JPS591513B2 - Melting type flux for submerged arc welding - Google Patents

Melting type flux for submerged arc welding

Info

Publication number
JPS591513B2
JPS591513B2 JP11382480A JP11382480A JPS591513B2 JP S591513 B2 JPS591513 B2 JP S591513B2 JP 11382480 A JP11382480 A JP 11382480A JP 11382480 A JP11382480 A JP 11382480A JP S591513 B2 JPS591513 B2 JP S591513B2
Authority
JP
Japan
Prior art keywords
flux
welding
cao
submerged arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11382480A
Other languages
Japanese (ja)
Other versions
JPS5739092A (en
Inventor
将美 山口
勲 杉岡
久美 増田
元 本杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11382480A priority Critical patent/JPS591513B2/en
Publication of JPS5739092A publication Critical patent/JPS5739092A/en
Publication of JPS591513B2 publication Critical patent/JPS591513B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明は、特に50〜60キロ級高張力鋼のすみ肉溶接
において、良好な溶接作業性を示し、しかも良好な衝撃
靭性を備えた溶接金属が得られる、言わば溶接作業性と
機械的性能を両立させた潜弧溶接用溶融型フラックスに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a welding method that exhibits good welding workability and provides a welded metal with good impact toughness, particularly in fillet welding of 50 to 60 kg class high tensile strength steel. This article relates to a melt-type flux for submerged arc welding that has both workability and mechanical performance.

潜弧溶接において、すみ肉溶接は数ある溶接施工の中で
もその占める割合が高く、それだけに能率向上に対する
要望が強く、ほとんど自然剥離する程のスラグ剥離性、
多少のさびやプライマには影響されない程の耐ピット性
、母材と滑らかになじんだ連続的なビード外観等がその
溶接材料に要求されている。これら溶接作業性の改善は
、SiO2−MnO系等の酸性フラックスを用いること
により達成され、軟鋼のように、機械的性能があまり問
題とならない施工においては、このような溶接材料が広
く使用されている。
In submerged arc welding, fillet welding accounts for a high proportion of the many welding operations, and there is therefore a strong desire to improve efficiency.
Welding materials are required to have pit resistance that is unaffected by slight rust or primer, and a continuous bead appearance that blends smoothly with the base metal. These improvements in welding workability are achieved by using acidic fluxes such as SiO2-MnO, and such welding materials are widely used in construction where mechanical performance is not a big issue, such as with mild steel. There is.

、しかし、このような酸性フラックスは溶接金属中の酸
素量が多くなるため、衝撃靭性の要求水準の高い高張力
鋼には用いることができず、作業能率を犠牲にして溶着
金属の酸素量がやや低くなる中性系フラックスを用いて
いた。
However, such acidic fluxes cannot be used for high-strength steels that require high impact toughness because the amount of oxygen in the weld metal increases, and the amount of oxygen in the weld metal increases at the expense of work efficiency. A neutral flux was used, which resulted in a slightly lower temperature.

このように潜弧溶接用フラックスの溶接作業性と機械的
性能は、従来、相反するものとの見方が一般的であつた
As described above, the welding workability and mechanical performance of flux for submerged arc welding have conventionally been generally viewed as contradictory.

そこで、本発明者らは、50キロ、あるいは60キロ級
高張力鋼の溶接が可能でしかも溶接作業性が良好な潜弧
溶接用フラックスの開発を目的に、鋭意検討を重ねた結
果、母材とのなじみが良く、欠陥のない良好なビード外
観や、良好なスラグ剥離性など、溶接作業性を確保する
ために、フラックスのかさ密度、MnO、MgO(■I
)SiO2に対する成分量比をそれぞれ最適範囲内の数
値に定めると共にフラックスの塩基度を酸性域に保ち、
これによる衝撃靭性の低下をTiO2添加による溶接金
属結晶粒の微細化によつて防止し、さらにTiO2添加
によるスラグ剥離性の劣化をTiO2とCaOとの共存
量を制限することによつて解消するという方法により、
特定の範囲に溶接作業性、機械的性能共に良好なフラッ
クスの成分域が存在することを見出した。
Therefore, the inventors of the present invention have conducted extensive studies with the aim of developing a flux for submerged arc welding that is capable of welding 50 kg or 60 kg class high-strength steel and has good welding workability. The bulk density of the flux, MnO, MgO (■I
) The ratio of the components to SiO2 is determined within the optimum range, and the basicity of the flux is maintained in the acidic range.
The reduction in impact toughness caused by this can be prevented by making the weld metal crystal grains finer by adding TiO2, and the deterioration in slag removability due to the addition of TiO2 can be prevented by limiting the amount of coexistence of TiO2 and CaO. Depending on the method,
It has been found that there is a flux composition range with good welding workability and mechanical performance in a specific range.

