JPS59151013A - Distance detecting device - Google Patents

Distance detecting device

Info

Publication number
JPS59151013A
JPS59151013A JP2477383A JP2477383A JPS59151013A JP S59151013 A JPS59151013 A JP S59151013A JP 2477383 A JP2477383 A JP 2477383A JP 2477383 A JP2477383 A JP 2477383A JP S59151013 A JPS59151013 A JP S59151013A
Authority
JP
Japan
Prior art keywords
current
light
distance
circuit
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2477383A
Other languages
Japanese (ja)
Inventor
Toshitatsu Suzuki
鈴木 敏立
Satoshi Yamane
山根 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2477383A priority Critical patent/JPS59151013A/en
Priority to DE19843405784 priority patent/DE3405784A1/en
Publication of JPS59151013A publication Critical patent/JPS59151013A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To execute a quick stabilization by an appropriate charge-up in case when a power source is turned on by a simple constitution by connecting a constant-current source to a circuit in which an output photoelectric current of a semiconductor optical position detector flows, and making a constant bias current flow. CONSTITUTION:A constant-current source CC is connected to a circuit in which an output photoelectric current IL1 of a semiconductor optical position detector PSD2 flows, a constant bias current is made to flow from this constant-current source CC, and a photoelectric current by a stationary light is biased. By making this bias current flow, a difference of the photoelectric current between when the stationary light is bright and when it is dark can be set to a small ratio against when the stationary light is bright, namely, when the photoelectric current is large. In this way, when a charge-up current I and a charge-up pulse width (tw) are constituted so as to conform with the time when the stationary light is bright, the stabilization is executed quickly by a simple constitution.

Description

【発明の詳細な説明】 (a)  技術分野 本発明は、カメラ等に用いる距離検出装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a distance detection device used in a camera or the like.

(+))  従来技術 いわゆるコンパクトカメラ等におけるオー1−フォーカ
ス(自動焦点調整)の測距方式としては外光を利用する
パッシブ方式による二重像合致方式が主流となっている
。しかしながら、このパッシブ方式による二重像合致方
式は、一方の像の他方の像に対する相対位置を変化させ
るための可動ミラーを用いることが不可欠な要素となっ
ており、この可動ミラーを用いることによる耐久性の低
さおよび二重像合致方式であるため被写体(測距対象)
のコントラスト情報により測距を行なっているので被写
体依存性が強く、コントラストの悪い被写体の測距や暗
いときのd111距能力の低さといった問題点があった
。。
(+)) PRIOR TECHNOLOGY As a distance measuring method for autofocus (automatic focus adjustment) in so-called compact cameras, etc., a passive dual image matching method using external light has become mainstream. However, this passive double image matching method requires the use of a movable mirror to change the relative position of one image with respect to the other image, and the use of this movable mirror increases durability. Subject (distance measurement target) due to low sensitivity and double image matching method
Since distance measurement is performed based on contrast information, there is a strong dependence on the subject, and there are problems such as distance measurement for subjects with poor contrast and poor d111 distance ability in dark conditions. .

また、このような可動部をもつ方式は調整が複雑化し調
整に多くの手間を要するという欠点をもっている。
Further, a system having such a movable part has the disadvantage that adjustment is complicated and requires a lot of effort.

また、測距側の装置自体から光等を発するアクティブ方
式による三角測量方式を用いたものは、上述した被写体
依存性については改善されるものの、赤外光等の発光部
または受光部を回動させるなどの可動部を有するものは
やはり上述の耐久性の低さ、調整の複雑化等の問題は避
けられない。
In addition, the active triangulation method in which light is emitted from the distance measuring device itself improves the subject dependence described above, but it is also possible to rotate the infrared light emitting part or the light receiving part. Those having movable parts, such as moving parts, inevitably suffer from the aforementioned problems such as low durability and complicated adjustment.

