JPS5915283B2 - Method for manufacturing lightweight molded body with three-dimensional pattern - Google Patents

Method for manufacturing lightweight molded body with three-dimensional pattern

Info

Publication number
JPS5915283B2
JPS5915283B2 JP53149697A JP14969778A JPS5915283B2 JP S5915283 B2 JPS5915283 B2 JP S5915283B2 JP 53149697 A JP53149697 A JP 53149697A JP 14969778 A JP14969778 A JP 14969778A JP S5915283 B2 JPS5915283 B2 JP S5915283B2
Authority
JP
Japan
Prior art keywords
ceracola
lightweight
spherical
slurry
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149697A
Other languages
Japanese (ja)
Other versions
JPS5577511A (en
Inventor
謙一 樺島
義弘 岡崎
正彦 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP53149697A priority Critical patent/JPS5915283B2/en
Publication of JPS5577511A publication Critical patent/JPS5577511A/en
Publication of JPS5915283B2 publication Critical patent/JPS5915283B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】 本発明は立体模様を有する軽量セラコラ成形体の製造方
法に関し、詳しくは特定の球状セラコラまたは該球状セ
ラコラと繊維状セラコラとの混合物を主成分とするスラ
リーをエンボス型材等に注入して成形することによって
軽量でしかも外観の美麗な立体模様を有するセラコラ成
形体を製造する方法忙関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a lightweight Ceracola molded body having a three-dimensional pattern, and more specifically, to a method for manufacturing a lightweight Ceracola molded body having a three-dimensional pattern, in particular, a slurry mainly composed of a specific spherical Ceracola or a mixture of the spherical Ceracola and fibrous Ceracola is used as an embossed molding material, etc. The present invention relates to a method for producing a lightweight Ceracola molded body having a beautiful three-dimensional pattern on the outside by injecting it into a ceramic material and molding it.

従来からセラコラスラリーを凹凸型材に注入して立体模
様を有する各種成形体を得ることは広く行なわれている
BACKGROUND ART Conventionally, it has been widely practiced to obtain various molded bodies having three-dimensional patterns by injecting Ceracola slurry into an uneven molded material.

しかしながら従来の立体模様を有する成形体は強度等か
ら比重の比較的大きいものとならざるを得す、軽量成形
体は強度的に充分なものが得られなかった。
However, conventional molded bodies with three-dimensional patterns have to have a relatively high specific gravity due to their strength, and lightweight molded bodies have not been able to provide sufficient strength.

また混水量を多くしたり、軽量骨材を混入したりあるい
は発泡したりして製造した軽量セラコラ成形体は、セラ
コラボードとして通常表面にボード原紙を有している。
Furthermore, lightweight Ceracola molded bodies produced by increasing the amount of water mixed, mixing lightweight aggregate, or foaming usually have a board base paper on the surface as Ceracola board.

そのため成形の際に表面凹凸模様を直接施すことができ
ず、成形後に加工しなければならなかった。
Therefore, it was not possible to directly apply a surface unevenness pattern during molding, and it had to be processed after molding.

さらに、ボード原紙を用いない場合においては、空気や
軽量骨材が成形体表面に浮き出し、また成形体の強度が
小さいため、離型の際硬化物の一部が型内に残ったり、
角が欠けたりするのみならず複雑な模様を忠実に転写す
ることができなかった。
Furthermore, when base paper is not used, air and lightweight aggregates float onto the surface of the molded product, and because the strength of the molded product is low, a portion of the cured product remains inside the mold when the mold is released.
Not only would corners be missing, but complex patterns could not be faithfully transferred.

本発明は、特殊な原料セラコラを用いることにより、上
記欠点を解消した美麗な立体模様を有する軽量なセラコ
ラ成形体を提供することを目的とするものである。
An object of the present invention is to provide a lightweight Ceracola molded article having a beautiful three-dimensional pattern that eliminates the above-mentioned drawbacks by using a special raw material Ceracola.

すなわち、本発明は酸性溶液中において、該酸性溶液の
重量に基いて0.5〜40重量係重量水セラコラまたは
該三水セラコラと半水セラコラとの混合物を水熱反応し
て得られる軽量球状セラコラまたは該軽量球状セラコラ
と軽量繊維状セラコラとの混合物に水を加えて調製した
スラリーを、スラリーが接する面に凹凸模様を有する型
材に注入して加圧成形あるいは脱水成形することを特徴
とする立体模様を有する軽量セラコラ成形体の製造方法
である。
That is, the present invention provides lightweight spherical particles obtained by hydrothermally reacting aqueous ceracola or a mixture of trihydric ceracola and hemihydric ceracola in an acidic solution with a weight coefficient of 0.5 to 40 based on the weight of the acidic solution. A slurry prepared by adding water to Ceracola or a mixture of the lightweight spherical Ceracola and lightweight fibrous Ceracola is injected into a mold material having an uneven pattern on the surface in contact with the slurry, and pressure molding or dehydration molding is performed. This is a method for manufacturing a lightweight Ceracola molded body having a three-dimensional pattern.

