JPS59152257A - Manufacture of porous ceramics - Google Patents

Manufacture of porous ceramics

Info

Publication number
JPS59152257A
JPS59152257A JP2583983A JP2583983A JPS59152257A JP S59152257 A JPS59152257 A JP S59152257A JP 2583983 A JP2583983 A JP 2583983A JP 2583983 A JP2583983 A JP 2583983A JP S59152257 A JPS59152257 A JP S59152257A
Authority
JP
Japan
Prior art keywords
porous ceramics
ceramics
ceramic
heat
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2583983A
Other languages
Japanese (ja)
Inventor
大井 利継
渡辺 正興
出川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2583983A priority Critical patent/JPS59152257A/en
Publication of JPS59152257A publication Critical patent/JPS59152257A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多孔質セラミックスの製造方法に関し。[Detailed description of the invention] The present invention relates to a method for manufacturing porous ceramics.

特に高い強度を有しかつ気密性および断熱性に優れた多
孔質セラミックスの製造方法に関する。
The present invention particularly relates to a method for producing porous ceramics that have high strength and excellent airtightness and heat insulation properties.

従来の多孔質セラミックスの製造方法としては。As for the conventional manufacturing method of porous ceramics.

セラミックス原料粉末からなる素地を塑性状態或いは泥
しよう状態にし、これに可燃性物質或いは揮発性物質な
どを混合して成形した後これらの物質を燃え切らせる方
法、或いは、セラミックス原料粉末からなる素地に発泡
材を混合して気泡を生成した後これを固化焼結する方法
や完全に焼結する前に焼成をやめる方法かとが提案され
ている。
A method of making a base made of ceramic raw material powder into a plastic state or a slurry state, mixing a flammable substance or a volatile substance with it, molding it, and then burning out these substances, or a method of making a base made of ceramic raw material powder Proposals include a method of mixing foaming material to generate bubbles and then solidifying and sintering the foam, or a method of stopping firing before complete sintering.

しかし、このような従来の多孔質セラミックスの製造方
法では、セラミックスを加圧成形して緻密化するという
工程を採用することができず、従って2機械構造用材料
として使用するに適当な強度を有する多孔質セラミック
スを得ることができなかった。このため、従来方法で得
られる多孔質セラミックスは、その用途が耐熱或いは耐
薬品性のフィルタや触媒担持体或いは単なる断熱体など
に駆足され1強度更には強度と気密性を要条される機械
構造用材料として使用するには不適当なものであった。
However, in such conventional manufacturing methods of porous ceramics, it is not possible to adopt the process of pressurizing and densifying the ceramics. Porous ceramics could not be obtained. For this reason, porous ceramics obtained by conventional methods are used for applications such as heat-resistant or chemical-resistant filters, catalyst supports, or simply heat insulators, and are used in machines that require not only strength but also strength and airtightness. It was unsuitable for use as a structural material.

本発明は、このような従来の多孔質セラミックスの製造
方法の問題点に鑑みなされたものであシ。
The present invention was made in view of the problems of the conventional manufacturing method of porous ceramics.

緻密質でかつ完全独′立気泡体のセラミックスからなり
、従って強度が高くしかも気密性および断熱性に優れた
多孔質セラミックスの製造方法を提供することを目的と
する。
The object of the present invention is to provide a method for producing porous ceramics that are dense and completely closed-cell ceramics, and therefore have high strength and excellent airtightness and heat insulation properties.

本発明の特徴=、耐熱性無機質の微小中空粉体を使用し
、まずこの中空粉体を圧粉成形するとともに仮焼した後
、この成形品の内部微小間隙にセラミックス生成原料ガ
スを流して蒸着させ緻密な蒸着セラミックスを充填する
ことである。
Features of the present invention: A heat-resistant inorganic micro-hollow powder is used. This hollow powder is first compacted and calcined, and then a ceramic-forming raw material gas is flowed into the micro gaps inside the molded product for vapor deposition. It is then filled with dense vapor-deposited ceramics.