すなわち、第1図はその分析値がMnO約30%、Ti
O2約2%、T.CaO約4%、F約2%とほぼ一定で
、SiO2およびMgO成分量をそれぞれ42〜58%
、6〜15%の範囲で変化させた、かさ密度0.9〜1
.19/CTilの試作フラツクス10種について、拡
散性水素量におよほすMgQ/SlO2比の影響の調査
結果を示したものである。
That is, Fig. 1 shows that the analytical values are approximately 30% for MnO and about 30% for Ti.
O2 about 2%, T. The amounts of CaO and F are approximately constant at approximately 4% and 2%, respectively, and the amounts of SiO2 and MgO components are 42 to 58% each.
, bulk density 0.9-1, varied in the range of 6-15%
.. The results of an investigation on the influence of the MgQ/SlO2 ratio on the amount of diffusible hydrogen are shown for 10 types of prototype fluxes of 19/CTil.

第1図はJISZ3ll3に準拠し、溶接条件:400
A300、50(1−JモV1/MiTlワイヤ:3.2
mmφ、JISYSW−41で実施した。この図で明ら
かなように、拡散性水素量はMgO/SlO2比の増加
にしたがつて多くなり、特に0.30を超えると極めて
多くなる。
Figure 1 is based on JISZ3ll3, welding conditions: 400
A300, 50 (1-J MoV1/MiTL wire: 3.2
mmφ, JISYSW-41. As is clear from this figure, the amount of diffusible hydrogen increases as the MgO/SlO2 ratio increases, particularly when it exceeds 0.30.

また、第2図は、第1図の場合と同じフラツクスを用い
て、板厚12mm0SM−50B鋼をJISZ33ll
、YSW−41相当ワイヤを用いて700A35V70
cfL/Mmの溶接条件で下向すみ肉溶接(溶接長1m
)した場合のスラグ剥離に要する時間とMgQ/SlO
2比の関係を示したものである。
In addition, Figure 2 shows a JISZ33ll plate of 12mm thick 0SM-50B steel using the same flux as in Figure 1.
, 700A35V70 using YSW-41 equivalent wire
Downward fillet welding under welding conditions of cfL/Mm (welding length 1m)
) and the time required for slag removal and MgQ/SlO
This shows the relationship between the two ratios.

この図で明らかなように、スラグはいずれもほとんど自
然剥離であるが、MgO/SiO2比が0.16未満に
なると剥離に要する時間が長くなり、スラグ剥離性が劣
化することが認められる。第3図は、その分析値がMg
O約10%、TiO2約2%、T.CaO約4%、F約
2%とほぼ一定で、SlO2およびMnO成分量をそれ
ぞれ41〜58%、24〜4570の範囲で変化させた
、かさ密度0.9〜1.1g/CTilの試作フラツク
スについて、JISZ33ll、YSW−41相当ワイ
ヤを用いた600A34V60CTIL/緬の溶接条件
による水平すみ肉溶接時のホックマーク、アンダーカツ
トの発生率と、MnQ/SiO2比の関係を図示したも
のである。
As is clear from this figure, most of the slags are naturally exfoliated, but when the MgO/SiO2 ratio is less than 0.16, the time required for exfoliation becomes longer and the slag releasability deteriorates. Figure 3 shows that the analysis value is Mg.
O about 10%, TiO2 about 2%, T. Prototype flux with a bulk density of 0.9 to 1.1 g/CTil, with approximately constant CaO of approximately 4% and F of approximately 2%, and varying the amounts of SlO2 and MnO components in the ranges of 41 to 58% and 24 to 4570, respectively. This figure shows the relationship between the incidence of hook marks and undercuts during horizontal fillet welding under welding conditions of 600A34V60CTIL/Burmese using wire equivalent to JISZ33ll and YSW-41, and the MnQ/SiO2 ratio.

