JPS59154410A - Inputting circuit for range finder - Google Patents

Inputting circuit for range finder

Info

Publication number
JPS59154410A
JPS59154410A JP2907683A JP2907683A JPS59154410A JP S59154410 A JPS59154410 A JP S59154410A JP 2907683 A JP2907683 A JP 2907683A JP 2907683 A JP2907683 A JP 2907683A JP S59154410 A JPS59154410 A JP S59154410A
Authority
JP
Japan
Prior art keywords
switch
circuit
output
light receiving
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2907683A
Other languages
Japanese (ja)
Inventor
Ryuji Tokuda
徳田 隆二
Yoshihiro Harunari
春成 嘉弘
Takashi Kanbe
高志 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2907683A priority Critical patent/JPS59154410A/en
Priority to US06/581,958 priority patent/US4701048A/en
Publication of JPS59154410A publication Critical patent/JPS59154410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To obtain a large number of information and reduce the scale of a photo-electric element outputting circuit by changing the photo-electric element freely and performing addition or subtraction by the element itself or a circuit element connected to it. CONSTITUTION:When a switch 1 is made off and a switch 3 is made on, photocurrent of photo-electric elements 5, 7 generated according to the intensity of incident light is converted to voltage by a feedback circuit 11 and an operational amplifier 9. If (a), (b) represent output voltage corresponding to output current of photo-electric elements 5, 7, signal voltage of (a+b) is outputted at the output end 9A of the amplifier 9. Conversely, when the switch 1 is made on and the switch 3 is made off, signal voltage of (b) corresponding only to photocurrent from the photo-electric element 7 is outputted at the output end 9A. As these signal voltage (a+b), (b) is outputted from the amplifier in time series, an arithmetic circuit 13 performs operation of (a+b)-b=a, aXb, a/b, a/(a+b) etc. and sends the information to a distance information processing circuit.

Description

【発明の詳細な説明】 本発明は、カメラ等の小型機器に於ける自動焦点合わせ
を行なう為の距離測定装置、特に被測定物体に光等のエ
ネルギーを投射して、その反射を基線距離を隔てて置か
れた複数の検知素子で受け、その各出力を演算処理する
ことにより物体迄の距離を測定する装置の入力回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring device for automatic focusing in small devices such as cameras, and in particular, to a distance measuring device that projects energy such as light onto an object to be measured and uses the reflected energy to calculate a baseline distance. The present invention relates to an input circuit of a device that measures the distance to an object by receiving signals from a plurality of spaced apart sensing elements and processing each output.

従来、可動部を廃止すべく複数の検知素子を設ける方式
は、投光部より測距対象に向けて光を照射し、その反射
光を投光部から所定の基線長−たけ離れて配置された受
光部により受光して測距を行なう光照射型の所謂光アク
ティブ型三角測距方式に於ても、又所謂能動型の三角測
距方式に於ても数多く提案され、また実用化もされてい
る。この方式は撮影操作以前に距離情報が判るという利
点を有する反面、例えば特開昭56−29110号公報
に見られる様に受光素子出方を処理する為に同数の増幅
器を含む入力回路を用いて各受光素子出力の比較演算等
を行なう様構成されている為に薗路規模が大きく、最近
の集積回路技術の進歩により実用化は可能となっている
が、構成が複雑、且つ高価なものとなる欠点がある。
Conventionally, the method of providing multiple detection elements in order to eliminate movable parts is to emit light from a light projector toward the object to be measured, and the reflected light is placed at a distance of a predetermined baseline length from the light projector. Many proposals have been made for the so-called active triangulation method, which uses a light irradiation type to measure distance by receiving light using a light-receiving section, and many have been put into practical use. ing. This method has the advantage that distance information can be determined before the photographing operation, but on the other hand, as seen in Japanese Patent Application Laid-Open No. 56-29110, an input circuit containing the same number of amplifiers is used to process the output direction of the light receiving element. Since it is configured to perform comparison calculations of the outputs of each light receiving element, the scale of the circuit is large, and although recent advances in integrated circuit technology have made it possible to put it into practical use, the configuration is complex and expensive. There is a drawback.