本発明に使用する球状セラコラは、三水セラコラまたは
三水セラコラと半水セラコラとの混合物を水熱反応して
得られる球状のα型土水セラコラまたは当該半水セラコ
ラを焼成して得られる球状の無水セラコラである。
The spherical ceracola used in the present invention is a spherical α-type soil water ceracola obtained by hydrothermally reacting a mixture of trihydrate ceracola or a mixture of trihydrate ceracola and hemihydrate ceracola, or a spherical shape obtained by firing the hemihydrate ceracola. It is anhydrous ceracola.

かかる球状セラコラの製造条件の一例について説明する
と次の如くである。
An example of the manufacturing conditions for such spherical Ceracola is as follows.

すなわちこの球状セラコラは酸性溶液中において該酸性
溶液の重量に基いて0.5〜40重量係重量水セラコラ
または三水セラコラと半水セラコラとの混合物を加熱攪
拌し、水熱反応せしめることにより得られる。
That is, this spherical ceracola can be obtained by heating and stirring a mixture of aqueous ceracola or trihydric ceracola and hemihydrous ceracola in an acidic solution with a weight coefficient of 0.5 to 40 based on the weight of the acidic solution to cause a hydrothermal reaction. It will be done.

この水熱反応の原料として用いるセラコラは後述する酸
性溶液の重量に基いて0.5〜40重量係重量水しくは
2〜30重量係重量台でスラリーとする。
Ceracola used as a raw material for this hydrothermal reaction is made into a slurry at a concentration of 0.5 to 40% by weight water or 2 to 30% by weight based on the weight of the acidic solution described below.

ここで使用する酸性溶液における酸成分としては、具体
的にはギ酸、酢酸、酒石酸、リンゴ酸などの有機酸、リ
ン酸、塩酸、硝酸、硫酸などの無機酸をあげることがで
きる。
Specific examples of the acid component in the acidic solution used here include organic acids such as formic acid, acetic acid, tartaric acid, and malic acid, and inorganic acids such as phosphoric acid, hydrochloric acid, nitric acid, and sulfuric acid.

酸性溶液は酸成分を0.1〜80容量係の割合で含む水
溶液とし2て用いる。
The acidic solution is an aqueous solution containing acid components at a ratio of 0.1 to 80% by volume.

水熱反応は、100〜180℃の温度、数分から数時間
の反応時間で行なう。
The hydrothermal reaction is carried out at a temperature of 100 to 180°C for a reaction time of several minutes to several hours.

このようにして得られる球状セラコラは、実質的に繊維
状のα型土水セラコラのからみ合いにより形成されたも
のであり、顕微鏡的観察によるとイガグリ状ないしマリ
モ状を呈していることが確認された。
The spherical ceracola thus obtained is formed by the entanglement of fibrous α-type soil and water ceracola, and microscopic observation has confirmed that it has a burr-like or marimo-like shape. Ta.

球状セラコラの生成機構については、最初に短繊維状セ
ラコラが生成し、攪拌を継続していると当該繊維状セラ
コラがからみ合って球状体を形成するものと考えられる
Regarding the formation mechanism of spherical ceracola, it is thought that short fibrous ceracola is first generated, and as stirring continues, the fibrous ceracola becomes entangled to form spherical bodies.

本発明においては、水熱反応終了後の球状のα型半水セ
ッコウスラリーをそのま〜素材として用いてもよくまた
固液分離後の湿ったα型半水セツコウケーキでもよくあ
るいは固液分離したのち乾燥した球状のα型土水セラコ
ラや、これを焼成して得られる球状の無水セラコラ、さ
らにはこれら球状セラコラと繊維状セラコラとの混合物
を素材として用いることもできる。
In the present invention, the spherical α-type hemihydrate slurry after completion of the hydrothermal reaction may be used as it is, or the wet α-type hemihydrate cake after solid-liquid separation may be used, or it may be used after solid-liquid separation. Dried spherical α-type earth and water ceracola, spherical anhydrous ceracola obtained by firing this, and a mixture of these spherical ceracola and fibrous ceracola can also be used as the raw material.

