JPS59153093A - Method of deaerating from condensate - Google Patents

Method of deaerating from condensate

Info

Publication number
JPS59153093A
JPS59153093A JP2385083A JP2385083A JPS59153093A JP S59153093 A JPS59153093 A JP S59153093A JP 2385083 A JP2385083 A JP 2385083A JP 2385083 A JP2385083 A JP 2385083A JP S59153093 A JPS59153093 A JP S59153093A
Authority
JP
Japan
Prior art keywords
condensate
hot well
dissolved oxygen
condenser
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2385083A
Other languages
Japanese (ja)
Inventor
Seiichi Shirakawa
白川 精一
Taketoshi Furusawa
古沢 武敏
Shinji Tsunoda
角田 伸爾
Takashi Morimoto
敬 森本
Takeshi Arase
荒瀬 健
Koji Hiramoto
康治 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2385083A priority Critical patent/JPS59153093A/en
Publication of JPS59153093A publication Critical patent/JPS59153093A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To effectively decrease the content of dissolved oxygen in condensate within a short time after starting operation, by flowing the condensate in a hot well reciprocatingly around baffle plates from the upstream side to the downstream side. CONSTITUTION:More than one baffle plates 13, at least, are installed in a hot well 2, to make the condensate in the hot well 2 flow streaming from the upstream side to the downstream side. If the atmizing position of condensate from a condensate recycling line 10 is determined on the upstream side of a reciprocating flow in the hot well 2, the time to decrease the content of dissolved oxygen in the condensate in the hot well 2 can be shortened.

Description

【発明の詳細な説明】 本発明は、発電プラントの起動時に、短時間で復水中の
溶存酸素を低減する復水の脱気方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for degassing condensate that reduces dissolved oxygen in condensate in a short time when starting up a power plant.

火力発電プラントにおいては、建設後の起動および定検
後の起動時、復水器において、補給水中の溶存酸素は出
来るだけ低減させた後、ボイラ本体へ供給される。この
ために、復水器と脱気器とを連絡した、いわゆる復水系
統再循環ラインにより復水を循環して復水中の溶存酸素
を次第に低減させている。この工程においては、従来の
実績では、復水中の溶存酸素がボイラ本体へ供給可能と
なる捷で低減するには5〜6時間は必要としている。
In a thermal power plant, at startup after construction and after periodic inspection, dissolved oxygen in make-up water is reduced as much as possible in the condenser and then supplied to the boiler body. For this purpose, the condensate is circulated through a so-called condensate system recirculation line that connects the condenser and the deaerator to gradually reduce dissolved oxygen in the condensate. In this step, according to conventional results, it takes 5 to 6 hours for the dissolved oxygen in the condensate to be reduced by a sieve so that it can be supplied to the boiler main body.

従来用いられている起動時の復水の脱気方法のフローシ
ートを第1図に示す。以下第今図を用いて説明する。
A flow sheet of a conventional method for degassing condensate at startup is shown in FIG. This will be explained below using Figure 1.

第1図において、1は復水器、2はホットウェル、3は
冷却水の通る管群、4は真空ポンプ、5は復水ポンプ、
6はグランドコンデンサー、7は脱気器、8は脱気器貯
水槽を示す。補給水より供給されてホットウェル2に貯
った復水は、真空ポンプ4を起動して復水器1内を真空
にすると同時に、ライン9より復水ポンプ5、グランド
コンデンサー6を通じ、復水再循環ライン10から復水
器1へもどし、復水器1内へ噴霧落下させて復水中の溶
存酸素を低減させていた。また、この工程のみでは、復
水中の溶存酸素をボイラ本体へ通水できる条件まで十分
に低減でき々いため、さらにライン11から脱気器7へ
通水し、との脱気器7で真空加熱脱気を行ない、脱気器
貯水槽8を経て東 ライン12より復水器1へ供給する工程が後節されてい
る。これらの工程を循環してホットウェル2内の復水中
の溶存酸素を低減させるものであるが、通常、ボイラ本
体への通水条件捷で復水中の溶存酸素を低減させるには
かなりの時間を必要として込る。
In Figure 1, 1 is a condenser, 2 is a hot well, 3 is a group of tubes through which cooling water passes, 4 is a vacuum pump, 5 is a condensate pump,
6 is a ground condenser, 7 is a deaerator, and 8 is a deaerator water tank. The condensate supplied from make-up water and stored in the hot well 2 starts the vacuum pump 4 to create a vacuum in the condenser 1, and at the same time, the condensate is transferred from the line 9 through the condensate pump 5 and the ground condenser 6. The dissolved oxygen in the condensate was returned to the condenser 1 through the recirculation line 10 and sprayed down into the condenser 1 to reduce dissolved oxygen in the condensate. In addition, since this process alone cannot sufficiently reduce the dissolved oxygen in the condensate to the point where water can be passed to the boiler main body, water is further passed from line 11 to deaerator 7, and vacuum heating is performed in deaerator 7. The process of deaerating the water and supplying it to the condenser 1 from the east line 12 via the deaerator water tank 8 will be described later. These processes are circulated to reduce the dissolved oxygen in the condensate in the hot well 2, but normally it takes a considerable amount of time to reduce the dissolved oxygen in the condensate by changing the water flow conditions to the boiler main body. Include it as necessary.

