JPS59151735A - Plural focal points x-ray tube - Google Patents

Plural focal points x-ray tube

Info

Publication number
JPS59151735A
JPS59151735A JP58024875A JP2487583A JPS59151735A JP S59151735 A JPS59151735 A JP S59151735A JP 58024875 A JP58024875 A JP 58024875A JP 2487583 A JP2487583 A JP 2487583A JP S59151735 A JPS59151735 A JP S59151735A
Authority
JP
Japan
Prior art keywords
rotor
ray tube
filament
target
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024875A
Other languages
Japanese (ja)
Inventor
Kenji Iwasaki
岩崎 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58024875A priority Critical patent/JPS59151735A/en
Publication of JPS59151735A publication Critical patent/JPS59151735A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/103Magnetic bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/28Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by vibration, oscillation, reciprocation, or swash-plate motion of the anode or anticathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1026Means (motors) for driving the target (anode)

Abstract

PURPOSE:To make variable the distance of a filament from the target by a method in which a magnetic supply device able to keep a rotor magnetically free-rotatable and free-movable in the axial direction is provided inside the rotor in order to control a state of magnetism for moving in the axial direction. CONSTITUTION:When a control signal is dispatched from a control device 27, a power source of an electromagnet power source 28 changes while a current inside the electromagnet coils 13 and 14 for axial control changes. Accordingly, when magnetism of the magnetic paths S1 and S2 changes, the rotor 6 moves axially while the distance of a filament from an anode disc 5 changes. Said changed position is detected by an axial position detector 22. When the signal of said detector 22 is computed by a control device 27 to find the prescribed position, the current of the electromagnet power source 28 changes while the rotor 23 moves axially to set the desired distance of the filament from the target 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、X線診断装置やX線CTスキャナに用いるX
線管において、フィラメントよシ放射された熱電子を衝
突させ、X線を発生させるターゲットに連結する陽極回
転子を磁気軸受により支承し、さらに焦点間距離を2以
上に移動可能とする複数焦点X線管に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an X-ray diagnostic apparatus and an X-ray CT scanner.
In the ray tube, the anode rotor, which is connected to a target that collides thermionic electrons emitted by the filament and generates X-rays, is supported by a magnetic bearing, and the multi-focal point Regarding wire tubes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

X線診断装置やXmCTmC中ナは画像診断機器の中で
も、とシわけ重要な地位を占め、その投影画像の診断能
率を高めるために、いっそう短時間に鮮明な写真を撮る
ことを求められている。X線管は、これら装置の心臓部
として重要な役割を果たし、高診断能の画像を得るだめ
には、小焦点化、大容量化、大出力が必要とされる。
X-ray diagnostic equipment and XmCTmC media occupy a particularly important position among image diagnostic equipment, and in order to improve the diagnostic efficiency of their projected images, they are required to take clearer pictures in a shorter time. . The X-ray tube plays an important role as the heart of these devices, and in order to obtain images with high diagnostic performance, it is required to have a small focus, a large capacity, and a large output.

この小焦点化、大容量化、大出力化の問題解決として、
陽極回転数の高速化がある。
To solve this problem of smaller focus, larger capacity, and larger output,
There is an increase in the speed of anode rotation.

すなわち、X線管は真空中で高電圧をかけた熱陰極から
電子を飛び出させ、タングステン、タングステン合金の
陽極に衝突させ、X線を発生させる。この際、電子のも
つエネルギーの大部分は、熱エネルギーとなって陽極を
加熱する。
That is, in an X-ray tube, electrons are ejected from a hot cathode to which a high voltage is applied in a vacuum, and collide with a tungsten or tungsten alloy anode to generate X-rays. At this time, most of the energy possessed by the electrons becomes thermal energy and heats the anode.

従がって、小焦点化のために電子ビームを細くし、なお
かつ大出力化のために電子エネルギーを大きくしようと
すると、陽極の照射部分の温度が上昇し、陽極が溶融し
てしまう。
Therefore, if an attempt is made to make the electron beam narrower for a smaller focus and to increase the electron energy for higher output, the temperature of the irradiated part of the anode will rise and the anode will melt.

この陽極の溶融を防ぐために、照射面たる陽極を回転さ
せ溶融を防止する。この回転速度はX線の大出力化に伴
って、 9000rpmまで高速化された。
In order to prevent this anode from melting, the anode, which is the irradiation surface, is rotated to prevent melting. This rotation speed has been increased to 9000 rpm as the output of X-rays has increased.