乾燥処理は、たとえば50〜80℃の温度で1〜20時
間行なえばよく、焼成は乾燥セラコラを200〜100
0℃で1〜3時間行なうことにより無水セラコラを得る
ことができる。
The drying process may be carried out at a temperature of 50 to 80°C for 1 to 20 hours, and the baking process may be carried out at a temperature of 200 to 100°C.
Anhydrous Ceracola can be obtained by carrying out the reaction at 0°C for 1 to 3 hours.

球状セラコラは製造条件にもよるが、通常は直径50〜
2000μ、平均300μ程度であり、かさ密度が0.
03〜0.5 g/crtl、平均0.1g/c4程度
である。
Spherical Ceracola usually has a diameter of 50~
2000μ, average about 300μ, and bulk density is 0.
03 to 0.5 g/crtl, average about 0.1 g/c4.

本発明においては上記球状セラコラまたは該球状セラコ
ラと繊維状セラコラとの混合物に水を加えてスラリーと
する。
In the present invention, water is added to the spherical ceracola or a mixture of the spherical ceracola and fibrous ceracola to form a slurry.

ここで添加すべき水の量は半水セラコラまたは無水セラ
コラが三水セラコラに変換するに必要な理論水和量以上
とすべきであり、一般には上記セラコラ100重量部に
対して水を200〜800重量部の割合で添加する。
The amount of water to be added here should be at least the theoretical hydration amount necessary for converting hemihydrate ceracola or anhydrous ceracola into trihydrate ceracola, and generally the amount of water is 200 to 200 parts by weight per 100 parts by weight of the above ceracola. It is added in a proportion of 800 parts by weight.

なお上記スラリーを調製するに際し、結合剤を加えるこ
とによりセラコラの結合を強固にし、得られるセラコラ
成形体の強度を一層向上させることができる。
In addition, when preparing the above-mentioned slurry, by adding a binder, the bond of Ceracola can be strengthened, and the strength of the obtained Ceracola molded article can be further improved.

ここで特にセラコラとして無水セラコラを用いる場合に
は、結合剤の役割はより重要となる。
Here, especially when anhydrous Ceracola is used as Ceracola, the role of the binder becomes more important.

このような結合剤の例としては。ポリビニルアルコール
、カルボキシメチルセルロース。
Examples of such binders include: Polyvinyl alcohol, carboxymethyl cellulose.

ヒドロオキシエチルセルロース、ポリアクリルアミド、
ポリアクリル酸、ポリエチレンオキシドなどの水溶性有
機重合体、酢酸ビニルエマルジョン。
Hydroxyethyl cellulose, polyacrylamide,
Water-soluble organic polymers such as polyacrylic acid and polyethylene oxide, and vinyl acetate emulsions.

アクリル樹脂エマルジョンなどの水分散性有機重合体、
水ガラス、けい酸ソーダなどの水溶性無機化合物、アル
ミナゾル、シリカゾルなどの水分散系コロイド形成性無
機化合物、七メント、セッコウ粉末などの水硬性化合物
およびこれらの混合物がある。
Water-dispersible organic polymers such as acrylic resin emulsions,
These include water-soluble inorganic compounds such as water glass and sodium silicate, water-dispersed colloid-forming inorganic compounds such as alumina sol and silica sol, hydraulic compounds such as hexamentum and gypsum powder, and mixtures thereof.

これらの結合剤は球状セラコラまたは該球状セラコラと
繊維セラコラとの混合物100重量部に対し、0.01
〜100重量部の範囲で添加すればよい。
These binders are used in an amount of 0.01 parts by weight per 100 parts by weight of spherical Ceracola or a mixture of the spherical Ceracola and fiber Ceracola.
It may be added in a range of 100 parts by weight.

さらに必要に応じて硬化促進剤や硬化遅延剤あるいは補
強材、軽量骨材などを適宜添加することができる。
Furthermore, a curing accelerator, curing retardant, reinforcing material, lightweight aggregate, etc. can be added as appropriate.

硬化促進剤の例としては硫酸マグネシウム、塩化カルシ
ウム、硫酸カリウム。
Examples of hardening accelerators are magnesium sulfate, calcium chloride, and potassium sulfate.

硝酸カリウム、硫酸銅、硫酸アルミニウムなどがあり、
また硬化遅延剤としてはアラビアゴム、ゼラチン等があ
り、これらを飽和水溶液に達する量、好ましくは上記セ
ラ39100重量部に対して0.01〜20重量部の範
囲で添加すればよい。
Potassium nitrate, copper sulfate, aluminum sulfate, etc.
Examples of hardening retarders include gum arabic and gelatin, which may be added in an amount to reach a saturated aqueous solution, preferably in the range of 0.01 to 20 parts by weight based on 100 parts by weight of Cera 39.