一方、アクティブ方式の一種として超音波を発射し測距
対象による反射波を受信し送受に要する時間から測距対
象の距離を測定する超音波方式があり、これは純電気的
な処理のみによって測定するため処理は容易であるが、
高出力の発信が必要で大きな電源を必要とし、例えばコ
ンパクトカメラ等に用いられる電源では有効な超音波の
発信が困難である。また、超音波が測距対象以外の物体
にあたって測距精度が低下するのを防止するためには指
向性をよくする必要があるが、そのためには超音波の送
受信面の面積を太きくしなければならす、この点もコン
バク1−カメラ等には大きな問題となる。
On the other hand, as a type of active method, there is an ultrasonic method that emits ultrasonic waves, receives reflected waves from the distance measurement target, and measures the distance to the distance measurement target from the time required for transmission and reception. Although it is easy to process,
High-output transmission is required and a large power source is required. For example, it is difficult to effectively transmit ultrasonic waves using a power source used in a compact camera or the like. In addition, in order to prevent the ultrasonic waves from hitting objects other than the distance measurement target and reducing the distance measurement accuracy, it is necessary to improve the directivity, but to do this, the area of the ultrasonic transmitting and receiving surface must be increased. This point also becomes a big problem for cameras such as Combat 1.

これに対して、上述のアクティブ方式による三角1t(
lll量大式採用したものの一種であって、その上可動
部をなくし、さほど大きな電力を要せず調整も容易、耐
久性も良好でしかも高い距離分解能が得られるものとし
て、次に述べるような距離検出装置が考えられている。
On the other hand, the triangle 1t (
The following is a type of system that uses a large-volume system, eliminates moving parts, does not require much power, is easy to adjust, has good durability, and can provide high distance resolution. Distance detection devices are being considered.

すなわち、この距離検出装置は、測距対象にパルス光を
投射する光源と、前記測距対象による前記パルス光の反
射光スポットが結像される個所に設けられ前記光源との
視差に基づく前記測距対象の距離に応じた入射スポラ1
−の位置を前記距離の変化による位置変化方向について
連続的に検出し検出位置に応じた相互電流比を有する第
1および第2の電流出力を得る半導体装置検出器(以下
rPsDJと略称する)と、このPSDの前記第1の電
流出力を受は前記パルス光による前記第1の電流出力の
変動分を対数変換して出力する第1の検出回路と、前記
PSDの前記第2の電流出力を受は前記パルス光による
前記第2の電流出力の変動分を対数変換して出力する第
2の検出回路と、これら第1および第2の検出回路から
出力された対数変換された前記第1および第2の電流出
力の変動分の差をとって距離検出信号を得る差分検出回
路とを具備したものである。
That is, this distance detection device is provided at a location where a light spot reflected from the pulsed light by the distance measurement object is formed, and a light source that projects pulsed light onto the distance measurement object, and performs the measurement based on the parallax between the light source and the light source. Incidence spora 1 according to the distance of the target
- a semiconductor device detector (hereinafter abbreviated as rPsDJ) that continuously detects the position of - in the direction of position change due to the change in distance and obtains first and second current outputs having a mutual current ratio according to the detected position; , a first detection circuit that receives the first current output of the PSD and logarithmically transforms and outputs a variation in the first current output due to the pulsed light; The receiver includes a second detection circuit that logarithmically transforms and outputs a variation in the second current output due to the pulsed light, and a logarithmically transformed first and second current output output from the first and second detection circuits. A difference detection circuit obtains a distance detection signal by calculating the difference between the fluctuations in the second current output.

このような距離検出装置の一例について第1図、第2図
を参照してその概略を説、明する。
An example of such a distance detection device will be briefly described and explained with reference to FIGS. 1 and 2.