一方、回路規模を縮小する為に実公昭55−2401号
公報、実公昭56−11051号公報等に見られる様に
2つの受光素子の出力電流を相殺する様に2つの受光素
子を互いに逆向きの並列或いは直列に接続して、両受光
素子の出方差を得ることにより測距を行なう技術も提案
されている。しかしこの場合骨られる情報は差情報だけ
であって、差情報だけでは絶対距離情報を得ることは難
しく、サーボ機構の様な可動部の助けを必要とする欠点
があった。
On the other hand, in order to reduce the circuit scale, as seen in Japanese Utility Model Publication No. 55-2401 and Japanese Utility Model Publication No. 56-11051, two light receiving elements are arranged in opposite directions so as to cancel out the output currents of the two light receiving elements. A technique has also been proposed in which distance measurement is performed by connecting two light receiving elements in parallel or in series and obtaining the difference in the output direction of both light receiving elements. However, in this case, the information that is needed is only the difference information, and it is difficult to obtain absolute distance information from only the difference information, which has the drawback of requiring the assistance of a movable part such as a servo mechanism.

本発明の目的は情報量を増大したどしても情報処理回路
規模の増大を招くことのない距離測定装置用入力回路を
提供せんとするものである。
An object of the present invention is to provide an input circuit for a distance measuring device that does not cause an increase in the scale of the information processing circuit even if the amount of information is increased.

以下未発’FJについて図面を用いて詳細に説明する。The unreleased 'FJ will be explained in detail below using drawings.

第1図は本発明の一実施例の回路接続図にして、1は検
知素子としてのシリコン・フォト・ダイオード5に並列
接続されたスイッチ、3はダイオード5に直列接続され
たスインチ、7は信号変換回路としてのMO3入力の演
算増幅器9の入力端に接続された検知素子としてのシリ
コン・フォト・ダイオードで、該ダイオード7のアノー
ドは増幅器9に動作電圧を与える基準電圧源V「に接続
される。11は所定のインピーダンスを有するフィード
バック回路、13は増幅器9の出力端に接続され、該出
力端からの出力信号を処理し、後述する如き各種情報を
記憶並びに出力する演算回路である。該演算回路13の
出力は不図示の距離情報処理回路に供給され、距離情報
として不図示装置に出力される。−尚これら不図示の距
離情報処理回路並びに装置の詳細については理解を容易
とする為に省略する。
FIG. 1 is a circuit connection diagram of an embodiment of the present invention, in which 1 is a switch connected in parallel to a silicon photodiode 5 as a sensing element, 3 is a switch connected in series to the diode 5, and 7 is a signal switch. A silicon photodiode as a sensing element is connected to the input end of an operational amplifier 9 with an MO3 input as a conversion circuit, and the anode of the diode 7 is connected to a reference voltage source V'' that provides an operating voltage to the amplifier 9. 11 is a feedback circuit having a predetermined impedance, and 13 is an arithmetic circuit that is connected to the output terminal of the amplifier 9, processes the output signal from the output terminal, and stores and outputs various information as described below. The output of the circuit 13 is supplied to a distance information processing circuit (not shown), and is output as distance information to a device (not shown).The details of these distance information processing circuits and devices (not shown) are omitted for ease of understanding. Omitted.

つぎに上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

まずスイッチ1がオフとされ、スインチ3がオンとされ
ると、受光素子5,7は入射光の強さに応じた光電流を
発生し、該光電流はフィードパンク回路11および演算
増幅器9によって電圧に変換される。ここで受光素子5
の出力電流に対応した出力電圧がa、受光素子7の出力
電流に対応した出力電圧がbであるとすると、増幅器9
の出力端9Aには(a+b)の信号電圧が出力される。
First, when the switch 1 is turned off and the switch 3 is turned on, the light receiving elements 5 and 7 generate a photocurrent according to the intensity of the incident light, and the photocurrent is passed through the feed puncture circuit 11 and the operational amplifier 9. converted to voltage. Here, the light receiving element 5
If the output voltage corresponding to the output current of the light receiving element 7 is a, and the output voltage corresponding to the output current of the light receiving element 7 is b, then the amplifier 9
A signal voltage of (a+b) is output to the output terminal 9A.

逆にスイッチlがオンとされ、スイッチ3がオフとされ
ると、受光素子7からの光電流のみが信号変換回路を形
成するフィードバック回路11および演算増幅器9によ
って電圧に変換され、増幅器9の出力端9Aにはbの信
号電圧が出力される。
Conversely, when the switch 1 is turned on and the switch 3 is turned off, only the photocurrent from the light receiving element 7 is converted into voltage by the feedback circuit 11 and operational amplifier 9 forming a signal conversion circuit, and the output of the amplifier 9 is A signal voltage b is output to the end 9A.