このような9000rpm程度のX線管では、回転陽極
を特殊な玉軸受で支えておシ、玉軸受の損耗をできるだ
け避けるために、X線発生時のみ瞬間的に高速で回転さ
せ、あとは減速するという方法をとっている。しかしな
がら、このような玉軸受を利用した構造では、これ以上
、例えば20000rpm以上の回転では、玉軸受の許
容回転数の限度、振動、騒音の発生等の問題点を有する
。この問題点を解決して、X線管の高速回転化を進める
ために、非接触で、無摩擦、無潤骨の磁気軸受を本願出
願人が先に提案した(特願昭56−118428号)。
In such an X-ray tube, which rotates at around 9000 rpm, the rotating anode is supported by a special ball bearing.In order to avoid wear and tear on the ball bearing as much as possible, it is momentarily rotated at high speed only when X-rays are generated, and then decelerated. The method is to do this. However, a structure using such a ball bearing has problems such as a limit to the permissible rotational speed of the ball bearing and generation of vibration and noise when the rotation speed is higher than this, for example, 20,000 rpm or more. In order to solve this problem and increase the rotation speed of X-ray tubes, the applicant of the present application first proposed a non-contact, frictionless, non-lubricated magnetic bearing (Japanese Patent Application No. 118428/1983). ).

すなわち、この磁気軸受は回転陽極の周辺に、真空容器
の隔壁をはさんで例えば10個の電磁石を配置し、その
電流値を加減することによって各電磁石の磁力を制御し
て回転陽極を浮上して磁気支承するというものである。
In other words, in this magnetic bearing, for example, 10 electromagnets are arranged around the rotating anode across the partition wall of the vacuum container, and the magnetic force of each electromagnet is controlled by adjusting the current value to levitate the rotating anode. It is magnetically supported.

このように高速回転については、磁気軸受によって例え
ば20000rpm以上の回転数が可能になったが、し
かしながら、X線撮影の面から考えると、立体撮影とい
う撮影手段が診断能率上問題点として残っている。すな
わち従来のX線管ではフィラメントと陽極間距離が固定
であったために、拡大率に応じた焦点間隔に複数のX線
管を配置して使用しなければなかった。あるいは、一つ
のX線管内に必要焦点間隔に応じた陰極間隔で二つの陰
極を配設した2焦点X線管が提案されている。
As for high-speed rotation, magnetic bearings have made it possible to rotate at speeds of 20,000 rpm or more, but from the perspective of X-ray imaging, the imaging method of stereoscopic imaging remains a problem in terms of diagnostic efficiency. . In other words, in conventional X-ray tubes, the distance between the filament and the anode was fixed, so a plurality of X-ray tubes had to be arranged at focal intervals depending on the magnification. Alternatively, a bifocal X-ray tube has been proposed in which two cathodes are disposed within one X-ray tube with a cathode spacing corresponding to the required focal spacing.

すなわち2焦点X線管とは、回転陽極円板上に例えば2
.5〜5.5 cmの間隔をおいて、2つの焦点を形成
するものである。しかしながらこの2焦点X線管におい
ても焦点間隔が2.5 cmなら2.5副と一定してい
るので、可変のものではない。このような2焦点X線管
を用いたときは、立体撮影の撮影時におけるX線管の2
焦点の間隔は被写体の拡大率すなわち、X線管焦点、被
写体、検出器(フィルムまたはイメージインテンシファ
イア)の相互位置に関係し、拡大率1.1程度の普通撮
影のときは5.5α程度、拡大率2程度のときは31y
n程度が最適であるため拡大率すなわち、上記相互位置
が変るときはそれに合ったX線管に取換えなければなら
ない。
In other words, a bifocal X-ray tube is a two-focus X-ray tube with two
.. Two focal points are formed with an interval of 5 to 5.5 cm. However, even in this bifocal X-ray tube, if the focal distance is 2.5 cm, it is constant at 2.5 subs, so it is not variable. When using such a bifocal X-ray tube, the
The distance between the focal points is related to the magnification of the subject, that is, the mutual positions of the X-ray tube focal point, the subject, and the detector (film or image intensifier), and is approximately 5.5α for normal imaging with a magnification of about 1.1. , 31y when the magnification is about 2
Since a value of about n is optimal, when the magnification ratio, that is, the above-mentioned mutual positions change, it is necessary to replace the X-ray tube with an appropriate X-ray tube.

すなわち、従来のX線管ではフィラメントと回転陽極間
が固定式であった為に、立体撮影においては撮影条件(
X線管、被写体、検出器の相互位置関係)が固定される
という問題を有している。
In other words, in conventional X-ray tubes, the connection between the filament and the rotating anode was fixed, so the imaging conditions (
The problem is that the relative positions of the X-ray tube, object, and detector are fixed.