また補強材としてはガラス繊維、アスベストポリエチレ
ン繊維、ロックウール、マイカなどをあげることができ
、これもセラ39100重量部に対して0.01〜10
0重量部の範囲で添加すればよく、特に1〜10重量部
が好ましい。
In addition, examples of reinforcing materials include glass fiber, asbestos polyethylene fiber, rock wool, mica, etc., which also have a content of 0.01 to 10 parts by weight per 100 parts by weight of Cera 39.
It may be added in an amount of 0 parts by weight, particularly preferably 1 to 10 parts by weight.

軽量骨材としてはパーライト、シラスバルーン、ひる石
、軽量ケイ酸カルシウムなどがあり、これについてもセ
ラ39100重量部に対して0.01〜100重量部の
範囲で加えればよい。
Examples of lightweight aggregates include perlite, shirasu balloons, vermiculite, and lightweight calcium silicate, which may be added in an amount of 0.01 to 100 parts by weight based on 100 parts by weight of Cera 39.

なお球状セラコラと繊維状セラコラの混合物を素材とし
て用いるときは、繊維状セラコラは補強材としても作用
する。
Note that when a mixture of spherical Ceracola and fibrous Ceracola is used as a material, the fibrous Ceracola also acts as a reinforcing material.

またこのスラリーに適宜増粘剤を加えることも有効であ
る。
It is also effective to add an appropriate thickener to this slurry.

本発明においては、上述の如く調製したスラリーを型材
に入れて加圧成形あるいは脱水成形することによって成
形体を製造するが、型材は内面すなわち注入されたスレ
ーリーが接する面に凹凸模様を有するものとする。
In the present invention, a molded article is manufactured by putting the slurry prepared as described above into a mold material and subjecting it to pressure molding or dehydration molding. do.

例えばエンボス型材、具体的にはエンボスロール、平板
エンボスプレート。
For example, embossing shapes, specifically embossing rolls and flat embossing plates.

エンボスエンドレスベルトなどが用いられ、その材質は
金属、プラスチック、ゴム類等各種のものが使用可能で
ある。
An embossed endless belt or the like is used, and various materials such as metal, plastic, and rubber can be used for the belt.

また一般に成形は、上述のスラリーを凹凸模様を有する
型枠に入れた後に、型材の開口面側から金網を介した脱
水金型等にて押圧することによって行なわれ、かかる操
作にて目的とする立体模様を有する成形体が得られる。
Generally, forming is carried out by putting the above-mentioned slurry into a mold having an uneven pattern, and then pressing it from the open side of the mold with a dehydration mold or the like through a wire mesh. A molded article having a three-dimensional pattern is obtained.

なお、この成形はバッチ式にて行なってもよいが、上述
のスラリーを用いれば型材の複雑な凹凸模様にも迅速か
つ忠実に従うため、連続成形によっても所望の美麗な成
形体を得ることが可能である。
Note that this molding may be performed in batch mode, but if the slurry described above is used, it will quickly and faithfully conform to the complex uneven pattern of the mold material, so it is also possible to obtain the desired beautiful molded product by continuous molding. It is.

この連続成形は水平に移動するエンドレスベルトに設け
られた可撓性の型材にスラリーを流し込み、ベルトの移
動中に成形硬化させることにより行なう。
This continuous molding is performed by pouring the slurry into a flexible mold provided on a horizontally moving endless belt, and molding and curing it while the belt is moving.

成形体表面の立体模様は、ベルト面に凹凸模様をつける
ことによって行なってもよく、またはベルト上に新たに
凹凸の模様のある型材を全長に張りつけて行なってもよ
い。
The three-dimensional pattern on the surface of the molded product may be created by adding an uneven pattern to the belt surface, or by attaching a new pattern material with an uneven pattern to the belt over its entire length.

成形後、得られた成形体を充分乾燥すれば密度0.1〜
0−8g/cA程度であってしかも強度のすぐれた複雑
な立体模様の施された軽量セラコラ成形体となる。
After molding, if the obtained molded body is sufficiently dried, the density will be 0.1~
The result is a lightweight Ceracola molded article with a complex three-dimensional pattern, which is approximately 0-8 g/cA and has excellent strength.