これらの信号電圧(a+b)、bは時系列的に増幅器9
から出力されるので、演算回路13は信号電圧(a+b
)或いはb、更には必要に応じて(a+b)’b=a、
(a+b) −2b=a−b、2b−(a+b)=b−
a、aXb、a/b。
These signal voltages (a+b) and b are applied to the amplifier 9 in time series.
Since the arithmetic circuit 13 outputs the signal voltage (a+b
) or b, and if necessary, (a+b)'b=a,
(a+b) -2b=a-b, 2b-(a+b)=b-
a, aXb, a/b.

a/ (a+ b)、b/ (a+b)等の演算を行な
い、距離情報処理回路(不図示)にそれら情報を送り、
該距離情報処理回路はこれら情報に応じた距離情報を出
力する。尚、第2図示の様にスイッチ8を受光素子7に
直列に接続し、スイッチ1゜3.8を適宜開閉すること
により増幅器9の出力端9Aから信号電圧aを単独に出
力させることができる。
Performs calculations such as a/ (a + b), b/ (a + b), etc., and sends the information to a distance information processing circuit (not shown),
The distance information processing circuit outputs distance information according to these pieces of information. By connecting the switch 8 in series with the light-receiving element 7 as shown in the second diagram and opening and closing the switch 1°3.8 as appropriate, the signal voltage a can be output independently from the output terminal 9A of the amplifier 9. .

第1図における以上のような動作は原理的にはスイッチ
3のみ必要であってスイッチ1は不要である。しかし本
発明のように2受光素子を用いて測距を行なう装置にお
いては両受光素子5,7間の物理的隙間を可能な限り小
さくし、特性を等しく、かつ暗主がこの小さいものとす
る必要があるため通常は受光素子5,7を第3図(a)
のように1チップ−Lに形成する。このときスイッチ3
のみが存在して、そのスイッチ3がオフであったとして
も第3図(b)のように光が受光素子5上に入射してい
るにも拘らず、受光素子7から受光素子5の出力電流の
数分の1程度の出力が現れる。これは受光素子5の出力
電流を環流するループかないために生じる漏れと考えら
れる。そこで第1図ではスイッチ1を付加しているもの
である。スイッチ1を4−j加して受光素子5の出力を
スイッチを通して環流させると、第3図(C)の如くこ
の漏れ電流は生じなくなる。さらに図示しないが受光素
子5.7の陽極間の容量による影響も考えられる。
In principle, the above-described operation in FIG. 1 requires only the switch 3, and the switch 1 is not necessary. However, in a device that measures distance using two light-receiving elements as in the present invention, the physical gap between both light-receiving elements 5 and 7 is made as small as possible so that the characteristics are equal and the dark main is small. Because it is necessary, the light receiving elements 5 and 7 are usually installed as shown in Fig. 3(a).
It is formed into 1 chip-L as shown in FIG. At this time switch 3
Even if the switch 3 is off and the light is incident on the light receiving element 5 as shown in FIG. 3(b), the output from the light receiving element 7 is still An output of about a fraction of the current appears. This is considered to be a leakage caused by the lack of a loop for circulating the output current of the light receiving element 5. Therefore, in FIG. 1, a switch 1 is added. If the switch 1 is added 4-j to circulate the output of the light receiving element 5 through the switch, this leakage current will no longer occur as shown in FIG. 3(C). Furthermore, although not shown, the influence of the capacitance between the anodes of the light receiving element 5.7 is also considered.

この時スイッチlを設けると受光素子7の両端は増幅器
9の正負側入力に接続されているためイマジナリ−ショ
ー1・どなってO,(V)に安定し、受光素子5の両端
もスイッチ′1によって短絡されているためO(V)に
安定する。したがって容量の両端子間の電圧がほぼ一定
となるためこの受光素イの陽極間の容量は回路に影響を
与えず漏れ電流の発生は防止できる。従ってスイッチl
が設けられている。
At this time, if a switch 1 is provided, both ends of the light receiving element 7 are connected to the positive and negative side inputs of the amplifier 9, so the imaginary show 1 becomes stable at O, (V), and both ends of the light receiving element 5 are also connected to the positive and negative side inputs of the amplifier 9. Since it is short-circuited by 1, it becomes stable at O(V). Therefore, since the voltage between both terminals of the capacitor is approximately constant, the capacitance between the anode of the light receiving element does not affect the circuit, and leakage current can be prevented from occurring. Therefore switch l
is provided.