あるいは、本出願人が先に提案した立体透視装置(特開
昭56−136550 )では3〜4焦点を必要とし、
その実現にはかなシの困難性を伴っていた。
Alternatively, the three-dimensional fluoroscopy device previously proposed by the present applicant (Japanese Patent Application Laid-Open No. 136550/1983) requires 3 to 4 focal points,
Achieving this goal was accompanied by considerable difficulties.

すなわち、例えば2焦点X線管を2本使用して4焦点を
得るとか、X線管を4つの位置に移動して、それぞれの
位置でX線を発射しなければならず、これらはX線管を
特殊な構造にする必要を生じ、−膜性に欠けていた。
That is, for example, it is necessary to use two bifocal X-ray tubes to obtain four focal points, or to move the X-ray tube to four positions and emit X-rays at each position. This necessitated the tube to have a special structure, and lacked membrane properties.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みて成されたもので、X線診断装
置における立体撮影、あるいはX、ic Tスキャナに
おける多スライス順次撮影等に使用するX線管において
フィラメントと回転陽極間の距離を可変とし、任意の焦
点間隔を簡単に得られるようにして、前述の各種問題を
除去する複数焦点X線管を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for varying the distance between the filament and the rotating anode in an X-ray tube used for stereoscopic imaging in an X-ray diagnostic device or multi-slice sequential imaging in an X,IC T scanner. It is an object of the present invention to provide a multi-focus X-ray tube that eliminates the various problems described above by making it possible to easily obtain an arbitrary focal distance.

〔発明の概要〕[Summary of the invention]

前記目的を達成するために、本発明はフィラメントに対
向配置されたターゲットと、このター外ットに連設され
た回転子とを有する回転陽極型X線管において、前記回
転子を円筒状に形成すると共に、この回転子内に、この
回転子を磁気的に回動自在、かつ、軸方向に移動自在に
保持可能な磁気供給装置を設け、少なくとも、前記磁気
供給装置における軸方向移動用磁気の状態を制御する制
御手段を設け、この制御手段の動作によシ前記フィラメ
ントとターゲットとの間の距離を可変にしたことを特徴
とするものである。
In order to achieve the above object, the present invention provides a rotating anode type X-ray tube having a target disposed opposite to a filament and a rotor connected to the target, in which the rotor is formed into a cylindrical shape. At the same time, a magnetic supply device capable of magnetically rotating the rotor and holding the rotor movably in the axial direction is provided in the rotor, and at least a magnetic supply device for axial movement in the magnetic supply device is provided. The present invention is characterized in that a control means is provided for controlling the state of the filament, and the distance between the filament and the target is made variable by the operation of the control means.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照しながら説
明する。第1〜5図は本発明の具体例を示しておシ、ま
ず第1図に従来のX線管を示して説明する。
An embodiment of the present invention will be described below with reference to the drawings. 1 to 5 show specific examples of the present invention. First, a conventional X-ray tube will be described with reference to FIG. 1.

第1図において、1は陰極でアシ、この陰極1は熱電子
を発生するコイル状のフィラメント2を備え、このフィ
ラメント2から放出される電子を集束電極3によシ集束
し、陰極1と陽極4との間に印加された高電圧によって
前記電子を加速し、陽極4の陰極1側面に設けられた重
金属、例えば鉄タングステンによる円板状のターゲット
5の斜面部分に加速電子を衝突させ、これによシX線放
出を行わせるようにしている。このターゲット5の電子
衝突部分の加熱による溶解を防止するために、ターゲッ
ト5を高速回転するものであるが、この回転はターゲッ
ト5に連結した回転子6と、X線管外に設けられた固定
子7とで、誘導電動機と同様の構成よシ成シ、固定子7
に電気的付勢を加えることによシ、回転子6とそれに連
結したターゲット5を自転するものである。
In Fig. 1, 1 is a cathode, and this cathode 1 is equipped with a coiled filament 2 that generates thermoelectrons.The electrons emitted from this filament 2 are focused by a focusing electrode 3, and the cathode 1 and anode The electrons are accelerated by a high voltage applied between the anode 4 and the cathode 1, and the accelerated electrons collide with the inclined surface of a disk-shaped target 5 made of a heavy metal such as iron-tungsten provided on the side of the cathode 1 of the anode 4. The system is designed to emit X-rays. In order to prevent the target 5 from melting due to heating of the part of the target 5 that is collided with electrons, the target 5 is rotated at high speed. With the stator 7, the structure is similar to that of an induction motor, and the stator 7
By applying electrical force to the rotor 6, the rotor 6 and the target 5 connected thereto are rotated.

第2図は本発明のX線管の回転子側を示す概略断面図で
ある。第1図と同一の部材については同一符号を付して
説明する。
FIG. 2 is a schematic sectional view showing the rotor side of the X-ray tube of the present invention. The same members as in FIG. 1 will be described with the same reference numerals.