この図から判るように、MnQ/SiO2比が増すに従
つて、ホックマークは減少し、アンダーカツトのは増加
する傾向が認められ、ホックマークはMnO/SiO2
比が0.55未満で、アンダーカツトは0.80を超え
ると極めて発生しやすくなつた。また、第4図は、Sl
O25l%、MnO38%、MgOll%の組成を有す
る配合原材料中に、その分析値でF約2%、T.CaO
およびTlO2をそれぞれ2〜107012〜8%の範
囲となるよう配合、溶解した試作フラツクス15種を用
いて、板厚12mm(7)SM−50B鋼を第2図の場
合と同様の溶接条件により、下向すみ肉溶接した場合の
スラグ剥離性をT.CaO(!:TiO2含有量と関連
させて示したものである。この図で判るように、スラグ
剥離性はT.CaOおよびTlO2含有量の増加と共に
劣化する傾向を示すが、これらの和T.CaO+TiO
2が9%までの範囲なら何ら問題はない。なお、この第
4図において◎はスラグが自然剥離すること、Oはほと
んど抵抗なく剥離すること、△はスラグを軽打すること
によつて剥離すること、×はスラグをかなり強打するこ
とによつて剥離することをそれぞれ示す。また、この1
5種の試作フラツクスのうち、T.CaO約2%のもの
は、そのF源として螢石(CaF2)を用いることなく
AlF3を用いてT.CaOの増加を避けたものであり
、このT.CaO値は他の原材料からの不純物と考えら
れる。
As can be seen from this figure, as the MnQ/SiO2 ratio increases, there is a tendency for the number of hook marks to decrease and the number of undercuts to increase.
When the ratio was less than 0.55 and over 0.80, undercuts were extremely likely to occur. In addition, FIG. 4 shows Sl
In the blended raw material having a composition of O25l%, MnO38%, MgOll%, the analysis value is about 2% F, T. CaO
Using 15 kinds of prototype fluxes mixed and melted to have a range of 2% to 10% and 12% to 8% of TlO2, a plate of 12 mm (7) SM-50B steel was welded under the same conditions as in Fig. 2. The slag removability when performing downward fillet welding is T. CaO(!: is shown in relation to the TiO2 content. As can be seen from this figure, the slag removability tends to deteriorate as the T.CaO and TlO2 contents increase, but the sum of these T. CaO+TiO
There is no problem if 2 is within 9%. In this Figure 4, ◎ means that the slag will peel off naturally, O means that it will peel off with almost no resistance, △ means that it will peel off by hitting the slag lightly, and × means that it will peel off by hitting the slag quite hard. This indicates that the material will stick and peel off. Also, this 1
Among the five types of prototype fluxes, T. About 2% CaO is produced by T.I. using AlF3 as the F source without using fluorite (CaF2). This T. The CaO value is considered to be an impurity from other raw materials.

本発明は以上の知見に基づくもので、その要旨とすると
ころは重量パーセントで、SiO245〜55%、Tl
O2l〜4%、F1〜3%を含有し、0.16くMgO
/SlO2く0.30,0.55くMn〔SiO2く0
.80,T.Ca0+TiO2く9%、かさ密度0.9
〜1,39/C77lで、かつ次式で示される塩基度B
が0.55〜0.85であることを特徴とする潜弧溶接
用溶融型フラツクスにある。
The present invention is based on the above findings, and its gist is that SiO245-55%, Tl
Contains O2l~4%, F1~3%, 0.16% MgO
/SlO2ku0.30,0.55kuMn[SiO2ku0
.. 80,T. Ca0+TiO2 9%, bulk density 0.9
Basicity B of ~1,39/C77l and expressed by the following formula:
0.55 to 0.85.