第4図は第1図示スイッチ1.3をMOS−F E T
 、(電界効果型トランジスタ)のアナログスイッチL
 A 、 3 A f、、用いて実現した例である。
In Figure 4, the first illustrated switch 1.3 is a MOS-FET.
, (field effect transistor) analog switch L
This is an example realized using A, 3 A f,,.

第5図は第4図におけるスイッチjA、3Aをオン・オ
フするタイミングを示したものである。
FIG. 5 shows the timing of turning on and off the switches jA and 3A in FIG. 4.

第4図において仮にスイッチLA 、3Aが同侍にオン
したとすると入力オフセット電圧のために過大な電流が
スイッチIA、3Aを介して流れMOS−AMP9 (
演算増幅器9)の出力は飽和する。この様な不都合を無
くすため第4図示実施例に於ては第5図に示す一様に一
度スイッチIA。
In Fig. 4, if switches LA and 3A are simultaneously turned on, an excessive current flows through switches IA and 3A due to the input offset voltage, and MOS-AMP9 (
The output of operational amplifier 9) is saturated. In order to eliminate this inconvenience, in the embodiment shown in the fourth figure, the switches IA are uniformly connected once as shown in FIG.

3Aともにオフの状態を経て所定の状態に・切り換える
ようにスイッチ制御回路15がスイッチIA3Aのゲー
ト電圧切換用トランジスタ、17 、19のゲート電圧
を制御する様になっている。尚第4図で用いたMo5−
tETのスイッチLA、3Aの等価回路は第6図の様に
なっており、前述のような受光素子上の問題とは別にス
イッチIA或いは3Aにはドレイン−ソース間容量CD
s、オン抵抗RONおよびオフ抵抗ROFFが存在する
ため受光素子を用いて変調された微小電流信号を取り出
すような用途ではROFFおよびcDsによる漏れ電流
を生じる。スイッチLAはこのROFFおよびCDSに
ついても有効で塾ってスイッチIAがオンすることによ
ってスイッチ3Aの両端電圧はほぼ0(V)となるため
前述の場合と同様な理由により交流−直流両方において
漏れ電流が生じなくなる。
The switch control circuit 15 controls the gate voltages of the gate voltage switching transistors 17 and 19 of the switch IA3A so that both IA3A go through an OFF state and then switch to a predetermined state. Furthermore, Mo5- used in Fig. 4
The equivalent circuit of the tET switches LA and 3A is as shown in Figure 6. Apart from the above-mentioned problem with the light receiving element, the switch IA or 3A has a drain-source capacitance CD.
s, on-resistance RON and off-resistance ROFF, leakage current due to ROFF and cDs occurs in applications where a modulated minute current signal is extracted using a light receiving element. The switch LA is also effective for this ROFF and CDS, and when the switch IA is turned on, the voltage across the switch 3A becomes almost 0 (V), so for the same reason as the above case, there is a leakage current in both AC and DC. will no longer occur.

第7図は受光素子5,7を逆並列に接続した例で、スイ
ッチ3Aをオン、スイッチIAをオフとすることにより
、増幅器9の出力端9Aから信号電圧(b−a)が、ま
たスイッチIAをオン、スイッチ3Aをオフす8二とに
より信号電圧すが直接得られ、さらに信号電圧fb−(
b−a))により信号電圧aを、信号電圧(2b−(b
 −a))により信号電圧(a+b)を算出できる例で
ある。
FIG. 7 shows an example in which the light receiving elements 5 and 7 are connected in antiparallel. By turning on the switch 3A and turning off the switch IA, the signal voltage (b-a) is applied from the output terminal 9A of the amplifier 9 to the switch By turning on IA and turning off switch 3A, the signal voltage is directly obtained, and the signal voltage fb-(
b-a)), the signal voltage a is changed to the signal voltage (2b-(b
-a)) This is an example in which the signal voltage (a+b) can be calculated.

該実施例のその他の構成および動作は第4図示のそれと
同様であるので省く。
The rest of the configuration and operation of this embodiment are the same as those shown in FIG. 4, and will therefore be omitted.