即ち1本発明によれば、耐熱性無機質の微小中空粉体を
圧粉成形するとともに仮焼し、この微小中空粉体間の間
隙にZrQ、 、 Si、N4、SiCなとのセラミッ
クス生成原料ガスを流すとともに所定温度に加熱し、前
記間隙に蒸着セラミックスを充填させることを特徴とす
る多孔質セラミックスの製造方法が提供される。
That is, according to the present invention, heat-resistant inorganic microscopic hollow powder is compacted and calcined, and ceramic-forming raw material gas such as ZrQ, Si, N4, and SiC is filled in the gaps between the microscopic hollow powders. Provided is a method for producing porous ceramics, which comprises flowing porous ceramics and heating the porous ceramics to a predetermined temperature to fill the gaps with vapor-deposited ceramics.

第1図は本発明による多孔質セラミックスの製造方法を
実施するための工程を例示する図であり。
FIG. 1 is a diagram illustrating steps for carrying out the method for producing porous ceramics according to the present invention.

以下第1図に基づいて本発明を具体的に説明する。The present invention will be specifically explained below based on FIG.

第1図において、耐熱性無機質の微小中空粉体1を使用
し、壕ずこれを圧粉成形するとともに仮焼する。この耐
熱性無機質の微小中空粉体としては、低比重、高融点お
よび高流動性を有する無機質ガラスまたけシリカガラス
などの微小中空粉体が使用される。これらの中空粉体の
粒径は例えば5〜20μ程度であシ、壁面の厚さは粒径
の約1/10程度であり、高い圧壊強度を有するもので
ある。このようなガラス質の微小中空粉体は既に市販さ
れており2例えば、ベルギー国のグラバ−ベル社によっ
て開発されだ硼硅酸塩ガラスの微小中空粉体であり、商
品名マイクロセルMとして市販されているもの、或いは
商品名セノフエア、同じく商品名シラスバルーンで市販
されているものなどがある。
In FIG. 1, a heat-resistant inorganic fine hollow powder 1 is used, which is compacted and calcined without trenches. As this heat-resistant inorganic microscopic hollow powder, microscopic hollow powder such as inorganic glass-covered silica glass having low specific gravity, high melting point, and high fluidity is used. The particle size of these hollow powders is, for example, about 5 to 20 μm, the wall thickness is about 1/10 of the particle size, and they have high crushing strength. Such vitreous microscopic hollow powder is already commercially available.2 For example, microscopic hollow powder of borosilicate glass was developed by Gloverbel in Belgium and is commercially available under the trade name Microcell M. There are also those commercially available under the trade name Cenophea and the same trade name Shirasu Balloon.

前記圧粉成形は前記微小中空粉体1の圧壊強度以下の圧
力で行われ5例えば1〜2吻/−で加圧成形される。捷
た。前記仮焼は前記微小中空粉体1の融点以下の温度範
囲内の比較的高い温度即ち500〜800℃で行われる
。こうして圧粉成形および仮焼によって得られた固化成
形品の密度は通常0.1以下である。
The powder compaction is performed at a pressure lower than the crushing strength of the micro hollow powder 1, and is compacted at a pressure of 5, for example, 1 to 2 degrees/-. I cut it. The calcination is performed at a relatively high temperature within a temperature range below the melting point of the micro hollow powder 1, that is, 500 to 800°C. The density of the solidified molded product thus obtained by compaction and calcination is usually 0.1 or less.

次に、こうして得た固化成形品の微小中空粉体相互間の
間隙をセラミックスで充填する。この充填セラミックス
は次のような方法で形成することができる。
Next, the gaps between the fine hollow powders of the thus obtained solidified molded product are filled with ceramics. This filled ceramic can be formed by the following method.