以下に本発明を詳細に説明する。The present invention will be explained in detail below.

まず、本発明は溶融型フラツクスに関するものであるか
らして、各成分含有量、成分比、塩基度等の限定値はす
べてフラツクスの分析値によるものである。
First, since the present invention relates to a molten flux, all of the limiting values for the content of each component, component ratio, basicity, etc. are based on analytical values of the flux.

これは、溶融型フラツクスの配合組成と溶解後の成品フ
ラツクスの成分含有量とは一般に一致せず、溶融型フラ
ツクスの性能は成品フラツクスの各成分含有量の大小、
組合せの如何んによつて左右され、この成分含有量は成
品フラツクスを分析することによつてのみ知ることがで
きることに基づく。また、溶融型フラツクスにおける成
分の分析値の意味について述べると、いつたん溶融され
、ガラス質となつている溶融型フラツクスの中では各成
分は原料として配合されたままの結晶構造や分子結合状
態を維持してはいないため、その分析に際して、フラツ
クス中に含まれる酸化物形成元素は、その形態にかかわ
らず、すべてSiO2,MnO,MgO,CaO,Ti
O2,Al2O3のような最も安定な酸化物の形で定量
されることになる。
This means that the composition of the melted flux and the component content of the finished product flux after melting generally do not match, and the performance of the melted flux depends on the content of each component in the finished product flux.
Depending on the combination, the content of this component can only be known by analyzing the product flux. In addition, regarding the meaning of the analysis values of the components in molten flux, each component in molten flux, which has been melted and becomes glassy, has a crystal structure and molecular bonding state as it was blended as raw materials. Therefore, when analyzing the flux, all oxide-forming elements contained in the flux were identified as SiO2, MnO, MgO, CaO, and Ti, regardless of their form.
It will be quantified in the form of the most stable oxides such as O2 and Al2O3.

例えば、酸化物、炭酸塩の形で配合されたCaもフツ化
物として配合添加されたCaも、あるいは炉材から混入
する場合のCaも、いつたん溶解されガラス質となつた
溶融型フラツクスの中では区別が不可能であり、すべて
CaOの形で定量分析されるのである。
For example, Ca blended in the form of oxides and carbonates, Ca blended and added as a fluoride, or Ca mixed in from furnace materials are contained in the molten flux that is once melted and becomes glassy. Therefore, it is impossible to distinguish between them, and all are quantitatively analyzed in the form of CaO.

したがつてこのような分析値は、フラツクス中に含まれ
るすべてのCaをCaOの形にして表示したという意味
を明確にするためT(トータル)を付記してT.CaO
と表記する。
Therefore, such analytical values are expressed as T (total) to clarify that all Ca contained in the flux is expressed in the form of CaO. CaO
It is written as.

このような意味では、CaOに限らず他の酸化物につい
ても同様で、本来はすべてTを付記せねばならないと言
える。
In this sense, the same applies not only to CaO but also to other oxides, and it can be said that T should be added to all oxides.

特にF源にMgF2,AlF3等を用いた場合には、T
.MgO,T.Al2O3と表記すべきではあるが、F
源には通常安価なCaF2(螢石)を用いることが一般
的であるためCaOのみT.CaOと表記するのが従来
からの習・レとなつている。溶融型フラツクスの酸化物
の分析値は以上のような性格のもので、本発明における
酸化物の含有量、成分比、塩基度等の限定値はこのよう
なフラツクス中に含有されるそれぞれの元素をすべてS
lO2,MnO,MgO,CaO,TiO2の形で定量
分析した値によるものである。
In particular, when MgF2, AlF3, etc. are used as the F source, T
.. MgO, T. Although it should be written as Al2O3, F
Since CaF2 (fluorite), which is inexpensive, is generally used as a source, only CaO is used. It has traditionally been written as CaO. The analytical values of oxides in molten fluxes have the characteristics described above, and the limiting values of oxide content, component ratio, basicity, etc. in the present invention are based on each element contained in such fluxes. All S
The values are based on quantitative analysis in the form of 1O2, MnO, MgO, CaO, and TiO2.