ターゲット5に連設する回転子6は、磁気力供給装置を
覆う中空な円筒状に形成され、この回転子6の中央には
、回転子6の静止時および緊急時に玉軸受に接すること
によシ、回転子6が磁気供給装置に損傷を与えないよう
に支承する為のタッチダウン軸(図示せず)を設ける。
A rotor 6 connected to the target 5 is formed into a hollow cylindrical shape that covers the magnetic force supply device, and a rotor 6 is provided at the center of the rotor 6 by contacting a ball bearing when the rotor 6 is stationary or in an emergency. A touchdown shaft (not shown) is provided to support the rotor 6 so as not to damage the magnetic supply device.

又円筒状の回転子6の内壁に、前記磁気供給装置と対応
するリング状の継鉄を設置する。
Further, a ring-shaped yoke corresponding to the magnetic supply device is installed on the inner wall of the cylindrical rotor 6.

このように構成する回転子6は、磁気供給装置によって
、回転子6の上部で互いに位相が90°ずれた2軸、同
様に下部で2軸、回転子6の軸方向で1軸、合計5軸の
制御を行なうと共に非接触で支承される。
The rotor 6 configured in this way has two axes that are out of phase with each other by 90 degrees at the top of the rotor 6, two axes at the bottom, and one axis in the axial direction of the rotor 6, for a total of five axes, using a magnetic supply device. The shaft is controlled and supported without contact.

さらに、上記の構成を第2.3図で詳細に説明する。Furthermore, the above configuration will be explained in detail with reference to FIG. 2.3.

第2図は第1図中ターゲット5、回転子6側について示
したものであって、ターゲット5に連設する回転子6を
非接触状態で支承し、さらにフィラメント2間の距離を
連続的に変化させるだめの磁気力供給装置は、円筒状回
転子6内側に間隔をおいて1対のリング状永久磁石11
.12と、こ゛ の永久磁石11,12内に間隔をおい
て1対の軸方向制御電磁石コイル13.14と、前記永
久磁石11,12の両外方にそれぞれ設けられた1対の
半径方向制御磁極15.16と前記電磁石コイル15.
14間に設けられた軸方向制御磁極26と、これらを貫
通する継鉄17から成る。
FIG. 2 shows the target 5 and rotor 6 side in FIG. The magnetic force supply device for changing the magnetic force includes a pair of ring-shaped permanent magnets 11 spaced apart inside the cylindrical rotor 6.
.. 12, a pair of axial control electromagnetic coils 13, 14 spaced apart within the permanent magnets 11, 12, and a pair of radial control electromagnetic coils provided outside both of the permanent magnets 11, 12, respectively. magnetic poles 15.16 and said electromagnetic coil 15.
It consists of an axial control magnetic pole 26 provided between 14 and a yoke 17 passing through these.

この磁気力供給装置に対応して、円筒状回転子6の内壁
には、永久磁石11と半径方向制御電磁石コイル15間
の磁路R1と永久磁石11と軸方向制御電磁石コイル2
6間の磁路S1を形成するための継鉄18と、永久磁石
12と半径方向制御電磁石コイル16間の磁路R2と永
久磁石12と軸方向制御磁極26間の磁路S2を形成す
るための継鉄19とを設ける。
Corresponding to this magnetic force supply device, the inner wall of the cylindrical rotor 6 has a magnetic path R1 between the permanent magnet 11 and the radial control electromagnetic coil 15, and a magnetic path R1 between the permanent magnet 11 and the axial control electromagnetic coil 2.
6, a magnetic path R2 between the permanent magnet 12 and the radial control electromagnetic coil 16, and a magnetic path S2 between the permanent magnet 12 and the axial control magnetic pole 26. A yoke 19 is provided.

又図中20〜22は銅リング回転子23を一定回転軸上
に支承するだめの検出器であって、20は陽極円板5寄
シの半径方向位置検出器、21は反対側に設けた半径方
向位置検出器、22は軸方向位置検出器である。
Further, in the figure, 20 to 22 are detectors for supporting the copper ring rotor 23 on a constant rotating shaft, 20 is a radial position detector on the side of the anode disk 5, and 21 is provided on the opposite side. The radial position detector 22 is an axial position detector.

尚、27は検出器20〜21の出力信号を入力とする制
御装置、28は電磁石電源であって、制御装置27の出
力を入力とし、磁路R1、u、、sl。
In addition, 27 is a control device which inputs the output signals of the detectors 20 to 21, and 28 is an electromagnet power supply which receives the output of the control device 27, and magnetic paths R1, u, , sl.

