JPS59153931A - Fuel injection quantity controller for diesel engine - Google Patents

Fuel injection quantity controller for diesel engine

Info

Publication number
JPS59153931A
JPS59153931A JP58025510A JP2551083A JPS59153931A JP S59153931 A JPS59153931 A JP S59153931A JP 58025510 A JP58025510 A JP 58025510A JP 2551083 A JP2551083 A JP 2551083A JP S59153931 A JPS59153931 A JP S59153931A
Authority
JP
Japan
Prior art keywords
injection amount
upper limit
basic injection
fuel injection
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58025510A
Other languages
Japanese (ja)
Other versions
JPH0536626B2 (en
Inventor
Toshihisa Ogawa
小河 寿久
Hideo Miyagi
宮城 秀夫
Masaomi Nagase
長瀬 昌臣
Kiyotaka Matsuno
松野 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58025510A priority Critical patent/JPS59153931A/en
Publication of JPS59153931A publication Critical patent/JPS59153931A/en
Publication of JPH0536626B2 publication Critical patent/JPH0536626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent excessive/insufficient fuel injection quantity upon acceleration/deceleration by obtaining fuel injection through comparision between basic injection of Diesel engine operated in accordance to rotation and accelerator opening and upper limit corrected in accordance to variation of suction pressure. CONSTITUTION:Fuel injection quantity control of Diesel engine will move a plunger 228 through duty ratio control of spill control solenoid 226 in fuel injection pump 20 to move a spill ring 222. The spill control solenoid 226 is controlled by a control circuit 30 to be provided with detected levels from accelerator opening sensor 32, suction pressure sensor 104, and rotary angle sensor 234. The control circuit 30 will operate basic injection quantity corresponding to engine speed and accelerator opening and to obtain actual fuel injection quantity through comparison between the basic injection quantity and its upper limit obtained in accordance with suction pressure and its variation.

Description

【発明の詳細な説明】 本発明はディーゼル機関の燃料噴射)d制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control device for a diesel engine.

一般に、ディーゼル機関においては、燃料噴射量を機関
の回転速度およびアクセル開度(機関負荷)により基本
的に演算するが、この基本噴射量には機関の回転速度お
よび機関の吸気通路の吸気圧に応じた上限値が設定され
ている。
Generally, in a diesel engine, the fuel injection amount is basically calculated based on the engine rotation speed and accelerator opening (engine load). The upper limit value is set accordingly.

しかしながら、上述の従来形においては、吸気圧センサ
の入力回路に吸気脈動による影響を小さくするために1
00〜150m5ec程度の時定数のフィルタ(積分回
路)を通常膜けであるために、吸気圧検出遅れが存在す
る。この結果、加速時の吸気圧急上昇時の計算噴射量は
、スモーク等の発生等から許容される噴射量よす小さく
なって加速性が悪化し、他方、減速時の吸気圧急下降時
の引算噴、射量は犬きくなり黒煙の発生等の原因になる
という問題点があった。
However, in the conventional type described above, in order to reduce the influence of intake pulsation on the input circuit of the intake pressure sensor,
Since the filter (integrator circuit) with a time constant of about 00 to 150 m5ec is usually a membrane, there is a delay in detecting the intake pressure. As a result, the calculated injection amount when the intake pressure suddenly drops during acceleration becomes smaller than the allowable injection amount due to the occurrence of smoke, etc., resulting in poor acceleration.On the other hand, when the intake pressure suddenly drops during deceleration, There was a problem in that the calculation and amount of injection were too large and caused black smoke to be produced.

本発明の目的は、上述の従来形における問題点に鑑み、
吸気圧の急変化時には基本噴射量の上限値を補正するこ
とにより、加速時の加速性を向上させると共に減速時の
噴射量過多を減少させて黒煙の発生等全防止することに
ある。
The purpose of the present invention is to solve the above-mentioned problems in the conventional type.
By correcting the upper limit value of the basic injection amount when the intake pressure suddenly changes, the acceleration performance during acceleration is improved, and excessive injection amount during deceleration is reduced, thereby completely preventing the generation of black smoke.