第1図において、■は例えば1発光ダイオード等を用い
て構成したパルス発光器である。このパルス発光器lと
しては眼に見えないこととPSD2の感度の点から赤外
光を発生するものが望ましい。パルス発光器1から発し
たパルス光は投光レンズ3を通して測距対象である被写
体4 (4a + 4 b r 4 c等)に投射され
る。被写体4で反射されたパルス光すなわち反射光は受
光レンズ5を介して前記PSD2に入射結像される。こ
のPSD2は一次元の連続的な位置分解能を有するPI
Nフォトダイオードであり“Po5ition  5e
nsitiveDevice”と称されるものである。
In FIG. 1, ``■'' is a pulsed light emitter constructed using, for example, one light emitting diode. It is desirable that the pulsed light emitting device 1 be one that generates infrared light from the viewpoint of being invisible to the human eye and the sensitivity of the PSD 2. Pulsed light emitted from the pulsed light emitter 1 is projected through a projection lens 3 onto a subject 4 (4a + 4 b r 4 c, etc.) that is a distance measurement target. The pulsed light, that is, the reflected light reflected by the subject 4 is incident and imaged on the PSD 2 via the light receiving lens 5. This PSD2 is a PI with one-dimensional continuous position resolution.
N photodiode “Po5ition 5e”
nsitiveDevice”.

この場合、図示のように被写体4の位置4aに対してP
SD2の2a、4bに対して2b、・・・・・無限遠に
対して2dの位置にそれぞれ反射光スポットが、結像さ
れる。このPSD2は光スポットの入射位置を2つの電
流出゛力の割合から知ることができるものであり、例え
ば第2図(a)のようにPSD2の受光面の中央位置S
1に光スポラ1−が入射した場合2つの電流出力■いと
IL2の割合はIL1/ I、。=1となり、同図(b
)のような位置S2に入射した場合は ILi /It、2 = 1 / 2、同図(C)のよ
うな位置S3に入射した場合IL、1 /” L’ ”
” 2となる。このようにPSD2に結像された光スポ
ットの位置がPSD2から得られる2つの電流出力の割
合に対応していることから、これら2つの電流出力より
被写体距離の情報を得ることができる。
In this case, P with respect to the position 4a of the subject 4 as shown in the figure.
Reflected light spots are imaged at positions 2b relative to 2a and 4b of SD2, and 2d relative to infinity, respectively. This PSD 2 can determine the incident position of the light spot from the ratio of two current outputs. For example, as shown in Fig. 2 (a), the central position S of the light receiving surface of the PSD 2 can be determined.
When the optical spora 1- is incident on the light source 1, the ratio of the two current outputs 1 and IL2 is IL1/I. = 1, and the same figure (b
), ILi /It, 2 = 1 / 2, and when it enters position S3, as shown in the same figure (C), IL, 1 /"L'"
” 2. In this way, since the position of the light spot imaged on PSD 2 corresponds to the ratio of the two current outputs obtained from PSD 2, information on the subject distance can be obtained from these two current outputs. I can do it.

この場合真暗な場所における測距であれば問題はないが
、一般の写真撮影時等にはパルス発光器1によるパルス
光よりもはるかに高い光量の定常光が存在するため前記
パルス光の反射光の抽出ができなくなってしまう。そこ
でこの場合PSD2の第1の電流出力を受ける第1の検
出回路6およびPSD2の第2の電流出力を受ける第2
の検出回路7により定常光の影響を除去し、パルス光の
反射光による光電流の変動分のみをそれぞれ対数変換し
て抽出し差分検出回路8でこれらの差を取ってPSD2
の第1と第2の電流出力の電流比に対応する距離検出信
号を出力するようにしている。この出力が例えばA/D
変換されるなどして表示、焦点調整等に供される。
In this case, there is no problem if the distance is measured in a pitch-dark place, but during general photography, etc., there is a steady light with a much higher amount of light than the pulsed light from the pulsed light emitter 1, so the reflected light of the pulsed light It becomes impossible to extract. Therefore, in this case, the first detection circuit 6 receives the first current output of the PSD 2, and the second detection circuit 6 receives the second current output of the PSD 2.
The detection circuit 7 removes the influence of stationary light, and logarithmically transforms and extracts only the fluctuations in the photocurrent due to the reflected light of the pulsed light.The difference detection circuit 8 takes the difference between them and outputs the PSD2.
A distance detection signal corresponding to the current ratio of the first and second current outputs is output. For example, if this output is an A/D
The image is converted and used for display, focus adjustment, etc.