S2を変化して所望位置で回転子26を磁気支承するだ
めの電磁石電源である。
This is an electromagnetic power source that magnetically supports the rotor 26 at a desired position by changing S2.

第3図は制御装置とフィラメント等の結線を示しておシ
、制御装置27へは位置検出器20.21、22の出力
信号が入力され、制御装置27からは第2図に示す軸方
向制御電磁石コイル13,14へ各々電磁石電源28a
、28bを介して結線する。
FIG. 3 shows the connection between the control device and the filament, etc. The output signals of the position detectors 20, 21 and 22 are input to the control device 27, and the control device 27 provides the axial direction control shown in FIG. Electromagnet power supply 28a to each electromagnet coil 13, 14
, 28b.

尚図示はしないが半径方向制御磁極15.16へも結線
することは当然である。又制御装置27と各々高電圧電
源29、フィラメント電源30、バイアス電源51とを
接続する。
Although not shown, it is a matter of course that wires are also connected to the radial control magnetic poles 15 and 16. Further, the control device 27 is connected to a high voltage power supply 29, a filament power supply 30, and a bias power supply 51, respectively.

以上のように構成された複数焦点X線管の動作を次に説
明する。この動作については簡単化のために2焦点X線
管の場合について第4図のタイムチャートに従がって説
明する。
The operation of the multifocal X-ray tube configured as described above will be explained next. For the sake of simplicity, this operation will be explained in the case of a bifocal X-ray tube according to the time chart of FIG. 4.

この第4図において、制御信号1が制御装置27よシ発
信すると電磁石電源28a、28bの電流が変化し、軸
方向制御電磁石コイル1!+、14の電流が変化する。
In FIG. 4, when the control signal 1 is transmitted from the control device 27, the currents of the electromagnet power supplies 28a and 28b change, and the axial direction control electromagnet coil 1! +, 14 current changes.

従って磁路S、82の磁力が変化することによって、回
転子6が軸方向に移動し、フィラメント2と陽極円板5
間の距離が変化する。この変化位置を軸方向位置検出器
22が検出し、この検出器22の信号を制御装置27で
演算して、所定位置になれば電磁石電源28a、28b
の電流を一定に保つことによって、所定位置に回転子6
が保持される。
Therefore, by changing the magnetic force of the magnetic path S, 82, the rotor 6 moves in the axial direction, and the filament 2 and the anode disk 5
The distance between them changes. This changing position is detected by the axial position detector 22, and the signal from this detector 22 is calculated by the control device 27. When the position is at a predetermined position, the electromagnet power supplies 28a, 28b
The rotor 6 is kept in place by keeping the current constant.
is retained.

このように陽極円板(ターゲット)5位置が所定の位置
に止まったならば、陰極1、回転陽極5間に高電圧が印
加され、陰極1よシミ子が発射され、ターゲット5に電
子流として衝突する。この衝突によってX線が放出され
る。
When the anode disk (target) 5 stops at a predetermined position in this way, a high voltage is applied between the cathode 1 and the rotating anode 5, and a shim is emitted from the cathode 1 to the target 5 as an electron current. collide. This collision releases X-rays.

この場合、回転子23の回転軸はフィラメント2に対し
一定の正確な偏位を有し\為なければならな込。そうで
ないとフィラメント2がらの熱電子がターゲラ)5に正
確に当たらず、所定のX線φ工得られなくなるためであ
る。このために、本発明では半径方向位置検出器201
21にょ9回転子26の偏シを検知し、この信号を制御
装置27によ逆演算して、半径方向制御磁極15.j6
の電流を変化させて磁路R,%R2を変化することによ
って、回転子60半径方向位置、すなわち回転軸を正確
に中心軸に合致させ保持するものである。
In this case, the axis of rotation of the rotor 23 must have a certain exact offset with respect to the filament 2. Otherwise, the hot electrons from the filament 2 will not hit the target layer 5 accurately, making it impossible to obtain the desired X-ray φ. To this end, the invention provides a radial position detector 201
21 detects the eccentricity of the rotor 26, and this signal is inversely calculated by the control device 27 to control the radial direction control magnetic pole 15. j6
By changing the magnetic path R and %R2 by changing the current, the radial position of the rotor 60, that is, the rotation axis, is accurately aligned and held with the central axis.