最近の火力発電プラントの稼動状態は、従来のJ よう連続運転を実施するプラントは少なく、給電事情に
より週末停止あるいは毎日発停なとの不連続な運転を実
施する傾向にある。このような状況においては、停止し
たプラントを再起動する際、出来るだけ短時間で復水中
の溶存酸素を低減させボイラ本体への通水条件および点
火条件へ到達させる必要があシ、上記従来の方法では時
間を短縮することは不可能である。
Regarding the operating status of recent thermal power plants, there are few plants that operate continuously like the conventional J. There is a tendency for plants to operate discontinuously, such as shutting down on weekends or starting and stopping every day, depending on the power supply situation. In such a situation, when restarting a stopped plant, it is necessary to reduce the dissolved oxygen in the condensate and reach the conditions for water flow to the boiler body and ignition conditions in the shortest possible time. It is not possible to shorten the time with this method.

本発明の目的は、上記のような欠点を解消し、発電プラ
ントの起動時短時間で効果的に復水中の(3) 溶存酸素を低減させうる復水の脱気方法を提供するもの
である。
An object of the present invention is to provide a method for degassing condensate that can eliminate the above-mentioned drawbacks and effectively reduce (3) dissolved oxygen in condensate in a short time when starting up a power plant.

以下本発明を、添付図面第2図以下に例示した本発明の
好適な実施例について詳述する。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention illustrated in FIG. 2 of the accompanying drawings.

捷ず第1実施例につ−て説明する。第2図は、本発明を
適用した実施例を示すフローシートである。第2図にお
いて第1図と同符号のものは同一の作用効果を示すので
説明は省略する。ここで]IAは脱気水のボイラ(図示
省略)への供給ライン、13は、本発明を実施ず返ため
に付加されるしきり板である。第3図、第4図、第5図
は第2図で付加したホットウェル内のしきり板13の状
況を示した説明図である。このしきり板13は、ホット
ウェル2内忙少なくとも1枚以上配設されるものであり
ホットウェル2内の復水の流れが上記しきり板を介して
上流側から下流側へピストン流れとするだめのものであ
り、第3図では1枚、第4図では2枚を千鳥状に、第5
図では3枚を千鳥状に配設したものである。14はホッ
トウェル2内の水の流れを示す。
Without further ado, the first embodiment will be explained. FIG. 2 is a flow sheet showing an embodiment to which the present invention is applied. Components in FIG. 2 with the same reference numerals as in FIG. 1 have the same functions and effects, so their explanation will be omitted. Here, IA is a supply line for degassed water to a boiler (not shown), and 13 is a diaphragm plate added to carry out the present invention. FIGS. 3, 4, and 5 are explanatory diagrams showing the condition of the partition plate 13 in the hot well added in FIG. 2. At least one partition plate 13 is disposed inside the hot well 2 to prevent the flow of condensate in the hot well 2 from flowing into a piston from the upstream side to the downstream side via the partition plate. Figure 3 shows one sheet, Figure 4 shows two sheets in a staggered pattern, and the fifth sheet
In the figure, three sheets are arranged in a staggered manner. 14 indicates the flow of water within the hot well 2.

(4) 第6図は、起動時のホットウェルから出てくる復水中の
溶存酸素濃度と復水器内の真空度との時間的な変化を示
したものである。曲線へは、復水器内の真空度を示し、
曲線Bは、従来のしきり板彦しの方法による復水中の溶
存酸素の低減がホットウェル内の復水の流動条件が完全
混合とした時の時間的々変化を示したものである。捷だ
、曲線Cは、本発明を適用し、ホットウェル内の流れが
ピストン流れとした時の復水中の溶存酸素の低減の時間
的変化を示したものである。
(4) Figure 6 shows the temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well and the degree of vacuum in the condenser at startup. The curve shows the degree of vacuum inside the condenser,
Curve B shows how the reduction of dissolved oxygen in condensate by the conventional Shikiri Itahiko method changes over time when the flow conditions of condensate in the hot well are completely mixed. Curve C shows the temporal change in the reduction of dissolved oxygen in condensate when the present invention is applied and the flow in the hot well is a piston flow.