第3図は第1図に示した第1の検出回路6を詳細に示す
ものである。赤外発光ダイオード等を用いたパルス発光
器lのビーム光は例えば数m s以下の幅でパルス状に
放射されるので、定常光を記憶し微弱な反射光によるP
 S D 2のパルス電流のみを増幅し取り出すのがこ
の第1の検出回路6である。
FIG. 3 shows the first detection circuit 6 shown in FIG. 1 in detail. The beam light of a pulsed light emitting device l using an infrared light emitting diode or the like is emitted in a pulsed manner with a width of several milliseconds or less, so it memorizes the steady light and reduces the P by weak reflected light.
This first detection circuit 6 amplifies and extracts only the pulse current of S D 2.

定常光によるPSD2の光電流’LiはFET(電界効
果形1〜ランジスタ)Qlを通してトランジスタQ2に
流れる。演算増幅器A1はPSD2の端子電圧を一定に
保つヘッドアンプとして機能する。この状態では演算増
幅器A2の出力側のスイッチSWは閉じており、1−ラ
ンジスタQ3のベース電位は0.5■に保持されている
A photocurrent 'Li of the PSD2 due to the steady light flows through the FET (field effect type 1 to transistor) Ql to the transistor Q2. Operational amplifier A1 functions as a head amplifier that keeps the terminal voltage of PSD2 constant. In this state, the switch SW on the output side of the operational amplifier A2 is closed, and the base potential of the 1-transistor Q3 is maintained at 0.5■.

この結果トランジスタQ3に60nAの電流が流れ、ダ
イオードD】、トランジスタQ4を用いて構成したカレ
ン1〜ミラ一回路によりダイオードI)2.D3にも6
0nAの電流が流れる。
As a result, a current of 60 nA flows through the transistor Q3, and the diode I)2. 6 also in D3
A current of 0 nA flows.

これが定常状態である。This is the steady state.

次にパルス発光器1が点灯したときは、それに同期して
スイッチSWがオフとなり、直前の光電流TL+の値に
対応するトランジスタQ2のベース電位がメモリコンデ
ンサCによりホールドされる。反射光による光電流It
jの増加成分ΔILiはトランジスタQ3のベースに流
れ込みhい(電流増幅率)倍されてダイオードD2.D
3に流れる。
Next, when the pulse light emitter 1 is turned on, the switch SW is turned off in synchronization with it, and the base potential of the transistor Q2 corresponding to the previous value of the photocurrent TL+ is held by the memory capacitor C. Photocurrent It due to reflected light
The increasing component ΔILi of j flows into the base of transistor Q3, is multiplied by h (current amplification factor), and is passed through diode D2. D
It flows to 3.

従って、このときの出力電圧V。1は次式であられされ
る。
Therefore, the output voltage V at this time. 1 is expressed by the following formula.

(但し、q:電子電荷、k:ボルツマン定数、T:絶対
温度、■s:ダイオードD2..D3の飽和電流) PSD2の他方の端子に接続さ塾た第2の検出回路7も
この第1の検出回路6と全く同様に構成され、これら雨
検出回路6,7によりPS、        D2の各
端子から出力される光電流を処理している。
(However, q: electronic charge, k: Boltzmann's constant, T: absolute temperature, s: saturation current of diode D2...D3) The second detection circuit 7 connected to the other terminal of PSD2 is also connected to this first detection circuit. The rain detection circuits 6 and 7 process the photocurrent output from each terminal of PS and D2.

差分検出回路8で両チャンネルの検出回路6゜7の出力
の差をとると距離に対応した電圧が得られる。この電圧
は次式であられされる。
When the difference detection circuit 8 takes the difference between the outputs of the detection circuits 6 and 7 of both channels, a voltage corresponding to the distance can be obtained. This voltage is calculated by the following equation.