第8図は2つの受光素子5,7を逆直列に接続した例で
、該実施例ではスイッチ3Aをオン、スイッチIAをオ
フすることにより信号電圧aが、またスイッチIAをオ
ン、スイッチ3Aをオフすることにより信号電圧−bが
得られる。
FIG. 8 shows an example in which two light-receiving elements 5 and 7 are connected in anti-series. In this embodiment, by turning on the switch 3A and turning off the switch IA, the signal voltage a becomes By turning off, signal voltage -b is obtained.

尚受光素子5,7を第8図において順直列に接続するこ
とにより信号電圧aまたはbを得ることができる。
By connecting the light receiving elements 5 and 7 in series as shown in FIG. 8, the signal voltage a or b can be obtained.

第9図は第4図示受光素子5,7と同様な多数の受光素
子25〜33の夫々に第4図示スイッチ3Aに相当する
直列スイッチ55〜63と第1図示スイッチ1Aに相当
する並列スイッチ35〜43を付加した例で、該実施例
によれば任意の受光素子の単独出力および任意の受光素
子の任意の個数の組合わせの和出力を得ることができる
。尚第4図示スイッチ制御回路15と同様なスイッチ制
御回路15aの出力端15A〜15Jからのスイッチン
グ用出力信号の出力タイミングは増幅器9から得る信号
電圧に応じて変えるだけであり、また以上の説明からこ
の出力タイミングの詳細については容易に知り得るもの
と思われるのでここでは省略する。また他の回路素子の
説明についても各素子に第4図示素子と同一符号を付し
てその説明を省略する。
FIG. 9 shows a series switch 55 to 63 corresponding to the fourth illustrated switch 3A and a parallel switch 35 corresponding to the first illustrated switch 1A to each of a large number of light receiving elements 25 to 33 similar to the fourth illustrated light receiving elements 5 and 7. .about.43 is added, and according to this embodiment, it is possible to obtain the individual output of any light receiving element and the sum output of any combination of any number of light receiving elements. Note that the output timing of the switching output signals from the output terminals 15A to 15J of the switch control circuit 15a similar to the switch control circuit 15 shown in the fourth figure is only changed according to the signal voltage obtained from the amplifier 9, and from the above explanation. The details of this output timing are likely to be easily known, so they will be omitted here. Also, regarding the description of other circuit elements, each element will be given the same reference numeral as the fourth illustrated element, and the description thereof will be omitted.

第10図は受光素子を3個とし、その内1つを逆方向に
接続した例で、該実施例ではスイッチ制御回路15bに
よって第4図示スイッチ制御。
FIG. 10 shows an example in which there are three light receiving elements, one of which is connected in the opposite direction, and in this embodiment, the switch shown in the fourth figure is controlled by the switch control circuit 15b.

3Aと同様なスインチア1.73をオン、スインチア5
.77をオフにすると、信号電圧(−b)が得られ、ま
たスインチア5.73をオン、スイッチ71.77をオ
フとすると信号電圧(a−b)が得られ、スイッチ71
.77をオン、スイッチ75.73をオフとすると信号
電圧(C−b)が得られ、スイッチ75.77をオン、
スイッチ71.73をオフとすると信号電圧(a+C−
b)が得られる。
Turn on Sinchia 1.73 similar to 3A, Sinchia 5
.. When switch 77 is turned off, a signal voltage (-b) is obtained, and when switch 71.73 is turned on and switch 71.77 is turned off, a signal voltage (a-b) is obtained.
.. When 77 is turned on and switch 75.73 is turned off, a signal voltage (C-b) is obtained, and switch 75.77 is turned on and switch 75.73 is turned off.
When switches 71 and 73 are turned off, the signal voltage (a+C-
b) is obtained.