このように、第1図に示すような従来の復水器ホットウ
ェル2に第3図、第4図、第5図に示すよう彦しきり板
■3を設け、ホントウェル内の復水の流れをピストン流
れとし、復水再循環ライン10からの噴霧位置をホット
ウェル内のピストン流れの上流側に設置することによシ
ホットウエル内の復水中の溶存酸素を低減するための時
間を短縮することが可能となる。なお、ホントウェル内
のしきり板は第3図よシ第4図、第4図よシ第5図と数
を増やすにつれて図の斜線で示す淀みff152Aが減
少しホラ)・ウェル内の流れはピストン流れに近づき第
6図の曲線Bから曲線Cに近い変化で溶存酸素の低減が
より効果的に実施できるように々る。
In this way, the conventional condenser hot well 2 as shown in Fig. 1 is provided with a diagonal plate 3 as shown in Figs. By setting the spraying position from the condensate recirculation line 10 to the upstream side of the piston flow in the hot well, the time required to reduce dissolved oxygen in the condensate in the hot well can be shortened. It becomes possible. Note that as the number of partition plates in the real well increases from Figure 3 to Figure 4, and from Figure 4 to Figure 5, the stagnation ff152A shown by diagonal lines in the figure decreases. By approaching the flow and changing from curve B to curve C in FIG. 6, dissolved oxygen can be reduced more effectively.

次に、第2実施例について説明する。第7図、第8図、
第9図は本発明を適用した他の実施例を示すフローシー
トである。これらの図で前回と同符号のものは同一の作
用効果を示すので説明を省略する。15は、本発明を実
施するために付加される蒸気供給ラインである。
Next, a second example will be described. Figure 7, Figure 8,
FIG. 9 is a flow sheet showing another embodiment to which the present invention is applied. In these figures, the same reference numerals as in the previous figure indicate the same effects, so the explanation will be omitted. 15 is a steam supply line added to implement the present invention.

本発明の方法は、第】実施例で示したしきり板13をホ
ットウェル2の中に設けた復水器1において、真空ポン
プ4を起動すると同時にう゛イン9より復水ポンプ5、
グランドコンデンサー6を通じ復水再循環ライン10か
ら復水器1内へ噴霧落下させる際に、落下してくる復水
がホットウェル2に到達する前に、蒸気供給ライン15
から供給される蒸気と接触させ、落下してくる復水を再
び加熱し、復水中の溶存酸素をさらに低減させるもので
ある。すなわち、ライン1oから噴霧落下してくる復水
は、復水器1内の温度真空度に相当する飽和酸素濃度と
なるが落下するにつれて復水は、冷却水管群3によりさ
らに冷却されるため逆に酸素を吸収し溶存酸素が増える
傾向となる。これを防ぎ、かつ溶存酸素をさらに低減す
る目的で蒸気供給ライン15より蒸気を供給するもので
ある。
In the method of the present invention, in the condenser 1 in which the partition plate 13 shown in the embodiment is installed in the hot well 2, the vacuum pump 4 is started, and at the same time, the condensate pump 5,
When the condensate is sprayed down from the condensate recirculation line 10 into the condenser 1 through the ground condenser 6, the steam supply line 15 is
The falling condensate is brought into contact with steam supplied from the boiler, and the falling condensate is heated again, further reducing dissolved oxygen in the condensate. That is, the condensate spray falling from the line 1o has a saturated oxygen concentration corresponding to the temperature vacuum in the condenser 1, but as it falls, the condensate is further cooled by the cooling water pipe group 3, so the condensate is absorbs oxygen and tends to increase dissolved oxygen. In order to prevent this and further reduce dissolved oxygen, steam is supplied from the steam supply line 15.

第10図に水中への酸素の溶解度を示したが、水中の溶
存酸素量は温度、真空度によって決まり、温度を5〜1
0℃上げることにより水中の溶存酸素量は急激に減少す
るため、上記方法による蒸気の供給は復水の脱気方法と
してより効果的である。
Figure 10 shows the solubility of oxygen in water, and the amount of dissolved oxygen in water is determined by the temperature and degree of vacuum.
Since the amount of dissolved oxygen in water decreases rapidly by raising the temperature by 0°C, supplying steam by the above method is more effective as a method for degassing condensate.

