JPS59149736A - Frequency controller of dc transmission - Google Patents

Frequency controller of dc transmission

Info

Publication number
JPS59149736A
JPS59149736A JP58019675A JP1967583A JPS59149736A JP S59149736 A JPS59149736 A JP S59149736A JP 58019675 A JP58019675 A JP 58019675A JP 1967583 A JP1967583 A JP 1967583A JP S59149736 A JPS59149736 A JP S59149736A
Authority
JP
Japan
Prior art keywords
frequency
control
circuit
power
fluctuations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58019675A
Other languages
Japanese (ja)
Inventor
国吉 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58019675A priority Critical patent/JPS59149736A/en
Publication of JPS59149736A publication Critical patent/JPS59149736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、発電所にて発生した電力を直流送電する系統
において、電源側母線の周波数を一定に制御するだめの
周波数制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a frequency control device for controlling the frequency of a power supply side bus bar to a constant value in a system that transmits DC power generated in a power plant.

〔発明の技術的背景〕[Technical background of the invention]

地熱発電所のように負荷中心より遠隔地に設置された発
電所にて発電された電力を送電する場合、直流送電の方
が寥流送電に比べて安定度の点で有利であることから、
最近は直流送電が諸外国において採用され始めてきてい
る。しかし、直流送電の場合には、電源側(以下、山側
と言う)が負荷側(以下、里側と言う)系統と非同期と
なるため、負荷変動によや周波数変動の影響を受は易く
なる。
When transmitting power generated at a power plant located far from the center of load, such as a geothermal power plant, DC power transmission is more advantageous in terms of stability than torrent power transmission.
Recently, DC power transmission has begun to be adopted in many countries. However, in the case of DC power transmission, the power source side (hereinafter referred to as the mountain side) is asynchronous with the load side (hereinafter referred to as the village side) system, so it is easily affected by load fluctuations and frequency fluctuations. .

そこで、このような周波数変動の影響を除き、発電機側
の周波数即ち山側母線の周波数を一定に保つため、従来
は、検出した山側母線の周波数を基準値と比較し、その
偏差をPID (比例、積分、微分)演算し、その出力
で直流電々力を制御していた。
Therefore, in order to eliminate the influence of such frequency fluctuations and keep the frequency of the generator side, that is, the frequency of the mountain bus bar constant, conventionally, the detected frequency of the mountain bus bar is compared with a reference value, and the deviation is calculated using PID (proportional , integral, and differential) and used the output to control DC electrical power.

〔背景技術の問題点〕[Problems with background technology]

山側母線周波数の変動要因としては、発電所側の出力変
動や負荷変動等がオリ、発電機故障や地絡事故等の異常
時には、山側母線の周波数は急激に変動する。一方、正
常時には、里側系統の状態変化に応じてゆるやかに変化
する。従って、周波数制御装置としては、周波数の急激
な変動に対しては、制御の応答速度を上げて速かに周波
数を回復させる必要がある。一方、ゆるやかな周波数変
化に対しては周波数制御偏差即ちオフセットを無くして
制御精度を上げる必要がある。しかしながら、前記従来
方法による単なるPID制御では、両者を満足させるよ
うに制御定数を決定することは困難で、応答速度を上げ
るようにすると、母線周波数のゆるやかな変動に対して
も敏感に反応し、安定性が悪くなる一方、オフセットを
無くすようにすると、周波数の回復が遅れ、他の発電機
も運転できなくなる問題点があった。
Factors that cause the frequency of the mountain bus to fluctuate include output fluctuations and load fluctuations on the power plant side, and in the event of an abnormality such as a generator failure or ground fault, the frequency of the mountain bus will fluctuate rapidly. On the other hand, under normal conditions, it changes slowly according to changes in the status of the village side system. Therefore, as a frequency control device, it is necessary to increase the control response speed and quickly recover the frequency in response to sudden frequency fluctuations. On the other hand, for gradual frequency changes, it is necessary to eliminate frequency control deviations, ie, offsets, to improve control accuracy. However, with simple PID control using the conventional method, it is difficult to determine control constants that satisfy both conditions, and if the response speed is increased, it will respond sensitively to gradual fluctuations in the bus frequency. On the one hand, stability deteriorated, and on the other hand, if the offset was eliminated, frequency recovery would be delayed, and other generators would also be unable to operate.