次にターゲット5の軸方向位置を変化させるために、制
御信号■をHに変化させることにょシ、電磁石電源28
a、 28bが変化し、前記と同様に軸方向制御電磁石
コイル13.14の電流が変化する。従って磁路S1、
S2の強度が変化し、回転子23が軸方向に移動し、フ
ィラメント2とターゲット5間距離が所望距離に設定さ
れる。尚、この場合においても回転子23は半径方向位
置検出器20.21によって検知されておシ、回転子2
3に円周方向の偏りがある場合は、前記と同様に磁路R
1,R2が変化して偏シを無くすものである。
Next, in order to change the axial position of the target 5, the control signal ■ is changed to H, and the electromagnet power supply 28
a, 28b changes, and the current in the axial control electromagnet coil 13, 14 changes in the same way as before. Therefore, the magnetic path S1,
The strength of S2 changes, the rotor 23 moves in the axial direction, and the distance between the filament 2 and the target 5 is set to a desired distance. In this case as well, the rotor 23 is detected by the radial position detector 20.21.
If there is deviation in the circumferential direction in 3, the magnetic path R
1 and R2 are changed to eliminate bias.

又、陰極1のフィラメント2はフィラメント電圧が印加
され、熱電子放出のために適当な温度に保たれ陰極、陽
極間に陽極電圧が印加されると電子が飛び出し陽極に衝
突する。この電子の衝突した部分を焦点と言うが、この
焦点は目的に応じて1所定の大きさである必要がある。
A filament voltage is applied to the filament 2 of the cathode 1, and the temperature is maintained at an appropriate temperature for thermionic emission. When an anode voltage is applied between the cathode and the anode, electrons fly out and collide with the anode. The part where the electrons collide is called a focus, and this focus needs to have a predetermined size depending on the purpose.

しかし、陽極の位置が変るので焦点の大きさも変化する
おそれがある。このために陰極10周辺にバイアス電圧
を印加する。このバイアス電圧はターゲット5位置と1
対1で対応させる。このフィラメント電圧印加とバイア
ス電圧印加はX線発生のための高電圧印加よシ先立って
行なわれることになる。この理由としては、第5図に示
すように、フィラメント2よシ出た熱電子は、ターゲッ
ト5に達するものであるが、陽極位置であるターゲット
5の位置が変れば当然焦点幅は変ることとなる。そこで
これを防止するために陰極1にフィラメント2よ多陰極
、陽極間隔に応じた電位差を与えることにょシ、陽極位
置が変っても常に一定の大きさの焦点を得るというもの
である。
However, since the position of the anode changes, the size of the focal spot may also change. For this purpose, a bias voltage is applied around the cathode 10. This bias voltage is the target 5 position and 1
Match on a one-to-one basis. This filament voltage application and bias voltage application are performed prior to high voltage application for X-ray generation. The reason for this is that, as shown in Figure 5, the thermoelectrons emitted from the filament 2 reach the target 5, but if the position of the target 5, which is the anode position, changes, the focal width will naturally change. Become. Therefore, in order to prevent this, it is necessary to apply a potential difference to the cathode 1 according to the number of cathodes and the spacing between the anodes compared to the filament 2, so that a focal point of a constant size is always obtained even if the anode position changes.

このようなバイアス電圧印加、フィラメント電圧の印加
の時期は、陰極1、陽極であるターゲット5間の高電圧
印加よシ先立って行なわればよいので、必ずしも第4図
に限定されない。又移動距離が301111程度であれ
ばバイアス電圧の印加は必ずしも必要ではない。
The timing of applying such bias voltage and filament voltage is not necessarily limited to that shown in FIG. 4, as it may be performed prior to applying a high voltage between the cathode 1 and the target 5, which is an anode. Further, if the moving distance is about 3011111, it is not necessarily necessary to apply a bias voltage.

又、フィラメント2よジターゲット5に到達した電子流
を管外に取シ出す為の電気回路を図面にて示していない
が、例えばタッチダウン軸を経由する等各種の方法が考
えられる。
Further, although the drawing does not show an electric circuit for extracting the electron flow that has reached the target 5 from the filament 2 to the outside of the tube, various methods such as passing through a touchdown shaft are conceivable.

又、図面に示したものは本発明の一実施例を示したもの
で、第2図では例えば軸方向制御電磁石コイル13.1
4は2個であるが、このような数に限定されるものでは
なく、又その形状についても限定されない。
Moreover, what is shown in the drawings shows one embodiment of the present invention, and in FIG.
Although 4 is two, it is not limited to this number, nor is its shape limited.