また、溶融型フラツクス中におけるフツ化物の存在形態
については不明な点が多いが、溶融型フラツクスの中で
は原料フツ化物はいつたん溶解されガラス状態となつて
いるため、CaF2,MgF2,AlF3,BaF2と
いうような、もとのままの結晶構造や分子結合にはなつ
ていないと考えられている。
Furthermore, although there are many unknowns about the existence form of fluorides in molten flux, in molten flux the raw material fluoride is once melted and becomes a glass state, so CaF2, MgF2, AlF3, BaF2 It is thought that the crystal structure and molecular bonds have not changed to their original state.

したがつて溶融型フラツクスは、成分分析においてもC
aF2,MgF2といつたフツ化物の形での定量が不可
能なため、例えばフツ塩化鉛一硝酸銀・口タンカリ滴定
容量法、あるいは熱分解法(日本金属学会誌1970年
第6号参照)などの手法によりフラツクス中のFをまず
定量し、しかる後CaF2,MgF2,AlF3などの
形に算術的に換算し、便宜上フツ化物の含有量としてい
るのである0即ち、本発明におけるF含有量とは先に述
べたような手法により定量されたフラツクス中のF含有
量そのものの数値を指すものである。
Therefore, molten flux also has C in component analysis.
Since fluorides such as aF2 and MgF2 cannot be quantified in the form of fluorides, methods such as the fluoride chloride monosilver nitrate/kutankali titration volumetric method or the thermal decomposition method (see Journal of the Japan Institute of Metals, No. 6, 1970) are used. The F content in the flux is first quantified using a method, and then arithmetically converted into forms such as CaF2, MgF2, AlF3, etc., and is used as the fluoride content for convenience. It refers to the numerical value of the F content itself in flux, determined by the method described in .

次に、本発明における各数値の限定理由を述べる0まず
、本発明においてSiO2を45〜55%としたのは、
SiO2が45%未満、あるいは55%を超えた場合、
スラグの融点、流動性がビード形成に不向きとなり、特
に水平すみ肉溶接において良好なビード形状を保持でき
ないことによる。
Next, we will discuss the reasons for limiting each numerical value in the present invention.0 First, the reason why SiO2 is set to 45 to 55% in the present invention is as follows.
If SiO2 is less than 45% or more than 55%,
This is because the melting point and fluidity of slag are unsuitable for bead formation, and a good bead shape cannot be maintained, especially in horizontal fillet welding.

TiO2は溶接金属組織を微細化し、靭性の改善に有効
な成分であるが、1%未満ではその効果が不十分であり
、4%を超えてもそれ以上の改善効果はなく、スラグ剥
離性が劣化する弊害のみが現れる。Fはシールド効果゛
によりピツト、ブローホールの発生を防止する重要な成
分であるが、370を超えるとアークが不安定となり、
平滑なビードが得られなくなるb逆に1%未満ではシー
ルド不足となりピツト、ブローホールが発生しやすくな
る。
TiO2 is an effective component for refining the weld metal structure and improving toughness, but if it is less than 1%, the effect is insufficient, and if it exceeds 4%, there is no further improvement effect, and the slag removability is Only the negative effects of deterioration appear. F is an important component that prevents the occurrence of pits and blowholes due to its shielding effect, but if it exceeds 370, the arc becomes unstable.
A smooth bead cannot be obtained. Conversely, if it is less than 1%, the shielding becomes insufficient and pits and blowholes are likely to occur.

MgQ/SiO2については、前述のように0.30を
超えると拡散性水素量が多くなりピツト、ブローホール
の発生が多くなる。また0.16未満ではスラグ剥離性
が劣化する。MnQ/SiO2は前述したように、0.
55未満では脱酸が不十分となつてホックマークの発生
が多くなり、逆に0.80を超えるとアンダーカツトが
発生しやすくなる。
As for MgQ/SiO2, as mentioned above, when it exceeds 0.30, the amount of diffusible hydrogen increases and the occurrence of pits and blowholes increases. Moreover, if it is less than 0.16, slag removability deteriorates. As mentioned above, MnQ/SiO2 is 0.
If it is less than 55, deoxidation will be insufficient and more hook marks will occur, while if it exceeds 0.80, undercuts will be more likely to occur.