〔発明の目的〕[Purpose of the invention]

本発明は山側母線周波数の急激な変動に対しては応答速
度を向上させ、また、ゆるやかな変動に対しては制御精
度を向上させることにより安定した直流送電を可能とす
る周波数制御装置を提供することを目的とする。
The present invention provides a frequency control device that enables stable DC power transmission by improving response speed to rapid fluctuations in mountain bus frequency and improving control accuracy to mild fluctuations. The purpose is to

〔発明の概要〕[Summary of the invention]

このため、本発明は周波数制御偏差を積分回路に加える
と同時に、不感帯回路を介して進み遅れ回路に加え、前
記積分回路と進み遅れ回路との出力の和で直流送電々力
を調整することにより、予め設定された値以内の周波数
外乱に対しては積分動作のみさせてゆるやかな周波数変
動に対する制御精度を向上させ、予め設定された値を起
えた周波数外乱に対しては進み遅れ要素を働かせて応答
速度を向上させるようにしたことを特徴とするものであ
る。
Therefore, the present invention applies the frequency control deviation to the integrating circuit and at the same time adds it to the lead/lag circuit via the dead band circuit, and adjusts the DC power transmission power by the sum of the outputs of the integrating circuit and the lead/lag circuit. For frequency disturbances within a preset value, only integral operation is performed to improve control accuracy for gradual frequency fluctuations, and for frequency disturbances that exceed a preset value, lead/lag elements are activated. This is characterized by improved response speed.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明が適用される直流送電システムの一例を
示したもので、同期発電機1は発電機遮断器2を介して
山側母線3に接続されている。山側母線3は変換器用遮
断器4および変換器用変圧器5を介して多数個のサイリ
スタの道並列接続から構成される順変換器6に接続され
ている。順変換器6は各サイリスタの点弧位相を制御す
ることによシ交流電力を直流電力に変換する。順変換器
6により直流に変換された電力は平滑リアクトル7、直
流送電線8.平滑リアクトル9を介して逆変換器10に
よυ再び交流電力に変換される。逆変換器により交流に
変換された電力は変換器用変圧器11.変換器用遮断器
12を介して里側母線13に達する。このように構成さ
れる直流送電システムにおいて、周波数制御装置は周波
数検出器14、基準周波数発生器15.減算器16およ
び制御演算部100から構成される。
FIG. 1 shows an example of a DC power transmission system to which the present invention is applied, in which a synchronous generator 1 is connected to a mountain bus 3 via a generator circuit breaker 2. The mountain side busbar 3 is connected via a converter circuit breaker 4 and a converter transformer 5 to a forward converter 6 which is composed of a large number of thyristors connected in parallel. The forward converter 6 converts AC power into DC power by controlling the firing phase of each thyristor. The power converted to DC by the forward converter 6 is transferred to a smoothing reactor 7, a DC transmission line 8. Via the smoothing reactor 9, the inverter 10 converts υ back into AC power. The power converted into alternating current by the inverse converter is transferred to a converter transformer 11. It reaches the village side bus bar 13 via the converter circuit breaker 12. In the DC power transmission system configured as described above, the frequency control device includes a frequency detector 14, a reference frequency generator 15. It is composed of a subtracter 16 and a control calculation section 100.

第2図は本発明の一実施例に係る周波数制御装置の構成
図を示したもので、周波数検出器14で検出された母線
周波数fと、基準周波数発生器15より作成された基準
周波数10は減算器16に入力される。減算器16は母
線周波数fと基準周波数f。との偏差f、を算出し、制
御演算部100へ出力する。制御演算部100は不感帯
21と進み遅れ要素を持つ演算器22から構成される第
1の回路と、積分器23から構成される第2の回路と第
1の回路の出力と第2の回路の出力を入力とし直流系統
送電々力指令値papを出力する加算器24(5) から構成される。制御演算部100内に入力された周波
数偏差f0が不感帯21の設定値を越えるような大幅表
周波数変動が生じた場合には、進み遅れ要素を持つ演算
器22と積分器23が動作する。
FIG. 2 shows a configuration diagram of a frequency control device according to an embodiment of the present invention, in which the bus frequency f detected by the frequency detector 14 and the reference frequency 10 created by the reference frequency generator 15 are It is input to the subtracter 16. The subtracter 16 calculates the bus frequency f and the reference frequency f. The deviation f is calculated and output to the control calculation section 100. The control calculation unit 100 has a first circuit comprising a dead zone 21 and a calculation unit 22 having a lead/lag element, a second circuit comprising an integrator 23, and an output of the first circuit and an output of the second circuit. It consists of an adder 24 (5) which takes the output as input and outputs the DC system power transmission power command value pap. When a significant frequency fluctuation occurs such that the frequency deviation f0 input into the control calculation unit 100 exceeds the set value of the dead band 21, the calculation unit 22 and the integrator 23 having a lead/lag element operate.