通常hFE ’Δ11>60nA  であるのでか成り
立つ。
This holds true because normally hFE'Δ11>60nA.

第4図し;示すように被写体距離をQ、受光レンズ5か
らPSD2までの距離(受光レンズ5の焦点距離)をf
i PSI)2の全長をC1基線長をSとし、P S 
I) 2の中央位置が受光レンズ5の光軸に対応してい
るとすると、ΔILj’。
As shown in Figure 4, the subject distance is Q, and the distance from the light receiving lens 5 to the PSD 2 (focal length of the light receiving lens 5) is f.
i The total length of PSI) 2 is C1, the baseline length is S, and P S
I) If the center position of 2 corresponds to the optical axis of the light receiving lens 5, then ΔILj'.

ΔIL2と距離Qの関係は次のようになる。□したがっ
て電圧VODは次式であられすことができる。
The relationship between ΔIL2 and distance Q is as follows. □ Therefore, the voltage VOD can be expressed by the following equation.

この電圧V。Dは例えばサンプルホールド回路を通して
リニア出力端子に導かれ、あるいは同時にA/D変換回
路に入力されてディジタル出力に変換されラッチ回路で
ホールドされるなどして距離表示等に供される。
This voltage V. For example, D is led to a linear output terminal through a sample and hold circuit, or is simultaneously input to an A/D conversion circuit, converted to a digital output, and held in a latch circuit, and used for distance display, etc.

ところで、第3図に示した回路において、電源投入時に
はメモリコンデンサCの端子電圧が、定常光の光電流に
対応する値に上昇するまで正常な4(す距動作を行なわ
ない。しかしながら、メモリコンデンサCの端子電圧は
、メモリコンデンサCが充電されることによって上昇す
るのであまり速くない。
By the way, in the circuit shown in FIG. 3, when the power is turned on, the terminal voltage of the memory capacitor C does not perform the normal 4 (distance) operation until it rises to a value corresponding to the photocurrent of the steady light. The terminal voltage of C does not rise very quickly because the memory capacitor C is charged.

そこで、第5図に示すような構成のチャージアップ回路
を用いて、電源投入時にメモリコンデンサCを充電する
ことが考えられる。なお、第6図(a)〜(d)は第5
図の動作を説明するための波形図である。
Therefore, it is conceivable to charge the memory capacitor C when the power is turned on using a charge-up circuit configured as shown in FIG. In addition, FIGS. 6(a) to (d) are the fifth
FIG. 3 is a waveform diagram for explaining the operation shown in the figure.

ずなわち、電源■cc投入時に与えられるチャージアッ
プパルスによってトランジスタQ5をオフとすると、I
−ランジスタQ6のエミッタ電位がダイオードD4のカ
ソード電位すなわちダイオ−1<D4.D5の接続点電
位となるまでメモリコンデンサCを充電する。このとき
の充電電流は、hrg (Q6) X Iである。
That is, if the transistor Q5 is turned off by the charge-up pulse given when the power supply ■cc is turned on, I
- The emitter potential of transistor Q6 is the cathode potential of diode D4, that is, diode-1<D4. The memory capacitor C is charged until it reaches the connection point potential of D5. The charging current at this time is hrg (Q6) X I.

ところが、定常光光電流IL  は、0〜数10μAと
なるため、適切な充電電流■とチャージアップパルス幅
twを定めようとしても、トランジスタQ2のベース−
エミッタ間電圧VBEが定常光が第6図(c)に示すよ
うに、明るいときと暗いときとで大きな差があるため、
両者に都合よくチャージアップすることができなかった
However, since the steady-state photocurrent IL ranges from 0 to several tens of microamperes, even if you try to determine the appropriate charging current (2) and charge-up pulse width tw, the base of the transistor Q2 -
As shown in Figure 6(c), there is a large difference in the emitter voltage VBE between bright and dark conditions, so
It was not possible to charge up to suit both parties.