このような構成よ構成るX線管は、通常70KV以上の
高電圧を使用するため、絶縁油を封入したX線管容器に
X線管を挿入して使用するものであるが、本発明ではX
線管よ多発生するX線焦点が移動するので、このX@焦
点移動に応じて出力窓の形状を作成する必要がある。
Since an X-ray tube constructed as described above normally uses a high voltage of 70 KV or higher, it is used by inserting the X-ray tube into an X-ray tube container filled with insulating oil. X
Since the focal point of X-rays that are frequently generated in the ray tube moves, it is necessary to create the shape of the output window in accordance with this movement of the X-ray focal point.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、従来の立体撮影用X線管では、フ
ィラメントとターゲット間距離が固定しもいるので、焦
点距離を変えることは不可能であ漬。例えば従来の2焦
点X線管の場合でも焦点距−は2.5 cm、  5.
5 tynとかのように固定されておシ連続的に焦点距
離を変えることは不可能である。
As explained above, in conventional X-ray tubes for stereoscopic imaging, the distance between the filament and the target is fixed, so it is impossible to change the focal length. For example, even in the case of a conventional bifocal X-ray tube, the focal length is 2.5 cm.5.
It is impossible to change the focal length continuously if it is fixed like 5 tyn.

しかるに本発明ではフィラメントとターゲット間距離を
連続的に変化することによシ、焦点距離を複数、例えば
従来構造上4゛焦点以上は極めて困難であったが4焦点
以上でも可能になった。
However, in the present invention, by continuously changing the distance between the filament and the target, a plurality of focal lengths, for example, 4 or more focal lengths, which was extremely difficult due to the conventional structure, has become possible.

この発明の複数焦点X線管をCTスキャナーに配設すれ
ば、人体を何ら動かすことなく複数スライスを撮影する
ことが可能である。
If the multifocal X-ray tube of the present invention is installed in a CT scanner, it is possible to image multiple slices without moving the human body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のX線管全体を示す正面図、第2図は本発
明X線管の回転子側を示す断面図、第3図は本発明X線
管と制御装置の結線を示すブロック図、第4図は動作を
示すタイムチャート、第5図はX線管の電子軌道を示す
説明図である。 1・・・陰極、2・・・フィラメント、3・・・集束電
極、4・・・回転陽極、5・・・ターゲット、6・・・
回転子、7・ゝヅ・固定子 m111,12・・・永久磁石、13..14・・・軸
方向制御電磁石コイル、151,16・・・半径方向制
御磁極、17.18.19・・・継鉄、20.21・・
・半径方向位置検出器、22・・・軸方向位置検出器、
23・・・回転子、26・・・軸方向制御磁極、27・
・・制御装置、2 (3,、,28a、 28b・・・
電磁石電源、29・・・高電圧電源、30・・・フィラ
メント電源、31・・・バイアス電源。 第4図
Figure 1 is a front view showing the entire conventional X-ray tube, Figure 2 is a sectional view showing the rotor side of the X-ray tube of the present invention, and Figure 3 is a block diagram showing the connection between the X-ray tube of the present invention and the control device. 4 are time charts showing the operation, and FIG. 5 is an explanatory diagram showing the electron trajectory of the X-ray tube. DESCRIPTION OF SYMBOLS 1... Cathode, 2... Filament, 3... Focusing electrode, 4... Rotating anode, 5... Target, 6...
Rotor, 7・ゝㅅ・Stator m111, 12...Permanent magnet, 13. .. 14... Axial control electromagnetic coil, 151, 16... Radial control magnetic pole, 17.18.19... Yoke, 20.21...
- Radial position detector, 22... Axial position detector,
23... Rotor, 26... Axial direction control magnetic pole, 27...
...Control device, 2 (3,,,28a, 28b...
Electromagnet power supply, 29... High voltage power supply, 30... Filament power supply, 31... Bias power supply. Figure 4

Claims (1)

【特許請求の範囲】 (リ フィラメントに対向配置されたターゲットと、こ
のターゲットに連設された回転子とを有する回転陽極型
X線管において、前記回転子を円筒状に形成すると共に
、この回転子内に、この回転子を磁気的に回動自在、か
つ、軸方向に移動自在に保持可能な磁気供給装置を設け
、少なくとも、前記磁気供給装置における軸方向移動用
磁気の状態を制御する制御手段を設け、この制御手段の
動作によシ前記フィラメントとターゲットとの間の距離
を可変にしたことを特徴とする複数焦点X線管。 (2)  前記磁気供給装置は、軸方向に間隔を保って
設けられた一対の軸方向制御電磁石コイルから成シ、前
記制御手段は両電磁石コイルへの供給電流を相対的に変
化させるものであることを特徴とする特許請求の範囲第
1項記載の複数焦点X線管。 (3)前記回転陽極型X線管は、陰極フィラメントを覆
い、バイアス電極を設け、陰極、陽極開位置の移動に応
じてバイアス電源電圧を変化させることによって常に所
定のX線管焦点を得るものであることを特徴とする特許
請求の範囲第1項記載の複数焦点X線管。
[Scope of Claims] (In a rotating anode X-ray tube having a target disposed opposite to a refilament and a rotor connected to the target, the rotor is formed in a cylindrical shape, and A magnetic supply device capable of holding the rotor so as to be magnetically rotatable and movable in the axial direction is provided in the rotor, and at least control for controlling the state of the magnetism for axial movement in the magnetic supply device is provided. A multi-focal X-ray tube, characterized in that the magnetic supply device is provided with a distance between the filament and the target and is variable in the distance between the filament and the target by the operation of the control means. Claim 1, characterized in that the control means comprises a pair of axial control electromagnetic coils which are arranged in a constant manner, and the control means relatively changes the current supplied to both electromagnetic coils. Multifocal X-ray tube. (3) The rotating anode X-ray tube covers the cathode filament, is provided with a bias electrode, and constantly maintains a predetermined X-ray by changing the bias power supply voltage according to the movement of the cathode and anode open positions 2. The multi-focus X-ray tube according to claim 1, wherein the tube focuses on the ray tube.
JP58024875A 1983-02-18 1983-02-18 Plural focal points x-ray tube Pending JPS59151735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024875A JPS59151735A (en) 1983-02-18 1983-02-18 Plural focal points x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024875A JPS59151735A (en) 1983-02-18 1983-02-18 Plural focal points x-ray tube