本発明の方法によれば特殊な原料セラコラのスラリーを
用いるため型材の複雑かつ凹凸の激しい模様(例えば凹
部の深さ101n7n程度のもの)をも忠実に成形体表
面に転写することができ、滑らかな外観から梨地模様に
至るまで任意に形成することができる。
According to the method of the present invention, since a slurry of the special raw material Ceracola is used, it is possible to faithfully transfer even complex and highly uneven patterns of the mold material (for example, a recess depth of about 101n7n) onto the surface of the molded object, making it smooth and smooth. It can be formed into any desired appearance, from a plain appearance to a satin pattern.

また水の量の多いスラリーを用いても浮氷がなくそのた
め成形体表面に形成される立体模様にむらがない。
Furthermore, even when a slurry with a large amount of water is used, there is no floating ice, so the three-dimensional pattern formed on the surface of the molded product is uniform.

さらに、得られる成形体は軽量にもかかわらず力学的強
度が犬ぎく、特に表面が強固であって、どのような複雑
な形状であってもひび割れや凸状部の欠損がなく、また
表面をこすっても粉が出ることはない。
Furthermore, the resulting molded product has excellent mechanical strength despite its light weight, with a particularly strong surface, free from cracks and loss of convex parts no matter how complex the shape. Even if you rub it, no powder will come out.

従って本発明の方法によって得られたセラコラ成形体は
板状あるいはブロック状にして外観の美麗な天井材、壁
材等の建材に利用することができる。
Therefore, the Ceracola molded product obtained by the method of the present invention can be made into a plate or block shape and used for building materials such as ceiling materials and wall materials with a beautiful appearance.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

参考例 (1) 球状セラコラの製造 0.5容量係酢酸水溶液601に三水セラコラ6kgと
種晶としてβ型土水セラコラ300gを加え、混合して
スラリーを調整した。
Reference Example (1) Production of spherical Ceracola 6 kg of Sansui Ceracola and 300 g of β-type Earthsui Ceracola as seed crystals were added to 601 volumes of 0.5 volume aqueous acetic acid solution and mixed to prepare a slurry.

このスラリーを120℃、1.2ky/cdlの飽和蒸
気圧下でプロペラ型攪拌羽根を用いてかきまぜながら1
20℃で約30分間水熱反応を行なった。
This slurry was stirred using a propeller-type stirring blade at 120°C and a saturated vapor pressure of 1.2ky/cdl.
Hydrothermal reaction was carried out at 20° C. for about 30 minutes.

水熱反応終了後、熱間、遠心分離機で固液分離して得ら
れた固状物は熱風乾燥機を用いて60℃で約8時間乾燥
処理を行ない、付着した水や溶媒を除いて軽量球状α型
半水セッコウを得た。
After the completion of the hydrothermal reaction, the solid material obtained by hot-solid-liquid separation using a centrifuge is dried at 60°C for about 8 hours using a hot air dryer to remove adhering water and solvent. A lightweight spherical α-type semi-hydrated gypsum was obtained.

またこのα型土水セラコラの一部を電気炉を用いて50
0℃で3時間焼成し無水セラコラを得た。
In addition, a part of this α-type Earthsui Ceracola was heated to 50% by using an electric furnace.
It was baked at 0° C. for 3 hours to obtain anhydrous Ceracola.

得られた軽量球状セラコラを顕微鏡観察したところ、マ
リモ状であった。
When the obtained lightweight spherical ceracola was observed under a microscope, it was found to be marimo-shaped.

このセラコラはα型半水および無水のいずれも平均直径
が約250μであり、かさ密度は0.10 g/cr/
lであった。
This ceracola has an average diameter of about 250μ in both α-type hemihydrous and anhydrous, and a bulk density of 0.10 g/cr/
It was l.

(2)繊維状セラコラの製造 水601に三水セラコラ6kgを加え、混合してスラリ
ーを調製した。
(2) Production of fibrous ceracola 6 kg of Sansui ceracola was added to 601 ml of water and mixed to prepare a slurry.

このスラリーを120’C、1,2Kg/cntの飽和
蒸気圧下でプロペラ型攪拌羽根を用いてかきまぜながら
30分間水熱反応を行なった。
A hydrothermal reaction was carried out for 30 minutes while stirring this slurry using a propeller type stirring blade at 120'C and a saturated steam pressure of 1.2 kg/cnt.

水熱反応終了後、熱時、遠心分離機で固液分離して得ら
れた固状物を、熱風乾燥機を用いて60℃で約8時間乾
燥処理し、付着した水を除いて繊維状α型半水セツコウ
を得た。
After the completion of the hydrothermal reaction, the solid material obtained by separating solid and liquid with a centrifuge during heating is dried at 60°C for about 8 hours using a hot air dryer, and the attached water is removed to form a fibrous material. Alpha type hemihydrate was obtained.