このため、電源投入後測距可能となるまでの測距待機時
間td  [第6図(d)参照]を長くとる必要があり
、電源投入俊速やかに使用することができないという問
題を生ずる。
For this reason, it is necessary to take a long distance measurement standby time td [see FIG. 6(d)] after the power is turned on until distance measurement becomes possible, resulting in the problem that the device cannot be used quickly after the power is turned on.

(c)  目的 本発明は、上述した問題を解決すべくなされたもので、
その目的とするところは、簡単な構成で電源投入時の適
切なチャージアップを可能とし、電源投入俊速やかに測
距可能とすることのできる距離検出装置を提供すること
にある。
(c) Purpose The present invention was made to solve the above-mentioned problems,
The purpose is to provide a distance detecting device that has a simple configuration, can perform appropriate charge-up when the power is turned on, and can measure distances quickly when the power is turned on.

(d)  構成 本発明の構成について、以下−実施例に基づいて説明す
る。
(d) Configuration The configuration of the present invention will be described below based on embodiments.

第7図は本発明の一実施例の構成を示す要部回路図、第
6図(e)は同実施例の動作を説明するための波形図で
ある。
FIG. 7 is a main circuit diagram showing the configuration of an embodiment of the present invention, and FIG. 6(e) is a waveform diagram for explaining the operation of the embodiment.

第7図に示すように、P S D 2の出力光電流■L
1が流れる回路に定電流源CCを接続し、この定電流源
CCより一定のバイアス電流を流し、定常光による光電
流をバイアスする。このノベイアス電流を流すことによ
り、定常光が明るし)ときと暗いときの光電流の差を定
常光が明るし1とき、すなわち光電流が大きい時に対し
て小さな比率とすることができ、トランジスタQ2の”
BEについても同様となる。このようにして、チャージ
アップ電流Iやチャージアップノ(ルス幅tt++を定
常光が明るいとき(It、  が大なるとき)に合わせ
るようにしておけば、定常光が明るνAときも暗いとき
も第6図(C)に示すように速やかに安定させることが
可能となる。
As shown in Fig. 7, the output photocurrent of PSD 2 L
A constant current source CC is connected to the circuit through which 1 flows, and a constant bias current is caused to flow from this constant current source CC to bias the photocurrent due to the stationary light. By flowing this novel current, the difference in photocurrent between when the steady light is bright and when it is dark can be made a small ratio to when the steady light is bright (1), that is, when the photocurrent is large, and the transistor Q2 of"
The same applies to BE. In this way, if the charge-up current I and the charge-up pulse width tt++ are adjusted to match when the steady light is bright (It, is large), the charge-up current I and the charge-up no. As shown in FIG. 6(C), it becomes possible to quickly stabilize the structure.

なお、このとき、バイアス電流は回路上は定常光光電流
の形でメモリコンデンサCに記憶されることになるので
、その大きさが特に動作上問題となることはない。
At this time, since the bias current is stored in the memory capacitor C in the form of a steady photocurrent on the circuit, its magnitude does not pose a particular problem in terms of operation.

また、定電流源CCを上述のようにPSD2の出力端に
接続する他、1−ランジスタQ2のコレクタにバイアス
電流を注入するように設けるなど、本発明はその要旨を
変更しない範囲で各種の変形実施が可能であり、メモリ
コンデンサCを用いて定常光を除去するものならば、他
の方式による距離検出装置等にも適用できる。
Furthermore, in addition to connecting the constant current source CC to the output terminal of PSD2 as described above, the present invention can be modified in various ways without changing the gist thereof, such as providing a bias current to be injected into the collector of transistor Q2. As long as it is possible to implement the method and the memory capacitor C is used to remove standing light, it can also be applied to distance detection devices using other methods.