Publications (1)

Publication Number Publication Date
JPS59151735A true JPS59151735A (en) 1984-08-30

Family

ID=12150373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024875A Pending JPS59151735A (en) 1983-02-18 1983-02-18 Plural focal points x-ray tube

Country Status (1)

Country Link
JP (1) JPS59151735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189297A2 (en) * 1985-01-23 1986-07-30 Kabushiki Kaisha Toshiba X-ray tube devices
JP2007184277A (en) * 2006-01-03 2007-07-19 Alcatel Lucent Compact source with very bright x-ray beam
WO2007129244A2 (en) * 2006-05-05 2007-11-15 Philips Intellectual Property & Standards Gmbh X-ray tube with oscillating anode
EP3430638A4 (en) * 2016-03-18 2020-02-12 Varex Imaging Corporation Magnetic lift device for an x-ray tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189297A2 (en) * 1985-01-23 1986-07-30 Kabushiki Kaisha Toshiba X-ray tube devices
JP2007184277A (en) * 2006-01-03 2007-07-19 Alcatel Lucent Compact source with very bright x-ray beam
WO2007129244A2 (en) * 2006-05-05 2007-11-15 Philips Intellectual Property & Standards Gmbh X-ray tube with oscillating anode
WO2007129244A3 (en) * 2006-05-05 2008-01-10 Philips Intellectual Property X-ray tube with oscillating anode
EP3430638A4 (en) * 2016-03-18 2020-02-12 Varex Imaging Corporation Magnetic lift device for an x-ray tube
US10804064B2 (en) 2016-03-18 2020-10-13 Varex Imaging Corporation Magnetic lift device for an x-ray tube

Similar Documents

Publication Publication Date Title
EP0564293B1 (en) Ring tube X-ray source
US10181389B2 (en) X-ray tube having magnetic quadrupoles for focusing and collocated steering coils for steering
US5438605A (en) Ring tube x-ray source with active vacuum pumping
US5305363A (en) Computerized tomographic scanner having a toroidal x-ray tube with a stationary annular anode and a rotating cathode assembly
JP2866910B2 (en) X-ray tube rotating anode suspension system with passive magnetic bearing
US4674109A (en) Rotating anode x-ray tube device
US4322624A (en) X-ray tube having a magnetically supported rotary anode
EP3268976B1 (en) X-ray tube having magnetic quadrupoles for focusing and magnetic dipoles for steering
JPH10106462A (en) X-ray tube
US3878395A (en) Method and means for operating x-ray tubes with rotary anodes
JPS5843860B2 (en) Rotating anode X-ray tube with electromagnetic bearing
JP2008159317A (en) X-ray tube device and x-ray apparatus using it
US5117448A (en) Weight compensation device for x-ray tube comprising passive magnetic bearings
JPS59151735A (en) Plural focal points x-ray tube
JPH09115469A (en) Cathodic x-ray source that is supported magnetically
JP2010080399A (en) Rotary anode type x-ray tube assembly
US5822394A (en) X-ray tube with ring-shaped anode
JPH0410342A (en) Rotary anode-type x-ray tube
JP2013134915A (en) Rotary anode x-ray tube device
JPS5960949A (en) X-ray tube device of rotary anode type
JPH03156844A (en) Flash x-ray tube with rotary anode
CN117276034A (en) X-ray tube
JP2000040480A (en) Rotating anode x-ray tube
JPH0332176B2 (en)
JP2001276052A (en) Cathode scanning type x-ray generator and x-ray ct scanner