ジルコニアを例にとれば、所定温度(300〜800℃
)に加熱した容器内に前記固化成形品を設置し、とれに
水蒸気とZr の錯化合物およびYの錯化合物の揮発ガ
スをそれぞれ適量づつ含むN、ガス(キャリヤーガス)
とを導入することにより、#固化成形品中の間隙部に、
所定量のY、02を含むZrO,の化学蒸着が生じ、最
終的に該間隙部は蒸着セラミックス2で閉塞され緻密な
高強度のセラミックスが形成される。なお、前記Y、0
゜の含有量によりZrQ、は部分安定化あるいは安定化
の形をとる。
Taking zirconia as an example, at a predetermined temperature (300 to 800°C
) The solidified molded product is placed in a container heated to a temperature of 100° C.), and N and gas (carrier gas) containing appropriate amounts of volatile gases of a complex compound of water vapor and a complex compound of Zr and a complex compound of Y are placed in the container.
By introducing # into the gap in the solidified molded product,
Chemical vapor deposition of ZrO containing a predetermined amount of Y and 02 occurs, and the gap is finally closed with the vapor-deposited ceramic 2 to form a dense, high-strength ceramic. In addition, the above Y, 0
Depending on the content of ZrQ, ZrQ takes the form of partial stabilization or stabilization.

窒化硅素の場合は、原料ガスとしてS I C1a h
N、およびH,ガスを用い、1300℃付近に加熱する
ことによって化学蒸着が行外われる。
In the case of silicon nitride, S I C1a h is used as the raw material gas.
Chemical vapor deposition is performed using N and H gases and heating to around 1300°C.

また、炭化硅素の場合には、原料ガスとして5iC14
,CH4およびH!を用い、1000〜1600℃に加
熱することによって化学蒸着が行なわれる。
In addition, in the case of silicon carbide, 5iC14 is used as the raw material gas.
, CH4 and H! Chemical vapor deposition is carried out by heating to 1000-1600°C.

なお、前記加圧成形および仮焼によシ固化成形品を得る
のに使用する耐熱性無機質の微小中空粉体はその粒径が
5〜20μの範囲内に揃えられ。
The particle size of the heat-resistant inorganic fine hollow powder used to obtain the solidified molded product by pressure molding and calcination is adjusted within the range of 5 to 20 μm.

かつ殻壁の厚さも0.1〜1μ程度に揃えたものを使用
することが好ましい。
In addition, it is preferable to use shells with a shell wall thickness of about 0.1 to 1 μm.

以上第1図について説明した製造方法によれば。According to the manufacturing method described above with reference to FIG.

微小中空粉体1の間の間隙は、CVDf化学気相析出法
)によりZrO,などのファインセラミックスの化学蒸
着物2により殆どうめられるので、該微小中空粉体の高
強度および高耐熱性と相まって緻密でかつ高強度のファ
インセラミックス成形品が形成され、こうして完全独立
気泡体からなる緻密なファインセラミックスの多孔質体
が得られる。
The gaps between the micro hollow powders 1 are almost filled with chemical vapor deposits 2 of fine ceramics such as ZrO using the CVD chemical vapor deposition method (CVD chemical vapor deposition method), and this combined with the high strength and heat resistance of the micro hollow powders A dense and high-strength fine ceramic molded article is formed, and thus a dense fine ceramic porous body consisting of completely closed cells is obtained.

コノ多孔質セラミックスは強度的に優れているほか、完
全独立気泡体であるため気密性にも優れ。
Kono porous ceramics not only have excellent strength, but also have excellent airtightness because they are completely closed cells.

更に、耐摩耗性および断熱性にも優ねた軽量の多孔質セ
ラミックスである。従って5機械構造用材料として使用
するに適し、特にその気密性な生かしてコンプレッサの
シリンダや高圧ケーシングなどの軽量設計に利用するの
に好適なものである。
Furthermore, it is a lightweight porous ceramic with excellent wear resistance and heat insulation properties. Therefore, it is suitable for use as a mechanical structural material, and is particularly suitable for use in lightweight designs such as compressor cylinders and high-pressure casings, taking advantage of its airtightness.