第1図は本発明の詳細な説明するための全体ブロック図
である。基本噴射量演算手段はディーゼル機関の回転速
度Neおよびアクセル開度Accpに応じて基本噴射量
全演算する。基本噴射量上限値演算手段は機関の回転速
度Neおよび機関の吸気通路の吸気圧Pに応じて基本噴
射量の上限値QF UL t、  を演算し、さらにこ
の基本噴射ttの上限値QFUIJ、は基本噴射量上限
値補正手段によって補正される。つまり、吸気圧変化検
出手段により吸気圧の変化△Pを検出]7、この吸気圧
の変化△Pにもとづいて基本噴射量上限値補正手段は基
本噴射■・十の上限値を補正する。噴射柑演算手段は補
正された基本噴射量上限値Qptu、r;と基本噴射量
演算手段からの基本噴射量QB、l!:を比較し、この
比較結果に応じて噴射量を演算する。つ1す、中m、r
、;≧QBであれば噴射量QFI裟Q13とし、QFU
LL <QBであれは噴射π・二QF□、をQIU、1
′とし、その量に応じた燃料がディーゼル機関に供給さ
れることになる。
FIG. 1 is an overall block diagram for explaining the present invention in detail. The basic injection amount calculation means calculates the entire basic injection amount according to the rotational speed Ne of the diesel engine and the accelerator opening Accp. The basic injection amount upper limit value calculation means calculates the upper limit value QFUL t, of the basic injection amount according to the engine rotational speed Ne and the intake pressure P of the intake passage of the engine, and furthermore, the upper limit value QFUIJ, of the basic injection amount tt is It is corrected by the basic injection amount upper limit value correction means. That is, the intake pressure change detection means detects the change ΔP in the intake pressure] 7. Based on this change ΔP in the intake pressure, the basic injection amount upper limit value correction means corrects the upper limit value of the basic injection {circle around (1)}. The injection quantity calculation means calculates the corrected basic injection quantity upper limit value Qptu, r; and the basic injection quantity QB, l! from the basic injection quantity calculation means. : is compared, and the injection amount is calculated according to the comparison result. tsu1su, middle m, r
, ; If ≧QB, the injection amount QFI is set as Q13, and QFU
If LL <QB, then injection π・2QF□, is QIU, 1
', and fuel corresponding to that amount is supplied to the diesel engine.

第2図以降の因FIjを参照して不発明の詳細な説明す
る。
The non-invention will be explained in detail with reference to factors FIj shown in FIG. 2 and subsequent figures.

第2図は不発明に係るディーゼル機関の燃料噴射量制御
装置の一実施例を示す全体概要図である。
FIG. 2 is an overall schematic diagram showing an embodiment of the fuel injection amount control device for a diesel engine according to the invention.

第2図において、10は機関本体、20は分配型(VE
型)燃料噴射ポンプ、30は機関本体10および燃料噴
射ポンプ20を制御するだめの制御回路であって、たと
えばマイクロコンピュータにヨ’) uJ g サレx
ンソンコントロールユニツ)(ECU)と呼ばれるもの
である。
In Fig. 2, 10 is the engine main body, 20 is the distribution type (VE
30 is a control circuit for controlling the engine body 10 and the fuel injection pump 20, and is connected to a microcomputer, for example.
It is called an electronic control unit (ECU).

機関本体10の吸気マニホールド102には吸入空気の
絶対圧を検出するための吸気圧センサ104が設けられ
、この吸気圧センサ104は絶対圧に応じたアナログ電
圧の信号″を発生する。さらに、機関本体10の燃焼室
には各気筒毎に燃料噴射ボンデ20からの加圧燃料を吸
気ボートへ供給するための燃料噴射弁106が設けられ
ている。
The intake manifold 102 of the engine body 10 is provided with an intake pressure sensor 104 for detecting the absolute pressure of intake air, and this intake pressure sensor 104 generates an analog voltage signal corresponding to the absolute pressure. A fuel injection valve 106 is provided in the combustion chamber of the main body 10 for each cylinder to supply pressurized fuel from the fuel injection cylinder 20 to the intake boat.