またこのα型半水セッコウの一部を電気炉を用いて50
0℃で3時間焼成して無水セラコラを得た。
In addition, a part of this α-type semi-water gypsum was produced using an electric furnace.
Anhydrous Ceracola was obtained by firing at 0° C. for 3 hours.

得られた繊維状セラコラを顕微鏡観察したところ、α型
半水および無水のいずれも平均繊維長90μ、平均繊維
径0.4μであり、かき密度は0.08g/crtlで
あった。
When the obtained fibrous Ceracola was observed under a microscope, both α-type hemihydrous and anhydrous had an average fiber length of 90 μm, an average fiber diameter of 0.4 μm, and a scraping density of 0.08 g/crtl.

実施例 1 上記参考例で得られた軽量球状半水セラコラ610gに
水2.4A’を加えてスラリーとした。
Example 1 2.4 A' of water was added to 610 g of lightweight spherical hemihydrate Ceracola obtained in the above reference example to prepare a slurry.

このスラリーを300X600mmの凹凸模様を有する
成形型内に流し込み圧縮脱水成形し、硬化後脱型して、
60℃で乾燥し、比重0.4、曲げ強度13、2 kg
/CI?Lの凹凸模様を有する板状硬化体を得た。
This slurry was poured into a mold with an uneven pattern of 300 x 600 mm, compressed and dehydrated, and after curing was removed from the mold.
Dry at 60℃, specific gravity 0.4, bending strength 13, 2 kg
/CI? A plate-shaped cured body having an uneven pattern of L was obtained.

この板状硬化体の表面は細かな浅い模様から大きく深い
模様まで忠実に転写されており、しかも表面は清らかで
硬く凸部の欠けもなく外観の美麗なものであった。
The surface of this plate-shaped cured product was faithfully transferred from fine shallow patterns to large and deep patterns, and the surface was clean and hard, with no chipped protrusions and a beautiful appearance.

また表面をこすっても粉を生ずることはなかった。Further, no powder was generated even when the surface was rubbed.

なお、得られた板状硬化体の一部の平面図を第1図に、
断面図を第2図に示す。
A plan view of a part of the obtained plate-shaped cured body is shown in Fig. 1.
A cross-sectional view is shown in FIG.

実施例 2 軽量球状半水セラコラ610gに2重世襲のポリビニル
アルコール水溶液2.41を加えてスラリーとした。
Example 2 A slurry was prepared by adding 2.4 liters of a double hereditary polyvinyl alcohol aqueous solution to 610 g of lightweight spherical semi-hydrated Ceracola.

このスラリーな実施例1と同様に成形し、比重0.4、
曲げ強度25kg/cTLの外観および表面の良好な凹
凸模様を有する板状硬化体を得た。
This slurry was molded in the same manner as in Example 1, with a specific gravity of 0.4,
A plate-shaped cured body having a bending strength of 25 kg/cTL, an appearance and a good uneven pattern on the surface was obtained.

実施例 3 軽量球状半水セラコラ550gと半水繊維状セラコラ6
0yの混合物に2重世襲のポリビニルアルコール水容液
2.41を加えてスラリーとした。
Example 3 550 g of lightweight spherical hemihydrate Ceracola and hemihydrate fibrous Ceracola 6
0y mixture was added with 2.41 mL of a double-heritage polyvinyl alcohol aqueous solution to form a slurry.

このスラリーを実施例1と同様に成形し、比重0.4、
曲げ強度29kg/iの外観および表面の良好な凹凸模
様を有する板状硬化体を得た。
This slurry was molded in the same manner as in Example 1, with a specific gravity of 0.4 and
A plate-shaped cured body having a bending strength of 29 kg/i, an appearance and a good uneven pattern on the surface was obtained.

実施例 4 軽量球状半水セラコラ610gに2重世襲の硫酸マグネ
シウム7水塩溶液2.41を加えスラリーとした。
Example 4 2.41 g of a double hereditary magnesium sulfate heptahydrate solution was added to 610 g of lightweight spherical hemihydrate Ceracola to form a slurry.

このスラリーを実施例1と同様に成形し、比重0.4、
曲げ強度19kg/CrfLの外観および表面状態の良
好な凹凸模様を有する板状硬化体を得た。
This slurry was molded in the same manner as in Example 1, with a specific gravity of 0.4 and
A plate-shaped cured body having a bending strength of 19 kg/CrfL and an uneven pattern with good appearance and surface condition was obtained.