また、との復水再循環ライン10からの復水の供給位置
と蒸気供給ラインとの組合せの設置場所としては、本発
明のホットウェル2に設けたしきり板1.3によるホッ
トウェル2内のピストン流レノ効果を有利に利用する上
で、第8図に示すようにホットウェル2の出口からでき
るだけ離れたホットウェル内のピストン流れの上流側へ
供給し、ポットウェル内の復水の交換がより効果的に行
なわれる位置とする。第11図に本発明を実施した時(
7) の起動時のホットウェルから出てくる復水中の耐存酸素
濃度と復水器内の真空度との時間的な変化を示した。曲
線Aは、復水器内の真空度を示し、曲線りは従来のしき
り板なしの場合に、復水再循環水と接触するように蒸気
を供給し、落下する水を再加熱脱気する場合の復水中の
溶存酸素の低減の時間的変化を示したもので、曲線Eは
、本発明のしきり板を設けた場合を示したものである。
In addition, the installation location of the combination of the condensate supply position from the condensate recirculation line 10 and the steam supply line is as follows: In order to advantageously utilize the piston flow Leno effect, the piston flow is supplied to the upstream side of the hot well as far away from the outlet of the hot well 2 as possible, as shown in FIG. The position should be set so that it can be carried out more effectively. Figure 11 shows when the present invention is implemented (
7) shows the temporal changes in the tolerable oxygen concentration in the condensate coming out of the hot well at startup and the degree of vacuum in the condenser. Curve A shows the degree of vacuum in the condenser, and the curved line supplies steam in contact with the condensate recirculated water to reheat and degas the falling water in the case without a conventional baffle plate. Curve E shows the temporal change in the reduction of dissolved oxygen in condensate in the case where the diaphragm plate of the present invention is provided.

以上の様に、本発明を適用することにより従来性なって
いた起動時の復水中の溶存酸素を低減する工程は大幅に
短縮できることになり、第1図に示すような従来設備と
して配設されている脱気器7、および脱気器貯水槽8を
介さずにボイラ本体へ供給できるという利点もある。
As described above, by applying the present invention, the conventional process of reducing dissolved oxygen in condensate at startup can be significantly shortened, and the conventional process of reducing dissolved oxygen in condensate at startup can be significantly shortened. Another advantage is that it can be supplied to the boiler main body without passing through the deaerator 7 and deaerator water tank 8.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の起動時の復水の脱気方法を示すフローシ
ート、第2図は本発明によりしきり板を配設した方法を
示すフローシート、第3図、第4図、第5図は本発明を
適用したホットウェル内のしきり板の状況を示す断面図
、第6図は起動時の(8) ホットウェルから出てくる復水中の溶存酸素濃度と復水
器内の真空度との時間的な変化を示すもので、従来の方
法による変化と本発明のしきり板を設けた場合とを示し
た図である。第7図は本発明の他の実施例である起動時
の復水の脱気方法を示すフローシート、第8図は第7図
■−■線矢視方向から見た主要部の平面図、第9図は第
8図VI III−VIIII l矢視方向から見た側
面図、第10図は水中への酸素の溶解度を示すグラフ、
第11図は本発明を適用した場合の起動時のホットウェ
ルから出てくる復水中の溶存酸素濃度と復水器内の真空
度との時間的な変化を示すグラフである。 ]・豐復水器、2・・ホットウェル、3・・管群、4・
・真空ポンプ、6・Φグランドコンデンサー、7・・脱
気器、8・・脱気器貯水槽、9・・ライン、10・・復
水再循環ライン、]、 1 、 IIA。 】2・・ライン、13・・しきり板、15・・蒸気供給
ライン。 第3図 とA 第4図 第5図 (もHuuu)重&1 第 10図 5五度じC) 第11図 時間〔稲n〕
Fig. 1 is a flow sheet showing a conventional method for degassing condensate at startup, Fig. 2 is a flow sheet showing a method of arranging a partition plate according to the present invention, Figs. 3, 4, and 5. Figure 6 is a cross-sectional view showing the situation of the partition plate in the hot well to which the present invention is applied, and Figure 6 shows the dissolved oxygen concentration in the condensate coming out of the hot well (8) and the degree of vacuum in the condenser at the time of startup. It is a diagram showing the change over time, and shows the change according to the conventional method and the case where the partition plate of the present invention is provided. FIG. 7 is a flow sheet showing a method of degassing condensate at startup, which is another embodiment of the present invention; FIG. 8 is a plan view of the main parts as seen from the direction of the arrows in FIG. 7; Fig. 9 is a side view of Fig. 8 VI III-VIII l as seen from the arrow direction, Fig. 10 is a graph showing the solubility of oxygen in water,
FIG. 11 is a graph showing temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well and the degree of vacuum in the condenser at startup when the present invention is applied. ]・Fuji condenser, 2・・Hot well, 3・・Pipe group, 4・
・Vacuum pump, 6. Φ ground condenser, 7. Deaerator, 8. Deaerator storage tank, 9. Line, 10. Condensate recirculation line, ], 1, IIA. ]2... Line, 13... Shikiri plate, 15... Steam supply line. Figure 3 and A Figure 4 Figure 5 (Mo Huuu) Heavy & 1 Figure 10 55 degrees C) Figure 11 Time [Rice n]