遠心力式(ベーン式)フィードポンプ202は機関のド
ライブシャツ)204に結合され、一回転あたり一定量
の燃料全燃料タンク(図示せず)jt)吸上げるもので
ある。このフィードボンデ202の燃料圧力はプレッシ
ャレギュレーティングパルプ206によって調整され、
この結果、フィードポンプカバ−208上部の孔を通っ
てポンプ室内に送り込まれた燃料圧力はポンプ回転速度
に比例して上昇する。なお、フィードボンデ202の左
方の断面図は90°展開図である。
A centrifugal force type (vane type) feed pump 202 is connected to a drive shirt 204 of the engine, and sucks up a fixed amount of fuel from the entire fuel tank (not shown) per revolution. The fuel pressure of this feed bonder 202 is regulated by a pressure regulating pulp 206,
As a result, the pressure of the fuel fed into the pump chamber through the hole in the upper part of the feed pump cover 208 increases in proportion to the pump rotation speed. Note that the left cross-sectional view of the feed bonder 202 is a 90° developed view.

ドライブシャフト204はフィートrンプ202と共に
、カムプレート210およびポンプデランソヤ212全
同時に駆動する。デランソヤスプリング214はボンデ
プランジャ212とカムプレート210とを固定された
ローラ216に押付けている。このカムプレート210
が回転してそのフェイスカムがローラ216上に乗り上
がると、ン」?ンデプランヅヤ212は規定量の往復運
動を行う。同時に、ボンデプランツヤ212は回転運動
も行゛つているので、燃2:1全吸入して分配圧送する
The drive shaft 204, along with the foot pump 202, drives a cam plate 210 and a pump deran soar 212 all at the same time. A Delan Sawyer spring 214 presses the bond plunger 212 and cam plate 210 against a fixed roller 216. This cam plate 210
rotates and the face cam rides on the roller 216. The landing gear 212 performs a reciprocating motion by a predetermined amount. At the same time, the bond plant gear 212 is also performing rotational movement, so it completely sucks in 2:1 fuel and distributes it under pressure.

燃料の圧送はボンデプランジャ212の上昇開始で始ま
り、この結果、分配通路218およびデリバリパルプ2
20を通って噴射弁106に供給され、そして、燃料の
圧送はボンデプランツヤ212がさらに上昇してスピル
ポート222がスピルリング224の右端面よジポンデ
室内に開放された時に終了する。
The pumping of fuel begins when the bonding plunger 212 begins to rise, and as a result, the distribution passage 218 and the delivery pulp 2
20 to the injection valve 106, and the pumping of the fuel ends when the bond planter 212 is further raised and the spill port 222 is opened from the right end surface of the spill ring 224 into the injection chamber.

燃料噴射量制御はスピルコントロールソレノイド(リニ
アンレノイド)226の辿−電デューテイ比の制御によ
ってデランソヤ228を移動し、それにより、スピルリ
ング222の位tfヲ移動して行う。このとき、スピル
リング、222の位置はスピル位置センサ230によっ
て検知され、制御回路30によってより精確に制御され
ることになる。
Fuel injection amount control is carried out by moving the delan soyer 228 by controlling the trace current duty ratio of the spill control solenoid (linear solenoid) 226, thereby moving the spill ring 222 by tf. At this time, the position of the spill ring 222 is detected by the spill position sensor 230 and is controlled more accurately by the control circuit 30.