(e)  効果 以上詳述したように本発明によれば、簡単な構成で、電
源投入時の適切なチャージアップによる速やかな安定化
が可能な距離検出装置を提供することができる。
(e) Effects As detailed above, according to the present invention, it is possible to provide a distance detection device that has a simple configuration and can be quickly stabilized by appropriate charge-up when the power is turned on.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例の適用される距離検
出装置の一例を説明するための図、第5図は同側に適用
し得るチャージアップ回路の一例を示す要部構成図、第
7は本発明の一実施例の構成を示す要部回路図、第6図
(a)〜(e)は第5図および第7図の動作を説明する
ための波形図である。 Q1〜Q6・・・・・トランジスタ、 D1〜D5・・・・・ダイオード、 Al、A2・・・・・・演算増幅器、 SW ・・スイッチ、 C・・・・メモリコンデンサ、 CC・・・・・定電流源。 第  1   図 第   2   図 (a)   (b)   (c) 第  3  図 第   6   図 11 (/l’イ7ス不)                
               1鴨 7  面 手続補正帯(方式) 昭和58年 6月 6日 特許庁長官 若 杉 和 夫 殿 ′      1.事件の表示 昭和58年特許願第24773号 2、発明の名称 距離検出装置 3、補正をする者 事件との関係  特許出願人 住 所 東京都大田区中馬込1丁目3番6号名 称 (
674)株式会社 リコー 代表者浜1)広 4、代理人 住 所 東京都港区赤坂6丁目10番42号パシフィッ
クパレス赤坂401号 昭和58年5月11日(発送日:同年5月31日)明細
書第14頁第14行目〜第17行目に「第7は・・・・
・・波形図である。」とある記載を、「第6図(a)〜
(e)は第5図および第7図の動作を説明するための波
形図、第7図は本発明の一実施例の構成を示す要部回路
図である。 」と補正する。
1 to 4 are diagrams for explaining an example of a distance detection device to which an embodiment of the present invention is applied, and FIG. 5 is a main part configuration showing an example of a charge-up circuit that can be applied to the same side. 7 is a principal circuit diagram showing the configuration of an embodiment of the present invention, and FIGS. 6(a) to 6(e) are waveform diagrams for explaining the operations of FIGS. 5 and 7. Q1-Q6...Transistor, D1-D5...Diode, Al, A2...Operation amplifier, SW...Switch, C...Memory capacitor, CC...・Constant current source. Figure 1 Figure 2 (a) (b) (c) Figure 3 Figure 6 Figure 11 (/l'I7 not included)
1 Kamo 7 Proceedings Amendment Band (Method) June 6, 1981 Kazuo Wakasugi, Commissioner of the Patent Office 1. Display of the case 1982 Patent Application No. 24773 2, Name of the invention Distance detection device 3, Person making the amendment Relationship to the case Patent applicant Address 1-3-6 Nakamagome, Ota-ku, Tokyo Name (
674) Ricoh Co., Ltd. Representative Hama 1) Hiro 4, Agent Address: 401 Pacific Palace Akasaka, 6-10-42 Akasaka, Minato-ku, Tokyo May 11, 1980 (Shipping date: May 31, 1982) On page 14 of the specification, lines 14 to 17, it says “The seventh...
...This is a waveform diagram. ” to “Figure 6 (a) ~
(e) is a waveform diagram for explaining the operations of FIGS. 5 and 7, and FIG. 7 is a main circuit diagram showing the configuration of an embodiment of the present invention. ” he corrected.

Claims (1)