実施例 5 軽量球状半水セラコラ560gに2重世襲の硫酸マグネ
シウム7水塩水溶液2.41と共に補強剤としてアスベ
スト21.結合剤としてポリビニルアルコール189を
加えてスラリーとした。
Example 5 560 g of lightweight spherical hemihydrate Ceracola was mixed with 2.41 g of a double hereditary magnesium sulfate heptahydrate aqueous solution and 21.1 g of asbestos as a reinforcing agent. Polyvinyl alcohol 189 was added as a binder to form a slurry.

゛このスラリーを実施例1と同様に成形し、比重0.4
曲げ強度35Kg/fflの外観および表面状態の良好
な凹凸模様を有する板状硬化体を得た。
゛This slurry was molded in the same manner as in Example 1, and the specific gravity was 0.4.
A plate-shaped cured body having a bending strength of 35 Kg/ffl and an uneven pattern with good appearance and surface condition was obtained.

実施例 6 軽量球状半水セラコラを800℃で3時間焼成して得ら
れた軽量球状■型無水セツコウ700gに結合剤として
アルミナズル980m1(固型分150g)と水21を
加えてスラリーとした。
Example 6 980 ml of alumina as a binder (solid content: 150 g) and 21 g of water were added to 700 g of lightweight spherical type anhydrous clay obtained by firing lightweight spherical hemihydrous Ceracola at 800° C. for 3 hours to prepare a slurry.

このスラリーを実施例1と同様に成形し、比重0.4曲
げ強度32kg/cyyfの外観および表面状態の良好
な凹凸模様を有する板状硬化体を得た。
This slurry was molded in the same manner as in Example 1 to obtain a cured plate having a specific gravity of 0.4, a bending strength of 32 kg/cyyf, and an uneven pattern with good appearance and surface condition.

比較例 1 β型半水セッコウ700gにパーライト300g、水1
.21を加えスラリーとした。
Comparative example 1 700 g of β-type semi-hydrated gypsum, 300 g of perlite, 1 water
.. 21 was added to form a slurry.

このスラリーを実施例1と同様に成形したところ硬化物
表面にパーライトが浮き、細かな凹凸の転写ができない
ばかりか凸部が欠けたり、表面を摩擦すると表面が剥落
するものが得られた。
When this slurry was molded in the same manner as in Example 1, pearlite floated on the surface of the cured product, and not only fine irregularities could not be transferred, but also the convex portions were chipped and the surface peeled off when rubbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られたセラコラ成形体の一部の平
面図を示し、第2図はそのA−A断面図を示す。
FIG. 1 shows a plan view of a part of the Ceracola molded product obtained in Example 1, and FIG. 2 shows a sectional view taken along line AA.

Claims (1)

【特許請求の範囲】 1 酸性溶液中において、該酸性溶液の重量に基110
.5〜40重量%の三水セラコラまたは該三水セラコラ
と半水セラコラとの混合物を水熱反応して得られる軽量
球状セラコラまたは該軽量球状セラコラと軽量繊維状セ
ラコラとの混合物に水を加えて調製したスラリーを、ス
ラリーが接する面に凹凸模様を有する型材に注入して加
圧成形あるいは脱水成形することを特徴とする立体模様
を有する軽量セラコラ成形体の製造方法。 2 繊維状セラコラおよび球状セラコラが半水セラコラ
である特許請求の範囲第1項記載の方法。 3 型材がエンボス型材である特許請求の範囲第1項記
載の方法。 4 酸性溶液中において、該酸性溶液の重量に基いて0
.5〜40重量係重量水セラコラまたは該三水セラコラ
と半水セラコラとの混合物を水熱反応して得られる軽量
球状セラコラまたは該軽量球状セラコラと軽量繊維状セ
ラコラとの混合物に水および結合剤を加えて調製したス
ラリーを、スラリーが接する面に凹凸模様を有する型材
に注入して加圧成形あるいは脱水成形することを特徴と
する立体模様を有する軽量セラコラ成形体の製造方法。 5 繊維状セラコラおよび球状セラコラが半水セラコラ
もしくは無水セラコラである特許請求の範囲第4項記載
の方法。 6 型材がエンボス型材である特許請求の範囲第4項記
載の方法。
[Claims] 1. In an acidic solution, 110% based on the weight of the acidic solution.
.. Adding water to a lightweight spherical ceracola obtained by hydrothermally reacting 5 to 40% by weight of trihydrate ceracola or a mixture of the trihydrate ceracola and hemihydrate ceracola, or a mixture of the lightweight spherical ceracola and lightweight fibrous ceracola. A method for producing a lightweight Ceracola molded article having a three-dimensional pattern, which comprises injecting the prepared slurry into a mold material having an uneven pattern on the surface in contact with the slurry and performing pressure molding or dehydration molding. 2. The method according to claim 1, wherein the fibrous Ceracola and the spherical Ceracola are hemihydrate Ceracola. 3. The method according to claim 1, wherein the mold material is an embossed mold material. 4 In an acidic solution, 0 based on the weight of the acidic solution
.. Water and a binder are added to a lightweight spherical ceracola obtained by hydrothermally reacting a 5-40 weight water ceracola or a mixture of the trihydric ceracola and the semi-hydrated ceracola, or a mixture of the lightweight spherical ceracola and the lightweight fibrous ceracola. Additionally, a method for producing a lightweight Ceracola molded article having a three-dimensional pattern, which comprises injecting the prepared slurry into a mold material having an uneven pattern on the surface in contact with the slurry and performing pressure molding or dehydration molding. 5. The method according to claim 4, wherein the fibrous ceracola and the spherical ceracola are hemihydrate ceracola or anhydrous ceracola. 6. The method according to claim 4, wherein the mold material is an embossed mold material.
JP53149697A 1978-12-05 1978-12-05 Method for manufacturing lightweight molded body with three-dimensional pattern Expired JPS5915283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53149697A JPS5915283B2 (en) 1978-12-05 1978-12-05 Method for manufacturing lightweight molded body with three-dimensional pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53149697A JPS5915283B2 (en) 1978-12-05 1978-12-05 Method for manufacturing lightweight molded body with three-dimensional pattern