また、ドライブシャフト204に固定されたギア232
には、電磁ピックアップにより構成される回転センサ2
34が設けられており、この回転センサ234はドライ
ブシャフト204の回転速度すなわち機関の回転速度に
比セ1」シた周波数のパルス信号を発生する。
Additionally, a gear 232 fixed to the drive shaft 204
, there is a rotation sensor 2 composed of an electromagnetic pickup.
34 is provided, and this rotation sensor 234 generates a pulse signal at a frequency proportional to the rotational speed of the drive shaft 204, that is, the rotational speed of the engine.

さらに、第2図において、31よアクセルペダル、32
はアクセル開度センサであって、アクセルペダル31の
開度に応じたアナログ電圧の信号を発生する。
Furthermore, in FIG. 2, 31 is the accelerator pedal, 32 is the accelerator pedal,
is an accelerator opening sensor, which generates an analog voltage signal according to the opening of the accelerator pedal 31.

第3図は第2図の制御回路30の詳細なブロック図であ
る。第3図において、アクセル開度センサ32、吸気圧
センサ104の各アナログ信号はアナログマルチルクサ
全内蔵するA/D変換器302に供給されておシ、各ア
ナログ信号は順次A/D変換されることになる。回転角
センサ234のノヤルス信号は回転速度形成回路304
を介して入出カフ1?−)3060所定位置に供給され
る。この場合、回転速度形成回路304は回転速度に反
比例した2通信号を発生する。
FIG. 3 is a detailed block diagram of the control circuit 30 of FIG. In FIG. 3, each analog signal of the accelerator opening sensor 32 and the intake pressure sensor 104 is supplied to an A/D converter 302 that has a built-in analog multi-luxer, and each analog signal is sequentially A/D converted. It turns out. The Noyals signal of the rotation angle sensor 234 is transmitted to the rotation speed forming circuit 304.
Input/output cuff 1 through? -) 3060 is supplied to a predetermined position. In this case, the rotation speed forming circuit 304 generates two signals that are inversely proportional to the rotation speed.

A/D変換器302および入出力ボート306は共通パ
ス310を介してCPU312、RAM314、ROM
316、および入出力ボート318に接続されている。
The A/D converter 302 and the input/output board 306 are connected to the CPU 312, RAM 314, and ROM via a common path 310.
316, and an input/output port 318.

RA IVI 314には必要に応じてメインルーチン
、燃料噴射量計算ルーチン、燃料噴射時期計算ルーチン
等(Cおける計算結果が格納されるーROM316 K
J、L、イニ7ヤルルーテン、メインルーチン、燃料噴
射量割算ルーナン、燃料噴射時期計算ルーチン等のプロ
グラム、これらの処理に必要な凍々の固定データ、定数
等が予め格納されている。
The RA IVI 314 stores the main routine, fuel injection amount calculation routine, fuel injection timing calculation routine, etc. (the calculation results in C are stored in the ROM 316K).
Programs such as J, L, initial routine, main routine, fuel injection amount division routine, fuel injection timing calculation routine, etc., and fixed data and constants necessary for these processes are stored in advance.

入出力ボート318にはスピルコントロールソレノイド
226を作動させるためのサーボアンプ″によシ構成さ
れる駆動回路320が接続され、駆動回路320には入
出力ボート318を介してCPU 312に!、Dスビ
ルコントロールンレノイド226の通電デー−ティ比(
/J?ルス幅)が与えられる。このとき、スピル位置セ
ンサ230によってブランヅヤ212の位置が検出され
駆動回路320にフィードバックされる。
A drive circuit 320 consisting of a servo amplifier for operating a spill control solenoid 226 is connected to the input/output boat 318. Control-lenoid 226 energization date ratio (
/J? width) is given. At this time, the position of the branding wheel 212 is detected by the spill position sensor 230 and fed back to the drive circuit 320.

鄭4図、第5図のフローチャート全参照して第3図の制
御回路の動作を説明する。
The operation of the control circuit shown in FIG. 3 will be explained with reference to the flowcharts shown in FIGS. 4 and 5.

第4図は燃料噴射量制御ルーチンであって、所定時間毎
に実行される時間割込みル−チンである。
FIG. 4 shows a fuel injection amount control routine, which is a time interrupt routine executed at predetermined time intervals.