第11図は多数の受光素子を用い、その内の受光素子7
9,83,87.89を図示の様に逆方向に接続し、常
時用いる受光素子79,81゜89.93に対するスイ
ッチを省いた例であって、第9図波ひに第10図示実施
例の応用例である。第11図において受光素子79〜9
3は第4図示受光素子5,7と同様な受光素子であり、
スイッチ95〜109は第4図示スインチIA、3Aと
同様なMOS−FETで形成されたスイッチであり、′
スイッチ制御回路15cは第4図示素子・ソチ制御回路
15と同様な機能を有する、前記スイ、千群95−10
8のスイッチングのタイミングを帛j御するスイッチ制
御回路である。、尚第4図示の素子と同一機能を有する
素子については同一符号を付してその説明を省略する。
In FIG. 11, a large number of light receiving elements are used, of which light receiving element 7 is used.
9, 83, 87, and 89 are connected in the opposite direction as shown in the figure, and a switch for the constantly used light receiving elements 79, 81, and 89.93 is omitted. This is an application example of In FIG. 11, the light receiving elements 79 to 9
3 is a light receiving element similar to the light receiving elements 5 and 7 shown in the fourth figure;
Switches 95 to 109 are switches formed with MOS-FETs similar to the switches IA and 3A shown in the fourth figure;
The switch control circuit 15c has the same function as the fourth illustrated element/Sochi control circuit 15.
This is a switch control circuit that controls the switching timing of No. 8. Elements having the same functions as the elements shown in FIG. 4 are designated by the same reference numerals and their explanations will be omitted.

第12図は第4図示受光素子と同様な受光素子lit、
 113の一端をMOS−AMP9の入力端ではなく、
接地点に接続した例で、前述の第4図の実施例よりも受
光素子111からの漏れ電流の点において不利になるも
のの、何らかの理由により受光素子1−11.113の
一端がMos−AMP9の入力端と接続できない場合に
有効となる例である。
FIG. 12 shows a light receiving element lit similar to the light receiving element shown in FIG.
One end of 113 is not the input end of MOS-AMP9,
Although this example is connected to the ground point and is disadvantageous in terms of leakage current from the light receiving element 111 than the embodiment shown in FIG. 4, for some reason one end of the light receiving element 1-11. This example is effective when the input terminal cannot be connected.

第13図は第9図示実施例と同様な多数の受光素子を用
いた例であって、受光素子を複数の群、すなわち115
と117からなる第1群、119の第2群、121.1
23.125からなる第3群にまとめ、これら群に対し
て1組の並列・直列スイッチ127〜137を設け、第
9図示スイッチ制御回路15aと同様なスイッチ制御回
路15dからの出力により各スイッチ128〜137を
適宜切り換えて増幅器9より所望の信号電圧を得る様に
した例である。該構成を採用することにより必要なスイ
ッチの数を減少させ、またスイッチ制御回路15dも簡
単となる。
FIG. 13 shows an example using a large number of light receiving elements similar to the embodiment shown in FIG.
and the first group consisting of 117, the second group of 119, 121.1
23 and 125, and one set of parallel/series switches 127 to 137 is provided for these groups, and each switch 128 is controlled by an output from a switch control circuit 15d similar to the switch control circuit 15a shown in the ninth figure. This is an example in which a desired signal voltage is obtained from the amplifier 9 by appropriately switching the signals .about.137. By adopting this configuration, the number of necessary switches can be reduced, and the switch control circuit 15d can also be simplified.

第14図は受光素子として公知の半導体装置検出器(P
SDと略称する)139を用いた例で、MOS−FET
のスイッチ141.143の夫々を適宜オン争オフとす
ると2個の検出端子(電極) 139a138bから和
の信号電圧(a+ b)が得られ、スイッ9−141を
オフ、スイッチ143をオンとすると信号電圧すのみを
得ることができる。
Figure 14 shows a well-known semiconductor device detector (P
This is an example using 139 (abbreviated as SD), MOS-FET
When switches 141 and 143 are turned on and off as appropriate, a sum signal voltage (a + b) is obtained from the two detection terminals (electrodes) 139a and 138b, and when switches 9 to 141 are turned off and switch 143 is turned on, the signal is Only the voltage can be obtained.

尚P S D 139の一方の検出端子139bとMO
S−AMP9の反転入力端子(−)間等に直列にスイッ
チ手段を入れてP S D 139からの信号を完全に
断つ構成も可能であることは言うまでもない。また検出
器の2個の電極の相互及び/或いは各電極間に直列にス
イッチ手段を接続しても同様な効果が得られることは言
うまでもない。
Note that one detection terminal 139b of PSD 139 and MO
Needless to say, it is also possible to completely cut off the signal from the PSD 139 by inserting a switch means in series between the inverting input terminal (-) of the S-AMP 9, etc. It goes without saying that the same effect can be obtained by connecting the switch means in series between the two electrodes of the detector and/or between each electrode.