Claims (1)

【特許請求の範囲】[Claims] 発電プラントの起動時に復水中の溶存酸素を低減させる
に際し復水再循環水が供給される復水器ホットウェル内
に少なくとも1枚以上のし映り板を設け、上記ホットウ
ェル内の復水の流れを上記しきり板を介して上流側から
下流側へピストン流れとなるようにして、上記ホットウ
ェル内の復水と脱気された復水の交換時間゛を短縮し短
時間で脱気することを特像とする、復水の脱気方法。
At least one reflection plate is installed in the condenser hotwell to which condensate recirculation water is supplied to reduce dissolved oxygen in the condensate at the time of starting up the power plant, and the flow of condensate in the hotwell is controlled. A piston flow is created from the upstream side to the downstream side through the above-mentioned baffle plate, thereby shortening the exchange time of the condensate in the hot well and the deaerated condensate, and degassing in a short time. Features a condensate degassing method.
JP2385083A 1983-02-17 1983-02-17 Method of deaerating from condensate Pending JPS59153093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2385083A JPS59153093A (en) 1983-02-17 1983-02-17 Method of deaerating from condensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2385083A JPS59153093A (en) 1983-02-17 1983-02-17 Method of deaerating from condensate

Publications (1)

Publication Number Publication Date
JPS59153093A true JPS59153093A (en) 1984-08-31

Family

ID=12121886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2385083A Pending JPS59153093A (en) 1983-02-17 1983-02-17 Method of deaerating from condensate

Country Status (1)

Country Link
JP (1) JPS59153093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191323A (en) * 2015-03-30 2016-11-10 株式会社東芝 Condenser water box air bleed system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145484A (en) * 1983-02-07 1984-08-20 Hitachi Ltd Condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145484A (en) * 1983-02-07 1984-08-20 Hitachi Ltd Condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191323A (en) * 2015-03-30 2016-11-10 株式会社東芝 Condenser water box air bleed system

Similar Documents

Publication Publication Date Title
GB2095761A (en) Attemperator-deaerator condenser
JP3452927B2 (en) Method and apparatus for operating a water / steam cycle of a thermal power plant
JPH10141606A (en) Boiler plant
JP2004509265A (en) Water supply system for steam injection and inlet spray in gas turbine power plant and method of operating this system
JPH06221113A (en) Gas-steam turbine composite facility and operating method thereof
JPS59153093A (en) Method of deaerating from condensate
CN102562183A (en) Indirect air cooling system and indirect air cooling method for supercritical machine set or ultra-supercritical machine set
CN106062319B (en) Flash tank design
JPS60114694A (en) Condenser
JPS59153094A (en) Method of deaerating from condensate
JPH0440524B2 (en)
JPS6136122B2 (en)
JPS60114693A (en) Condenser
JPS61108814A (en) Gas-steam turbine composite facility
CN215292606U (en) Gas-steam combined cycle cogeneration steam-water coupling system
JPS60120187A (en) Condenser
JPH09119604A (en) Condensate deaerating device for exhaust gas boiler
JPH0135245B2 (en)
JPH0921503A (en) Plant for heating and deaerating supply water
JPH05322105A (en) Device for heating feedwater for boiler
CN106322355B (en) The hybrid low-pressure heater of power station multi-steam source and its heating deoxygenation feed water system of boiler
JPH01280604A (en) Method of improving efficiency of steam process
CN109441576A (en) A kind of saturated vapor electricity generation system
RU2602653C1 (en) Method of intensifying heat exchange in condenser of steam turbine plant
JPS5865915A (en) Propulsive turbine device of ship