割込みステ号プ401よシステップ402に進み、回2
転角センサ234から回転速度Ne を取込み、さらに
ステップ403において、アクセル開度センサ32から
アクセル開度A。cpを取込む。
Proceeding from interrupt step 401 to step 402, step 2
The rotational speed Ne is read from the rotation angle sensor 234, and in step 403, the accelerator opening A is read from the accelerator opening sensor 32. Take in cp.

ステップ404では、CPU312は回転速度Neおよ
びアクセル開度Ae(!pに基本噴射jt Q Bを演
算する。つま9、第6図に示す2次元マツプによυ補間
計算を行って基本噴射量を演算する。
In step 404, the CPU 312 calculates the basic injection jt Q B based on the rotational speed Ne and the accelerator opening Ae (!p. Finally, υ interpolation calculation is performed using the two-dimensional map shown in FIG. 6 to calculate the basic injection amount. calculate.

ステップ405では、CPU312は回転速度Neによ
り吸気圧760 mHf 時の基本噴射量の上限値QF
ULLを演算する。つまυ、第7図に示す1次元マツプ
により補間計算を行って上限値Q貼りを演算する。
In step 405, the CPU 312 determines the upper limit QF of the basic injection amount when the intake pressure is 760 mHf based on the rotational speed Ne.
Calculate ULL. Finally, the upper limit value Q is calculated by performing interpolation calculations using the one-dimensional map shown in FIG.

ステップ406では、CPU312は、ステップ405
にて求められた上限値QFtlLLを、RAM314に
格納されている吸気圧補正係数に1および吸気圧変化補
正係数に、により補正する。つまQFtJLL’ ”I
(t ” K2 ” QFULLを演算する。補正係数
に1. K2については後述する。
In step 406, the CPU 312
The upper limit value QFtlLL determined in is corrected using the intake pressure correction coefficient 1 and the intake pressure change correction coefficient stored in the RAM 314. TsumaQFtJLL' ”I
(Calculate t ``K2'' QFULL. 1 for the correction coefficient. K2 will be described later.

ステップ407では、CPU314は補正された上限値
QFIJLL’  とステップ404にて求められた基
本噴射量QI3とを比較し、QFULL’≧QB であ
ればステップ408にて最終噴射量QF ’I NをQ
Bとし、他方、QFULL’ < QB であればステ
ップ。
In step 407, the CPU 314 compares the corrected upper limit value QFIJLL' with the basic injection quantity QI3 obtained in step 404, and if QFULL'≧QB, the final injection quantity QF'IN is changed to Q in step 408.
B, and on the other hand, if QFULL'< QB, step.

409にて最終噴射量QFIN e−上限値QpULL
’ とする。この結果、ステップ410において、最終
噴射量QFINに応じた量の通電デー−ティ比全入出力
ポート318を介して駆動回路≠≠320に与えてスピ
ルコントロール・クルージ410を作動すせる。そして
、ステップ411でこのル−チンは終了する。
At 409, final injection amount QFIN e-upper limit QpULL
'. As a result, in step 410, an amount of current corresponding to the final injection amount QFIN is applied to the drive circuit≠≠320 via the full input/output port 318 to operate the spill control cruise 410. The routine then ends at step 411.