また更に以上の説明では演−算増幅器9としては入力手
段がMOS−FETのMOS−AMPが好ましいものと
して説明したが受光素子に入射する信号光が偏重されて
いる場合には入力バイアス電流の存在する通常の演算増
幅器でも良、いことは言うもでもない。
Further, in the above explanation, it is assumed that a MOS-AMP in which the input means is a MOS-FET is preferably used as the operational amplifier 9, but if the signal light incident on the light receiving element is biased, an input bias current exists. There is nothing wrong with using a normal operational amplifier.

以上のように本発明では複数の受光素子を有する距離測
定装置において受光素子を任意に切り換え1.かつ素子
自体あるいはそれに接続された回路素子により加算ある
いは減算を行□なわせる分散処理的手法を取り入れたの
で、多数の情報が得られ、また同時に受光素子用信号変
換回路9及び演算回路13等の受光素子出力処理回路の
規模を縮小することができるものである。
As described above, in the present invention, in a distance measuring device having a plurality of light receiving elements, the light receiving elements can be arbitrarily switched.1. In addition, a distributed processing method is adopted in which addition or subtraction is performed by the element itself or the circuit elements connected to it, so a large amount of information can be obtained, and at the same time, the signal conversion circuit 9 for the light receiving element, the arithmetic circuit 13, etc. The scale of the light receiving element output processing circuit can be reduced.

更には信号変換回路を一本化し得たので、全ての信号が
同一の変換回路で処理され、電流から電圧への変換定数
およびその周波数特性、さらにはオフセット電圧等の諸
条件が等しい信号が得られ、精度の高い信号乃至は距離
情報が得られるものである。
Furthermore, since we were able to integrate the signal conversion circuit into one, all signals are processed by the same conversion circuit, and signals with the same conditions such as the current-to-voltage conversion constant, its frequency characteristics, and offset voltage can be obtained. It is possible to obtain highly accurate signals or distance information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は距離測定装置に適用した本発明の一実施例の回
路接続図。 第2図は本発明の他の実施例の回路接続図、第3図(a
)は第1図示実施例における受光集子の具体的構成図、 第3図(b) 、 (C)は第1図示実施例に関連する
動作説明図、 第4図は本発明の第三実施例の回路接続図、第5図は第
4図示実施例の動作説明図、第6図は第4図示スインチ
の等価回路図、第7図乃至第14図は本発明の他の実施
例の回路接続図である。 図において、l 、 3.−−−−スイ・ンチ、5 、
7−−−−受光素子、9−一一一演算増幅器、1.3−
−−一演算回路である。 出願人  キャノン株式会社 必 ○ 1兜 第 7 図 vr 第 6 暖 //
FIG. 1 is a circuit connection diagram of an embodiment of the present invention applied to a distance measuring device. FIG. 2 is a circuit connection diagram of another embodiment of the present invention, and FIG.
) is a specific configuration diagram of the light receiving collector in the first illustrated embodiment, FIGS. 3(b) and (C) are operation explanatory diagrams related to the first illustrated embodiment, and FIG. 4 is a third embodiment of the present invention. 5 is an explanatory diagram of the operation of the fourth embodiment, FIG. 6 is an equivalent circuit diagram of the spinch shown in the fourth embodiment, and FIGS. 7 to 14 are circuits of other embodiments of the present invention. It is a connection diagram. In the figure, l, 3. -----Sui Nchi, 5,
7-----Photodetector, 9-11 operational amplifier, 1.3-
--One arithmetic circuit. Applicant: Canon Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)複数の検知素子を用いて対象物迄の距離を測定す
る装置における検知素子出力電流を電圧に変換する入力
回路において、前記複数の検知素子を弔−の信号変換回
路に接続し、該変換回路出力に演算回路を接続し、かつ
前記複数の検知素子の少なくとも1つに直列に第1スイ
ンチ手段を接続し、該スイッチ手段の開閉により前記演
算回路より各検知素子出力の単独及び/或いは組合わせ
出力を得ることを特徴とする入力回路。
(1) In an input circuit that converts a sensing element output current into voltage in a device that measures the distance to an object using a plurality of sensing elements, the plurality of sensing elements are connected to a signal conversion circuit, and the An arithmetic circuit is connected to the output of the conversion circuit, and a first switch means is connected in series to at least one of the plurality of sensing elements, and the output of each sensing element is independently and/or An input circuit characterized by obtaining a combinational output.
(2)前記組合わせ出力は前記複数検知素子出力の和で
あることを特徴とする特許請求の範囲第(1)項記載の
入力回路。
(2) The input circuit according to claim (1), wherein the combined output is a sum of the outputs of the plurality of sensing elements.
(3)前記組合わせ出力は前記複数検知素子出力の差で
あることを特徴とする特許請求の範囲第(1)項記載の
入力回路。
(3) The input circuit according to claim (1), wherein the combined output is a difference between the outputs of the plurality of sensing elements.
(4)前記第1スインチ手段が接続された検知素子に並
列に第2のスイッチ手段を接続し、前記第1スイッチ手
段が閉じている時は前記第2スインチ手段を開き、前記
第1スイッチ手段が開いている時は前記第2スイツチf
段を閉じる様にしたことを特徴とする特許請求の範囲第
(1)項記載の入力回路。
(4) A second switch means is connected in parallel to the detection element to which the first switch means is connected, and when the first switch means is closed, the second switch means is opened, and the first switch means is opened. is open, the second switch f
The input circuit according to claim 1, characterized in that the stages are closed.
(5)半導体装置検出器を用いて対象物迄の距離を検出
する装置における前記検出器の共通電極以外の複数の電
極からの出力電流を電圧に変換する入力回路にお−いて
、前記検出器を単一の信号変換回路に接続し、該変換回
路出力に演算回路を接続し、かつ前記検出器の複数電極
の相互及び/或17)は各電極間に直列にスイッチ手段
を接続し、該スイッチ手段の開閉により前記演算回路よ
り各電極出力の単独及び/或いは組合わせ出力を得るこ
とを特徴とする入力回路。
(5) In an input circuit that converts output current from a plurality of electrodes other than a common electrode of the detector into a voltage in a device that detects a distance to an object using a semiconductor device detector, the detector is connected to a single signal conversion circuit, an arithmetic circuit is connected to the output of the conversion circuit, and a switch means is connected in series between the plurality of electrodes of the detector and/or each electrode, and An input circuit characterized in that an individual and/or combined output of each electrode is obtained from the arithmetic circuit by opening and closing a switch means.
JP2907683A 1983-02-23 1983-02-23 Inputting circuit for range finder Pending JPS59154410A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2907683A JPS59154410A (en) 1983-02-23 1983-02-23 Inputting circuit for range finder
US06/581,958 US4701048A (en) 1983-02-23 1984-02-21 Input circuit for distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2907683A JPS59154410A (en) 1983-02-23 1983-02-23 Inputting circuit for range finder