Publications (2)

Publication Number Publication Date
JPS5577511A JPS5577511A (en) 1980-06-11
JPS5915283B2 true JPS5915283B2 (en) 1984-04-09

Family

ID=15480830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53149697A Expired JPS5915283B2 (en) 1978-12-05 1978-12-05 Method for manufacturing lightweight molded body with three-dimensional pattern

Country Status (1)

Country Link
JP (1) JPS5915283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442760A (en) * 1990-06-06 1992-02-13 Mitsubishi Electric Corp Motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982002711A1 (en) * 1981-02-03 1982-08-19 Mihara Toshihiro Ceramic burner plate and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495117A (en) * 1972-05-01 1974-01-17
JPS49124113A (en) * 1973-03-31 1974-11-27
JPS5341696A (en) * 1976-09-28 1978-04-15 Toshiba Corp Fuel assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495117A (en) * 1972-05-01 1974-01-17
JPS49124113A (en) * 1973-03-31 1974-11-27
JPS5341696A (en) * 1976-09-28 1978-04-15 Toshiba Corp Fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442760A (en) * 1990-06-06 1992-02-13 Mitsubishi Electric Corp Motor

Also Published As

Publication number Publication date
JPS5577511A (en) 1980-06-11

Similar Documents

Publication Publication Date Title
US5015606A (en) Lightweight ceramic material for building purposes
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
US4174230A (en) Gypsum compositions
US2699097A (en) Method of manufacture of heat insulating shapes
US3862881A (en) Molded lamellar gypsum product
CN113264751A (en) Porous material using magnesium solid carbon product as raw material and preparation method thereof
US4340521A (en) Pressure compacting of settable plaster compositions
CN114133212A (en) Integrally-formed soft stone brick and preparation process thereof
JPS5915283B2 (en) Method for manufacturing lightweight molded body with three-dimensional pattern
US3597249A (en) Method of producing composites of inorganic binders and fibers from aqueous slurries
JPH01172263A (en) Production of pottery article
JP3679768B2 (en) A novel rapid production method for solidified steam-cured body and solidified body thereof
JP2875839B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JP2757877B2 (en) Manufacturing method of zonotorite-based compact calcium silicate hydrate
JP2875838B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JP3398544B2 (en) Method for producing perlite cured product
JPS586699B2 (en) Setsukou molded body
JP3564450B2 (en) Energy-saving production method of ceramic moldings and moldings
JPS586698B2 (en) Gypsum hardened body
JPS5827216B2 (en) Method for manufacturing lightweight cured gypsum body with improved mechanical strength
JP3204954B2 (en) Wet manufacturing method of inorganic plate
JP4556016B2 (en) Energy-saving manufacturing method and molded body of ceramic-based molded body
JPS5914418B2 (en) Manufacturing method for calcium silicate building materials
JPS6129909B2 (en)
JPH0587466B2 (en)