次に、第4図のステップ406において用いられた補正
係数に1.に、について第5図のフローチャートにより
説明する。このフローハ時間割込み゛ルーチンであって
、たとえば50m5ec毎に実行さgる。割込みステッ
プ501からステップ502に丁1(み、ここで、吸気
圧センサ104の吸気圧P全11V、iへみ、さらに、
ステップ503にて、CPU312は吸気圧Pヰにより
吸気圧補正係数に1を演碧rる。つ捷り、第8図に示す
1次元マツプにより補間計埠を行って吸気圧補正係数に
1  を演算する。この演算結果N:RAM314の所
定領域に格納される。なお、第8図には、タープ付ディ
ーゼル機関の場合について示してあp、つまり、吸気圧
Pが760wHf以下でに1 が小さいのは高地補償の
ためであり、吸気圧Pが760 mrnH?以上でに、
  が大きいのはターが過給のためであり、さらに吸気
圧Pが太きくなるとに、を急激に減少させるのはオーバ
過給防止のためである。
Next, add 1 to the correction coefficient used in step 406 of FIG. This will be explained with reference to the flowchart in FIG. This flowchart is a time interrupt routine and is executed, for example, every 50 m5ec. From interrupt step 501 to step 502, the intake pressure P of the intake pressure sensor 104 is 11 V, and further,
In step 503, the CPU 312 calculates 1 as an intake pressure correction coefficient based on the intake pressure P. Then, interpolation is performed using the one-dimensional map shown in FIG. 8 to calculate 1 for the intake pressure correction coefficient. This calculation result N: is stored in a predetermined area of the RAM 314. In addition, Fig. 8 shows the case of a diesel engine with a tarp. That is, the reason why 1 is small when the intake pressure P is 760 wHf or less is to compensate for the high altitude, and when the intake pressure P is 760 mrnH? With that said,
The reason why P is large is because P is for supercharging, and the reason why P is rapidly reduced as the intake pressure P increases is to prevent overcharging.

ステップ504でけ、CPU312は前回このルーチン
テ央行時に得られた吸気圧P。をRAM3]4よす読出
し、ステップ502にて取込まれた吸気圧Pとの差を演
算する。つ捷り、50 m5ec毎の吸気圧変化△P △P4−P−PO ′fr、演算する。
At step 504, the CPU 312 returns the intake pressure P obtained during the previous routine run. is read out from RAM3]4, and the difference between it and the intake pressure P taken in at step 502 is calculated. Then, calculate the intake pressure change ΔP ΔP4-P-PO'fr every 50 m5ec.

ステップ505でi’i、CPU312はe、 ’A 
W亥化△Pにより吸気圧変化補正係DKZ  金彩ηす
る、。
In step 505, i'i, the CPU 312 e, 'A
The intake pressure change correction section DKZ is adjusted by W increase △P.

つまり、第9図に示す2次元マツプ顛より補間計lW:
tl−行って吸気圧変化補正係pJ(2を演算する。
In other words, from the two-dimensional map shown in Fig. 9, the interpolator lW:
tl- to calculate the intake pressure change correction coefficient pJ(2).

この演算結果もRAM314の)ツ[定領域に格納され
る。
The result of this calculation is also stored in a fixed area of the RAM 314.

ステップ506では、吸気圧P’kP。とじてRAM3
14の所定領域に格納してステップ507にてこのルー
チンは終了する。
In step 506, the intake pressure P'kP. Close RAM3
14, and the routine ends at step 507.

WJ9図に示すように、不発明においては、吸気圧変化
△Pが所定値XI  よυ大きいときに(は補正係数に
2  を大きくして基本噴射量の上限111!を太きく
し、他方、吸気圧変化△Pが所定値X2  より小さい
ときには補正係数に、を小さくして基本噴射量の上限値
を小さくしている。これにより、カロ速時の吸気圧急上
昇時の加速性は向上し、また、減速時の吸気圧急下降時
の黒煙発生等が防止される。
As shown in Figure WJ9, in the uninvention, when the intake pressure change △P is larger than the predetermined value When the pressure change △P is smaller than the predetermined value This prevents the generation of black smoke when the intake pressure suddenly drops during deceleration.