Publications (1)

Publication Number Publication Date
JPS59154410A true JPS59154410A (en) 1984-09-03

Family

ID=12266250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2907683A Pending JPS59154410A (en) 1983-02-23 1983-02-23 Inputting circuit for range finder

Country Status (1)

Country Link
JP (1) JPS59154410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238261A (en) * 1991-03-08 1993-08-24 Toyota Jidosha Kabushiki Kaisha Suspension of steering vehicle wheel having z-type upper arm assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238261A (en) * 1991-03-08 1993-08-24 Toyota Jidosha Kabushiki Kaisha Suspension of steering vehicle wheel having z-type upper arm assembly

Similar Documents

Publication Publication Date Title
JP6970513B2 (en) Photoelectric converter
US4701048A (en) Input circuit for distance measuring apparatus
JPS59154410A (en) Inputting circuit for range finder
US10879856B2 (en) Sensor array with distributed low noise amplifier
JP2536842B2 (en) Photoelectric conversion device
JP2536841B2 (en) Photoelectric conversion device
JP2735542B2 (en) Photoelectric conversion device
JP2674468B2 (en) Distance detection device
JPS6227688A (en) Photoelectric switch for setting distance
JP2735541B2 (en) Photoelectric conversion device
JP2735543B2 (en) Photoelectric conversion device
JPS61149883A (en) Range measuring instrument
JPH0257739B2 (en)
JP2536844B2 (en) Photoelectric conversion device
JPS63167211A (en) Distance detecting device
JPH0466282B2 (en)
JPS60115882A (en) Signal processing circuit of distance measuring device
JP4350368B2 (en) Photoelectric encoder
JP3193481B2 (en) Distance measuring device
JPH02246274A (en) Infrared ray detector
JPS62289714A (en) Distance measuring instrument
JPH051791Y2 (en)
CN118500542A (en) Optical signal detection circuit and detection method
JPH0769352B2 (en) Current detector range switching circuit
JPH09243319A (en) Position sensor