T.CaO+TiO2についても前述のとおり、9%を
超えるとスラグ剥離性が劣化する。
T. As mentioned above, when CaO+TiO2 exceeds 9%, the slag removability deteriorates.

かさ密度は1.3g/Critを超えるとアークが不安
定となりビード波形が粗くなる。
When the bulk density exceeds 1.3 g/Crit, the arc becomes unstable and the bead waveform becomes rough.

逆に0.9未満ではフラツクスの水素が多くなり、ピツ
ト、ブローホール、ホックマークが発生しやすくなる。
なお、ここで言うかさ密度とは疎充填法によつて測定す
るものを指し、JISK672l−1966の「塩化ビ
ニル樹脂試1験方法」中に規定された方法に準じて測定
する。で表される塩基度Bは0.85を超えるとアーク
が不安定となり、ビードの波形が粗くなつて均一な、な
じみの良いビードが得られなくなる。
On the other hand, if it is less than 0.9, the amount of hydrogen in the flux will increase, making pits, blowholes, and hook marks more likely to occur.
The term "bulk density" as used herein refers to a density measured by a loose packing method, and is measured in accordance with the method specified in "Vinyl chloride resin test method 1" of JIS K672l-1966. If the basicity B exceeds 0.85, the arc becomes unstable and the waveform of the bead becomes rough, making it impossible to obtain a uniform and well-fitting bead.

逆に0.55未満では、溶接金属中の酸素量が過多とな
り衝撃靭性が低下するばかりでなく、溶接金属へのC1
あるいはSl,Mn等の合金成分の歩留が低下し、特に
高張力鋼の多層溶接において引張強度が不足し問題とな
る。なお、この塩基度計算式Bは、森式表示法BL(日
本金属学会誌1960年第6号参照)を簡便化したもの
で、総和表示となつている森式表示法BLを分数表示と
し、さらにBLの各係数をその分子量で除することによ
り、各成分量をモル分率に換算することなく、重量パー
セントでそのまま計算できるようにしたものである。
On the other hand, if it is less than 0.55, the amount of oxygen in the weld metal will be excessive, resulting in not only a decrease in impact toughness but also a decrease in C1 to the weld metal.
Alternatively, the yield of alloy components such as Sl and Mn decreases, which causes a problem of insufficient tensile strength, especially in multilayer welding of high-strength steel. This basicity calculation formula B is a simplified version of the Mori method BL (see Journal of the Japan Institute of Metals, No. 6, 1960), and the Mori method BL, which is expressed as a summation, is expressed as a fraction. Furthermore, by dividing each coefficient of BL by its molecular weight, the amount of each component can be directly calculated in weight percent without converting it into a mole fraction.

ただし、Al2O3FeO成分については、係数も比較
的小さく、しかも本発明系フラツクスでは含有量も少な
くほとんど影響がないので計算式より省略した。その他
の成分として、まずMnOについては先にMnQ/Si
O2比の限定理由を述べたが、MnO成分としては40
%以下が望ましい。
However, the coefficient of the Al2O3FeO component is relatively small, and in the flux of the present invention, the content is small and has almost no effect, so it was omitted from the calculation formula. As for other components, first of all, regarding MnO, MnQ/Si
Although the reason for limiting the O2 ratio has been stated, the MnO component is 40
% or less is desirable.

これはMnOが40%を超えると耐火性が劣化し、大電
流域における溶接作業性が悪化する傾向が認められるこ
とによる。MgOについても、先にMgQ/SiO2比
の限定理由を述べたが、MgO成分としては15%以下
が望ましい。
This is because when MnO exceeds 40%, fire resistance deteriorates and welding workability in a large current range tends to deteriorate. As for MgO, the reason for limiting the MgQ/SiO2 ratio was mentioned above, and it is desirable that the MgO component be 15% or less.