なお、基本噴射量は実際には水温センサ、吸気圧センサ
、吸気温センサ等の各センサ出力にもとづいても補正が
行われる。
Note that the basic injection amount is actually corrected based on the outputs of sensors such as a water temperature sensor, an intake pressure sensor, and an intake air temperature sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための全体プロンク図
、第2図は本発明に係るディーゼル機関の燃料噴射量制
御装置の一実施例を示す全体概要図、第3図は第2図の
制御回路の詳細なブロック回路図、第4図、第5図は第
3図の制御回路の動作を駅、明するためのフローチャー
ト、第6図〜第9因は第4図、第5図において用いられ
るディーゼル機関特性図である。 10・・・機関本体、20・・・燃料噴射ポンプ、30
・・・制御回路、32・・・アクセル開度センサ、10
4・・・吸気圧センサ、234・・・回転角センサ、2
26・・・スピルコントロールソレノイド、230・・
・スピル位置センサ。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士  冑 木    朗 弁理士  西 舘 和 之 弁理士  山 口 昭 之 第4図 第5図 第6図 Ne(rpm) 第7図 第8図 60 P(mmHg) 第9図 X20   X。
FIG. 1 is an overall diagram for explaining the present invention in detail, FIG. 2 is an overall schematic diagram showing an embodiment of the fuel injection amount control device for a diesel engine according to the present invention, and FIG. A detailed block circuit diagram of the control circuit of FIG. 4 and FIG. 5 is a flowchart to clarify the operation of the control circuit of FIG. FIG. 2 is a characteristic diagram of a diesel engine used in 10... Engine body, 20... Fuel injection pump, 30
... Control circuit, 32 ... Accelerator opening sensor, 10
4... Intake pressure sensor, 234... Rotation angle sensor, 2
26... Spill control solenoid, 230...
- Spill position sensor. Patent Applicant: Toyota Motor Corporation Patent Attorney Akira Kaguki Patent Attorney Kazuyuki Nishidate Patent Attorney Akira Yamaguchi Figure 4 Figure 5 Figure 6 Ne (rpm) Figure 7 Figure 8 60 P ( mmHg) Figure 9X20X.

Claims (1)

【特許請求の範囲】 1 ディーゼル機関にあって、該機関の回転速度および
アクセル開度に応じて基本噴射量を演算する基本噴射量
演算手段、前記機関の回転速度および該機関の吸気通路
の吸気圧に応じて前記基本噴射量の上限値を演算する基
本噴射量上限値演算手段、前記吸気圧の変化を検出する
吸気圧変化検出手段、該吸気圧の変化に応じて前記基本
噴射量の上限値全補正する基本噴射すd上限値補正手段
、および、該補正された基本噴射量上限値と前記基本噴
射量とを比較し該比較結果に応じて噴射量を演算する噴
射量演算手段全具備し、該噴射量に応じた量の燃料を前
記機関に供給するようにしたディーゼル機関の燃料噴射
量制御装置。 2 前記基本噴射量上限値補正手段は、前記吸気圧が所
定変化率以上に上昇したときに前記基不噴躬知の上限値
を大きくした特許請求の範囲第1項に記載のディーゼル
機関の燃料噴射量制御装置1′f、3、前記基本噴射量
上限値演算手段は、前記吸気圧が所定変化率以上に下+
vi、したときに前記基本噴射量の上限値を小さくした
特許8ff求の範囲第1項に記載のディーゼル機関の燃
料噴射量制御装置。
[Scope of Claims] 1. A basic injection amount calculation means for calculating a basic injection amount in accordance with the rotational speed of the engine and an accelerator opening degree in a diesel engine; Basic injection amount upper limit calculation means for calculating the upper limit value of the basic injection amount according to the atmospheric pressure; intake pressure change detection means for detecting a change in the intake pressure; Completely equipped with basic injection upper limit value correction means for correcting all values, and injection amount calculation means for comparing the corrected basic injection amount upper limit value with the basic injection amount and calculating the injection amount according to the comparison result. A fuel injection amount control device for a diesel engine, wherein an amount of fuel corresponding to the injection amount is supplied to the engine. 2. The fuel for a diesel engine according to claim 1, wherein the basic injection amount upper limit value correcting means increases the upper limit value of the basic injection failure detection when the intake pressure increases beyond a predetermined rate of change. Injection amount control device 1'f, 3, the basic injection amount upper limit calculation means is configured to control when the intake pressure falls below a predetermined rate of change or higher.
vi, the fuel injection amount control device for a diesel engine according to the range 1 item of Patent No. 8ff, in which the upper limit value of the basic injection amount is reduced when
JP58025510A 1983-02-19 1983-02-19 Fuel injection quantity controller for diesel engine Granted JPS59153931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025510A JPS59153931A (en) 1983-02-19 1983-02-19 Fuel injection quantity controller for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025510A JPS59153931A (en) 1983-02-19 1983-02-19 Fuel injection quantity controller for diesel engine

