If, -
Let's say I. At this time, since X5lf1 becomes smaller than X5If, the induced voltage becomes Vl. the result,
The DC voltage decreases to Edl, which is the Ia direction component of Vx. (In actuality, the commutation angle changes slightly, so the vector direction of Ia also changes slightly, but in order not to complicate the explanation unnecessarily, we will ignore it here. The output of the coefficient multiplier (28) is smaller than the reference value hd of the coefficient multiplier (25).
9) gives a positive output;

これが加算器(22)でIfoに加算され、結果として
、界磁は正しい値Ifにもどされる。逆に係数器(23
)から指令される界磁の電流がIfよりも犬さいIf2
となっている場合には、端子電圧はV2.l!:なる。
This is added to Ifo in an adder (22), and as a result, the field is returned to the correct value If. Conversely, the coefficient unit (23
) is smaller than If2.
, the terminal voltage is V2. l! :Become.

その結果、直流電圧はEd2まで増加し、減算器(28
)の出力は係数器(25)の基準値よりも大きくなり、
直流電圧コントローラ(29)は負の出力(−ΔIf)
を出す。これが加算器(22)でlfoに加算され、や
はり結果さしては、界磁電流Ifは正しい値に制御され
る。
As a result, the DC voltage increases to Ed2, and the subtractor (28
) becomes larger than the reference value of the coefficient unit (25),
The DC voltage controller (29) has a negative output (-ΔIf)
issue. This is added to lfo by an adder (22), and as a result, the field current If is controlled to a correct value.

このように、減算器(28)の出力である(Ed −2
maId)は係数器(25)の出力であるωrに比例し
た値に常に制御されるため、(2)式で明さらかなよう
に、トルク′rI′i、、直流電流1dに比例する。即
ち速度コントローラ(8)の出力であるトルク指令と実
際のト″ルクは常に比例するようになる。
Thus, the output of the subtractor (28) is (Ed −2
Since maId) is always controlled to a value proportional to ωr, which is the output of the coefficient unit (25), it is proportional to the torque 'rI'i, and the DC current 1d, as is clear from equation (2). That is, the torque command, which is the output of the speed controller (8), and the actual torque are always proportional.

なお上記実施例では、直流電圧の検出値から、戟 抵抗降下分を差し引いたもの全指令値と比致するように
したが、指令値に抵抗降下分を加えたものを直流電圧の
検出値と比較する構成にもできることはいう序でもない
In the above embodiment, the detected value of DC voltage minus the drop in resistance is compared with the total command value, but the detected value of DC voltage is the sum of the resistance drop in the command value. There is nothing you can do with a comparative structure.

また、抵抗降下分を求めるためにトルク指令値を使用し
たが、これは、係数器(20)の出力でるる電流指−8
−値であっても、電流検出器(9)の出力である電流検
出値でろっても上記実施例と同様の効果を奏する。
In addition, the torque command value was used to obtain the resistance drop, but this is the current index -8 that is output from the coefficient unit (20).
- value or the current detection value which is the output of the current detector (9), the same effect as in the above embodiment can be achieved.

以上のように、この発明によれば、直流電圧が回転数に
比例した値に保たれるように制御ループを構成したので
、電流ベクトルが重なり角の影響で変化しても、トルク
はトルク指令に比例するよう傾なり、トルク制御の精度
が向上する効果がある。
As described above, according to the present invention, the control loop is configured so that the DC voltage is maintained at a value proportional to the rotation speed, so even if the current vector changes due to the influence of the overlap angle, the torque remains unchanged under the torque command. This has the effect of improving the accuracy of torque control.

また、直流電圧が所定値に保たれるので、変換器の電圧
定格を小さくできるという副次的効果も得られる。
Furthermore, since the DC voltage is maintained at a predetermined value, a secondary effect is obtained in that the voltage rating of the converter can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサイリスタモータの制御装置の構成図、
第2図は第1図に示した装置の前作を説明するためのベ
クトル図、第3図は本発明の一実施例によるサイリスタ
モータの制#装置の構成図、第4図は第3図VC示した
装置の動作を説明するためのベクトル図である。 (1バ2)・・・変換器、(3)・、同期電動、(4)
・−位置検出器、(5)・ゲートアンプ、(6)・・速
度発電機、(7)・・・速度指令回路、(8)・・・速
度コントローラ、(9)、(13) 、(17)・・電
流検出器、(10) (14) (18)・・・電流コ
ントローラ、(IIJ (15) (19)・・・ゲー
トパルス移相器、(16) (24)・・・コンバーク
、(12)−、界磁指令回路、(2oX2iX23)(
25)(26)  係数器、(22)・〃目算器、(2
7)・・・電圧検出4、Q28)、・・減算器、W・・
・直流電圧・・ト・−ラ。 なお図中、同一符号は同一、又は相当部分を示す。 代 理 人  葛  野   信  −第1図 第2図 If。 6■イ1 マl4 (b) 第4図 ↓1f LQ) cb+
Figure 1 is a configuration diagram of a conventional thyristor motor control device.
FIG. 2 is a vector diagram for explaining the previous version of the device shown in FIG. 1, FIG. 3 is a block diagram of a thyristor motor control device according to an embodiment of the present invention, and FIG. FIG. 3 is a vector diagram for explaining the operation of the illustrated device. (1 bar 2)...Converter, (3)...Synchronous electric, (4)
- Position detector, (5) Gate amplifier, (6) Speed generator, (7) Speed command circuit, (8) Speed controller, (9), (13), ( 17)...Current detector, (10) (14) (18)...Current controller, (IIJ (15) (19)...Gate pulse phase shifter, (16) (24)...Convert , (12)-, Field command circuit, (2oX2iX23)(
25) (26) Coefficient calculator, (22)・〃coefficient calculator, (2
7)...Voltage detection 4, Q28),...Subtractor, W...
・DC voltage...Tora. In the figures, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 Figure 2 If. 6■I1 Mar4 (b) Fig. 4↓1f LQ) cb+