MgOが15%を超えるとスラグの粘性が高くなり始め
、ビード形状が劣化する傾向が認められるからである。
Al2O3,FeO,K2O,Na2O,等は、使用原
材料の不純物として混入する成分であるが、これら成分
はそれぞれ6%以下、2%以下、1%以下、1%以下な
ら、本発明フラツクスの特性に何ら影響はない。
This is because when MgO exceeds 15%, the viscosity of the slag begins to increase and the bead shape tends to deteriorate.
Al2O3, FeO, K2O, Na2O, etc. are components mixed as impurities in the raw materials used, but if these components are 6% or less, 2% or less, 1% or less, and 1% or less, the characteristics of the flux of the present invention will not be affected. There is no effect.

以下に実施例により、本発明の効果をさらに具体的に述
べる。
The effects of the present invention will be described in more detail below with reference to Examples.

第1表に示すように配合したF−1〜6の混合原材料を
還元性雰囲気の電気炉にて溶解し、水冷、固化した後、
12×48メツシユの粒度に整粒した。
After melting the mixed raw materials F-1 to F-6 blended as shown in Table 1 in an electric furnace in a reducing atmosphere, cooling with water and solidifying,
The particles were sized to a particle size of 12×48 mesh.

これらフラツクスを比較フラツクスと共に、第2表に示
すワイヤ鋼板と組合せて、第3表に示すそれぞれの溶接
条件により、水平すみ肉溶接、Y開先の両面1層突合せ
溶接金属の衝撃試験、グリセリン置換法(JISZ3l
l3準拠)による拡散性水素試験を実施した。
These fluxes were combined with the comparative fluxes and the wire steel plates shown in Table 2, and the welding conditions shown in Table 3 were used to perform horizontal fillet welding, impact testing of Y-groove double-sided single-layer butt weld metal, and glycerin replacement. Law (JISZ3l
A diffusible hydrogen test was carried out according to 13 standard).

なお、これらフラツクスの成分含有量の分析値は第4表
に示すとおりであつた。
The analytical values of the component contents of these fluxes were as shown in Table 4.

これらの結果は第5表に示すとおりで比較フラツクスで
は機械的性能良好なものは溶接作業性が劣り、溶接作業
性の良好なものは機械的性能が劣つたり、拡散性水素量
が多かつたりするのに対し、本発明フラツクスはこれら
性能に過不足なく、いずれも良好であつた。
These results are shown in Table 5. Among the comparative fluxes, those with good mechanical performance had poor welding workability, and those with good welding workability had poor mechanical performance or had a high amount of diffusible hydrogen. On the other hand, the flux of the present invention had just the right performance and was good in all of them.

なお、Y開先両面突合せ溶接において衝撃試験片はF.
P側板表面下7uの位置を中心に採取した。
In addition, the impact test piece in Y-groove double-sided butt welding was F.
Samples were taken mainly at a position 7u below the surface of the P side plate.

また、第4表において、スラグ剥離、ビード形状は良好
なものを◎、ほぼ良好なものを01やや劣るもの△、不
良のものを×で示した。
In Table 4, good slag peeling and bead shape are indicated by ◎, almost good by 01, slightly poor by △, and poor by ×.

ホックマーク、ピツト、アンダーカツトの欠陥について
は、発生しないものを◎、わずかに発生するものを○、
やや多く発生するものを△、頻発するものを×でそれぞ
れ示した。以上のように本発明は、溶接作業性と機械的
性能を両立させたフラツクスを供給するもので、その利
用範囲が極めて広い。
Regarding defects such as hook marks, pits, and undercuts, those that do not occur are ◎, and those that slightly occur are ○.
Those that occur somewhat frequently are indicated by △, and those that occur frequently are indicated by ×. As described above, the present invention provides a flux that is compatible with welding workability and mechanical performance, and has an extremely wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明フラツクス系におけるMgQ
/SiO2比と拡散性水素量、およびスラグ剥離時間と
の関係を示す図、第3図は同じくMnO/SiO2比と
ホックマーク発生数、アンダーカツト長さとの関係を示
す図、第4図は、フラツクス中のT.CaOおよびTi
O2含有量とスラグ剥離性の関係を示す図、第5図は実
施例における、(a)水平すみ肉溶接要領と(b)Y開
先両面1層突合せ溶接の開先形状をそれぞれ示す図であ
る。
Figures 1 and 2 show MgQ in the flux system of the present invention.
Figure 3 shows the relationship between the MnO/SiO2 ratio, the amount of diffusible hydrogen, and the slag removal time, and Figure 4 shows the relationship between the MnO/SiO2 ratio, the number of hook marks, and the undercut length. T. in flux. CaO and Ti
Figure 5 is a diagram showing the relationship between O2 content and slag removability, and Figure 5 is a diagram showing (a) horizontal fillet welding procedure and (b) groove shape of Y groove double-sided single-layer butt welding, respectively, in the example. be.