Publications (2)

Publication Number Publication Date
JPS59153931A true JPS59153931A (en) 1984-09-01
JPH0536626B2 JPH0536626B2 (en) 1993-05-31

Family

ID=12168053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025510A Granted JPS59153931A (en) 1983-02-19 1983-02-19 Fuel injection quantity controller for diesel engine

Country Status (1)

Country Link
JP (1) JPS59153931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247138A (en) * 1986-04-21 1987-10-28 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal combustion engine
JPH0187950U (en) * 1987-12-03 1989-06-09
EP0740061A2 (en) * 1995-04-28 1996-10-30 Isuzu Motors Limited Electronic fuel injection control system and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710740A (en) * 1980-06-23 1982-01-20 Nissan Motor Co Ltd Injection amount control unit of diesel engine fuel
JPS5872634A (en) * 1981-10-26 1983-04-30 Mazda Motor Corp Fuel supply device of engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710740A (en) * 1980-06-23 1982-01-20 Nissan Motor Co Ltd Injection amount control unit of diesel engine fuel
JPS5872634A (en) * 1981-10-26 1983-04-30 Mazda Motor Corp Fuel supply device of engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247138A (en) * 1986-04-21 1987-10-28 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal combustion engine
JPH0187950U (en) * 1987-12-03 1989-06-09
EP0740061A2 (en) * 1995-04-28 1996-10-30 Isuzu Motors Limited Electronic fuel injection control system and control method
EP0740061A3 (en) * 1995-04-28 1998-08-19 Isuzu Motors Limited Electronic fuel injection control system and control method

Also Published As

Publication number Publication date
JPH0536626B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
US5771861A (en) Apparatus and method for accurately controlling fuel injection flow rate
CA2398817C (en) Variable nozzle turbine control strategy
JPS58214627A (en) Fuel regulator for fuel injection pump
JPS59153931A (en) Fuel injection quantity controller for diesel engine
US5697347A (en) Fuel injection timing control apparatus for a fuel injection pump and control method for the same
US4681076A (en) Electronically controlled fuel injection system for an internal combustion engine
GB2041577A (en) Fuel System for internal combustion engines
JP2958993B2 (en) Fuel injection control device for diesel engine
JPS6026142A (en) Torque control device in diesel-engine
JPH06173805A (en) Fuel feeding device for internal combustion engine
JP3722218B2 (en) Fuel injection device for internal combustion engine
JP2808180B2 (en) Fuel injection control device for internal combustion engine
JP2569587B2 (en) Exhaust gas recirculation control system for diesel engine
JPH07113346B2 (en) Diesel engine controller
JP2782708B2 (en) Fuel injection timing control device for fuel injection pump
JPH10103125A (en) Fuel injection amount control method for diesel engine
JPH04203453A (en) Control device of diesel engine
JP2513262B2 (en) Fuel injection amount control device for diesel engine
JPS60198356A (en) Fuel injection quantity controller
JP2600190B2 (en) Exhaust gas recirculation control system for diesel engine
JPH02104941A (en) Device for controlling fuel injection of diesel engine
JPS63994Y2 (en)
JP4026063B2 (en) Accumulated fuel injection system
JPH09195838A (en) Apparatus for controlling fuel injection timing for diesel engine
JP2600191B2 (en) Idle exhaust gas recirculation control system for diesel engine