以上の説明から明らかな如く1本発明によれば、断熱性
のみならず、機械的強度並びに気密性に優れ1機械構造
用材料として使用するに好適な多孔質セラミックスを裂
遺し得る方法が得られる。
As is clear from the above description, the present invention provides a method for producing porous ceramics that have not only heat insulation properties but also excellent mechanical strength and airtightness and are suitable for use as mechanical structural materials. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多孔質セラミックスの創造方法を
実施するだめの工程を例示するブロック図である。 1・・・耐熱性無機質の微小中空粉体、 2・・・c■
Dによって形成される化学蒸着セラミックス。 代理人 鵜 沼 辰 之 (ほか2名) 第1図 285−
FIG. 1 is a block diagram illustrating the steps for carrying out the method of creating porous ceramics according to the present invention. 1... Heat-resistant inorganic micro hollow powder, 2... c■
Chemical vapor deposited ceramics formed by D. Agent Tatsuyuki Unuma (and 2 others) Figure 1 285-

Claims (1)

【特許請求の範囲】[Claims] (1)耐熱性無機質の微小中空粉体を圧粉成形するとと
もに仮焼し、この微小中空粉体間の間隙にZrO,など
のセラミックス生成原料ガスを流すとともに所定温度に
加熱し、前記間隙に蒸着セラミックスを充填させること
を特徴とする多孔質セラミックスの製造方法。
(1) Heat-resistant inorganic microscopic hollow powder is compacted and calcined, and a ceramic-forming raw material gas such as ZrO is flowed into the gaps between the microscopic hollow powders, heated to a predetermined temperature, and A method for producing porous ceramics, characterized by filling the porous ceramics with vapor-deposited ceramics.
JP2583983A 1983-02-18 1983-02-18 Manufacture of porous ceramics Pending JPS59152257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2583983A JPS59152257A (en) 1983-02-18 1983-02-18 Manufacture of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2583983A JPS59152257A (en) 1983-02-18 1983-02-18 Manufacture of porous ceramics

Publications (1)

Publication Number Publication Date
JPS59152257A true JPS59152257A (en) 1984-08-30

Family

ID=12177018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2583983A Pending JPS59152257A (en) 1983-02-18 1983-02-18 Manufacture of porous ceramics

Country Status (1)

Country Link
JP (1) JPS59152257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913894A (en) * 2010-07-08 2010-12-15 西北工业大学 Dual self-healing modification method for silicon carbide ceramic matrix composite material
CN107188600A (en) * 2017-07-12 2017-09-22 福建华清电子材料科技有限公司 A kind of Ceramic Balls and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913894A (en) * 2010-07-08 2010-12-15 西北工业大学 Dual self-healing modification method for silicon carbide ceramic matrix composite material
CN107188600A (en) * 2017-07-12 2017-09-22 福建华清电子材料科技有限公司 A kind of Ceramic Balls and preparation method thereof

Similar Documents

Publication Publication Date Title
Hillig Melt infiltration approach to ceramic matrix composites
FI84343B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT SJAELVBAERANDE KERAMISKT KOMPOSITSTYCKE OCH ETT SAODANT KOMPOSITSTYCKE.
US4513030A (en) Method of producing silicon carbide articles
CA1327492C (en) Production of metal carbide articles
JP2000510808A (en) Open cell foam ceramic having high strength and method for producing the same
CN108516814B (en) Method for preparing high-strength mullite ceramic at low temperature
Kim et al. Processing of microcellular mullite
DK169993B1 (en) Ceramic foam and method for making ceramic articles
Mao Processing of ceramic foams
JPH05254914A (en) Method for making sintered body
RU1838280C (en) Method to produce articles of composite material
JPS59152257A (en) Manufacture of porous ceramics
US3468989A (en) High density surface for foamed inorganics
GB2232971A (en) Molten metal transfer tube.
US4935199A (en) Process for producing high density sintered body
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
SE414920C (en) SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY
JPH01172283A (en) Production of fine porous ceramic body
JPS59152256A (en) Manufacture of porous ceramics
Wu et al. Effect of Molding Processing on Properties of YAG Porous Ceramics via Dry Pressing Molding Method
JPH04209772A (en) Ceramic porous material
JP2849606B2 (en) Gas phase impregnation method and its apparatus
JP4018488B2 (en) INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING
JP3628038B2 (en) Foamed quartz glass structure and manufacturing method thereof
CN113695577B (en) Ti-Ti 5 Si 3 Porous inner wall gradient membrane tube and preparation method thereof