Claims (1)

【特許請求の範囲】 1 重量パーセントでSiO_245〜55%、TiO
_21〜4%、F1〜3%を含有し、0.16≦MgO
/SiO_2≦0.30、0.55≦MnO/SiO_
2≦0.80、T、CaO+TiO_2≦9%、かさ密
度0.9〜1.3g/cm^3で、かつ次式で示される
塩基度Bが0.55〜0.85であることを特徴とする
潜弧溶接用溶融型フラックス。 B=0.108T.CaO+0.068MnO+0.1
0MgO/0.105SiO_2+0.062TiO_
[Claims] 1% by weight SiO_245-55%, TiO
Contains _21-4%, F1-3%, 0.16≦MgO
/SiO_2≦0.30, 0.55≦MnO/SiO_
2≦0.80, T, CaO+TiO_2≦9%, bulk density 0.9 to 1.3 g/cm^3, and basicity B expressed by the following formula is 0.55 to 0.85. Melting type flux for submerged arc welding. B=0.108T. CaO+0.068MnO+0.1
0MgO/0.105SiO_2+0.062TiO_
2
JP11382480A 1980-08-19 1980-08-19 Melting type flux for submerged arc welding Expired JPS591513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11382480A JPS591513B2 (en) 1980-08-19 1980-08-19 Melting type flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11382480A JPS591513B2 (en) 1980-08-19 1980-08-19 Melting type flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS5739092A JPS5739092A (en) 1982-03-04
JPS591513B2 true JPS591513B2 (en) 1984-01-12

Family

ID=14621959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11382480A Expired JPS591513B2 (en) 1980-08-19 1980-08-19 Melting type flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS591513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726371B2 (en) 2006-05-16 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. FFS-mode liquid crystal display device comprising a top-gate transistor and an auxiliary wiring connected to a common electrode in a pixel portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726371B2 (en) 2006-05-16 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. FFS-mode liquid crystal display device comprising a top-gate transistor and an auxiliary wiring connected to a common electrode in a pixel portion

Also Published As

Publication number Publication date
JPS5739092A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
US5580475A (en) Flux-cored wire for gas shield arc welding with low fume
US4345140A (en) Composite wire for stainless steel welding
CA1136024A (en) High performance fused flux for submerged arc welding
US3692590A (en) Flux for submerged arc welding
JP2008114264A (en) Flux cored wire for gas shielded arc welding for atmospheric corrosion resistant steel
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2723335B2 (en) Flux-cored wire for gas shielded arc welding
JPS591513B2 (en) Melting type flux for submerged arc welding
GB2155045A (en) Flux cored wire electrodes
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP2001205483A (en) Flux-containing wire for gas shield arc welding
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP3458452B2 (en) High heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
WO2006126519A1 (en) Fused flux for submerged arc welding
JPH09277083A (en) Submerged arc welding method for weatherproof steel of large heat input
JPS6397396A (en) Iron powder flux cored wire
JPH05269593A (en) Flux cored wire for gas shielded metal-arc welding
JPH05192788A (en) Submerged welding method for high mn nonmagnetic steel
JP2014176878A (en) Horizontal fillet gas shield arc welding method
JPS5914315B2 (en) Low hydrogen coated arc welding rod
JPH0378197B2 (en)
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
JPH06285679A (en) Highly basic and meltable flux
JPH09239586A (en) Flux cored wire for welding stainless steel
JPS5944959B2 (en) Sintered flux for horizontal submerged arc welding