【特許請求の範囲】[Claims] (1)測距対象に光源からパルス光を投射しこの反射光
スポットの前記光源との視差に基づく上記測距対象の距
離に応じた結像位置の相違を光検出器で検出して測距を
行なう際に定常光による光電流をコンデンサで記憶しこ
の値と前記パルス光の反射光スボッ1−入射時の光電流
との差により前記反射光スボッ1への検出を行なう距離
検出装置において、電源投入時に上記コンデンサを充電
するチャージアップ回路と、前記コンデンサにより記憶
される光電流の流れる回路に一定のバイアス、電流を流
し込む回路とを具備したことを特徴とする距離検出装置
(1) Distance measurement by projecting pulsed light from a light source onto the distance measurement target and using a photodetector to detect the difference in the imaging position according to the distance of the distance measurement target based on the parallax between the reflected light spot and the light source. In a distance detection device that stores a photocurrent due to steady light in a capacitor and performs detection on the reflected light slit 1 based on the difference between this value and the photocurrent when the pulsed light is incident on the reflected light slit 1, A distance detection device comprising: a charge-up circuit that charges the capacitor when power is turned on; and a circuit that supplies a constant bias and current to a circuit through which a photocurrent stored by the capacitor flows.
JP2477383A 1983-02-18 1983-02-18 Distance detecting device Pending JPS59151013A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2477383A JPS59151013A (en) 1983-02-18 1983-02-18 Distance detecting device
DE19843405784 DE3405784A1 (en) 1983-02-18 1984-02-17 Device for determining a distance from an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2477383A JPS59151013A (en) 1983-02-18 1983-02-18 Distance detecting device

Publications (1)

Publication Number Publication Date
JPS59151013A true JPS59151013A (en) 1984-08-29

Family

ID=12147486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2477383A Pending JPS59151013A (en) 1983-02-18 1983-02-18 Distance detecting device

Country Status (2)

Country Link
JP (1) JPS59151013A (en)
DE (1) DE3405784A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502634A1 (en) * 1985-01-26 1985-06-20 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln OPTICAL-ELECTRONIC DISTANCE METER
JP2958464B2 (en) * 1990-01-17 1999-10-06 チノン株式会社 Automatic focusing device
JPH07294248A (en) * 1994-04-28 1995-11-10 Hamamatsu Photonics Kk Distance measuring equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614906A (en) * 1979-07-19 1981-02-13 Minolta Camera Co Ltd Distance detecting unit
JPS5629216A (en) * 1979-08-16 1981-03-24 Minolta Camera Co Ltd Instantaneous photodetecting circuit
JPS56126708A (en) * 1980-03-11 1981-10-05 Minolta Camera Co Ltd Range finder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527987A (en) * 1978-08-21 1980-02-28 Minolta Camera Co Ltd Distance measuring instrument
DE3216246A1 (en) * 1981-05-01 1982-12-02 Ricoh Co., Ltd., Tokyo DISTANCE MEASURING DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614906A (en) * 1979-07-19 1981-02-13 Minolta Camera Co Ltd Distance detecting unit
JPS5629216A (en) * 1979-08-16 1981-03-24 Minolta Camera Co Ltd Instantaneous photodetecting circuit
JPS56126708A (en) * 1980-03-11 1981-10-05 Minolta Camera Co Ltd Range finder

Also Published As

Publication number Publication date
DE3405784C2 (en) 1991-09-12
DE3405784A1 (en) 1984-08-23

Similar Documents

Publication Publication Date Title
EP0679869B1 (en) Distance measuring device
USRE35652E (en) Object distance detecting apparatus
JPH0224325B2 (en)
JP3026030B2 (en) Camera ranging device
JP2001264014A (en) Optical sensor and three-dimensional shape measuring instrument
JPS59151013A (en) Distance detecting device
JPS58151511A (en) Distance detecting device
US5005970A (en) Distance detecting apparatus
JPS59142412A (en) Distance detecting device
JPH0326408Y2 (en)
JP3142960B2 (en) Distance measuring device
JP2888492B2 (en) Distance information output device
JP2638607B2 (en) Distance measuring device
JPH0547815B2 (en)
JPH03200940A (en) Range finder for camera
JPS6234082B2 (en)
JP2942593B2 (en) Subject distance detection device
JPS5827005A (en) Distance detecting device
JP3332948B2 (en) camera
JPH01240812A (en) Range finder
JPS6222016A (en) Distance detector
JPH04339208A (en) Distance detector
JPS6048008A (en) Distance detector
JPS5899711A (en) Distance detecting device
JP2002236250A (en) Photodetector