Claims (1)

【特許請求の範囲】[Claims] (υ界磁巻線と、界磁巻線に対して一直交した起磁力を
作る補償巻線とを有する同期電動機と、この同期電動機
を駆動する車力変換器と、この電力交換器の直流電圧を
検出する手段と、前記同期電動機の速度検出器の出力信
号に基ついて直th電圧指令を発生する手段と、曲記直
流゛屯圧の検出値と指令値との差を増巾した結果に基つ
いて、前記界磁巻線の′電流を補正する手段とを備えた
ことを特徴とするサイリスクモータの制御装置。
(υ A synchronous motor having a field winding and a compensation winding that creates a magnetomotive force orthogonal to the field winding, a vehicle power converter that drives this synchronous motor, and a DC power converter for this power exchanger. means for detecting voltage; means for generating a direct voltage command based on the output signal of the speed detector of the synchronous motor; and a result of amplifying the difference between the detected value of the DC pressure and the command value. 1. A control device for a silisk motor according to the invention, comprising means for correcting the current of the field winding.
JP58029837A 1983-02-22 1983-02-22 Controller of thyristor motor Pending JPS59156179A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58029837A JPS59156179A (en) 1983-02-22 1983-02-22 Controller of thyristor motor
US06/580,180 US4527109A (en) 1983-02-22 1984-02-15 Control apparatus for thyristor motor
DE3406269A DE3406269A1 (en) 1983-02-22 1984-02-21 CONTROL DEVICE FOR A THYRISTOR MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029837A JPS59156179A (en) 1983-02-22 1983-02-22 Controller of thyristor motor

Publications (1)

Publication Number Publication Date
JPS59156179A true JPS59156179A (en) 1984-09-05

Family

ID=12287122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029837A Pending JPS59156179A (en) 1983-02-22 1983-02-22 Controller of thyristor motor

Country Status (1)

Country Link
JP (1) JPS59156179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007396A3 (en) * 2010-07-16 2012-12-27 Robert Bosch Gmbh Method and device for determining a momentary torque of an electronically switched electric machine and for regulating the average torque

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007396A3 (en) * 2010-07-16 2012-12-27 Robert Bosch Gmbh Method and device for determining a momentary torque of an electronically switched electric machine and for regulating the average torque
CN102971960A (en) * 2010-07-16 2013-03-13 罗伯特·博世有限公司 Method and device for determining a momentary torque of an electronically switched electric machine and for regulating the average torque

Similar Documents

Publication Publication Date Title
JP3152058B2 (en) Variable speed control device for induction motor
US20190199257A1 (en) Motor control device, and method for correcting torque constant in such motor control device
JP3815113B2 (en) Induction motor control method
JPS6331492A (en) Controller for induction motor
JP3513561B2 (en) Induction motor control device
JP2948887B2 (en) Motor speed control device
JPH11187699A (en) Speed control method for induction motor
US6075337A (en) Speed control apparatus for induction motor
JP3827052B2 (en) Variable speed control device for induction motor
US4527109A (en) Control apparatus for thyristor motor
JP2005287148A (en) Vector controller of winding field type synchronous machine
JPS59156179A (en) Controller of thyristor motor
JPH04304183A (en) Vector controller for induction motor
US11404982B2 (en) Method for estimating mechanical parameters of an electrical motor
JP2005304175A (en) Speed controller of motor
JP3341799B2 (en) Electric vehicle control device
JPH06225574A (en) Method and apparatus for controlling motor
JP2856564B2 (en) Control device for synchronous motor
JP3266790B2 (en) Induction motor control device
JP3067660B2 (en) Control method of induction motor
JP7013847B2 (en) Motor control device
JP3283729B2 (en) Induction motor control device
JP3770286B2 (en) Vector control method for induction motor
JP3302854B2 (en) Induction motor control device
JP2018098860A (en) Power converter