不感帯21はゆるやかな動揺に対して過渡ゲインの高い
進み遅れ要素を動作させないためのものであり、不要な
直流送電系の電力変動を抑制する。
The dead zone 21 is for preventing lead/lag elements with a high transient gain from operating in response to gradual oscillations, and suppresses unnecessary power fluctuations in the DC power transmission system.

進み遅れ要素を持つ演算器22は制御系の応答速度に重
点が置かれ制御定数が設定され□る。また、周波数偏差
f。が不感帯21の設定値範囲内であれば進み遅れ要素
を持つ演算器22は動作せずに積分器23のみが動作す
る。積分器23は通常時に発生する周波数動揺に対して
周波数偏差を零になるように、制御系の制御精度に重点
を置いて制御定数が決定される。
In the arithmetic unit 22 having lead/lag elements, control constants are set with emphasis placed on the response speed of the control system. Also, the frequency deviation f. If is within the set value range of the dead zone 21, the arithmetic unit 22 having lead/lag elements does not operate, and only the integrator 23 operates. The control constant of the integrator 23 is determined with emphasis on the control accuracy of the control system so that the frequency deviation becomes zero with respect to frequency fluctuations that normally occur.

さて、以上の構成で、発電機1の入力機械トルクが10
0%から50%に急激に低下した場合を考える。発電機
の入力機械トルクの低下直後は直流系統送電々力指令値
ptipは100チであるために山側母線の周波数は急
激に低下する。このとき、(6) 第3図に示す周波数偏差は負の方向に急激に変化し、不
感帯21の設定範囲を越えることになる。
Now, with the above configuration, the input mechanical torque of generator 1 is 10
Let's consider a case where the ratio suddenly decreases from 0% to 50%. Immediately after the input mechanical torque of the generator decreases, the DC system power transmission power command value Ptip is 100 degrees, so the frequency of the mountain side bus bar rapidly decreases. At this time, (6) the frequency deviation shown in FIG. 3 changes rapidly in the negative direction and exceeds the set range of the dead zone 21.

今、進み遅れ要素を持つ演算器22の伝達関数をとし、
また積分器23の伝達関数を とすれば、前述の周波数偏差f6が不感帯21の設定値
を越えた場合、制御演算部100は下記(3)式の演算
を行なう。
Now, let the transfer function of the arithmetic unit 22 with lead/lag elements be,
Further, assuming that the transfer function of the integrator 23 is taken as the above, when the frequency deviation f6 mentioned above exceeds the set value of the dead zone 21, the control calculation section 100 performs calculation according to the following equation (3).

L(pap) = (Gl (S)+Gt(S))L〔
/r’Jここで、Sはラプラス演算子、Lはラプラス変
換を示す。
L(pap) = (Gl(S)+Gt(S))L[
/r'J Here, S represents the Laplace operator and L represents the Laplace transform.

上記(3)式において、T3が制御系の制御精度に重点
をおかれて決定されているために、T1およびT2に比
べてT3は大きな値を打ち、第1項に比べ短時間の過渡
状態において第2項は殆ど無視できる。即ち、周波数偏
差が急激に変化した場合、周波数偏差f8に対して制御
演算部100は下記(4)式の演算を行なう。
In the above equation (3), since T3 is determined with emphasis on the control accuracy of the control system, T3 has a large value compared to T1 and T2, and is in a short-term transient state compared to the first term. The second term can be almost ignored. That is, when the frequency deviation changes rapidly, the control calculation section 100 performs calculation of the following equation (4) on the frequency deviation f8.

この進み遅れ要素Gl(S)の制御定数は応答性に重点
が置かれて決定されるので、制御演算部100は急激な
周波数変動に対し、その演算結果に基づき、発電機側へ
の影響を最少にするように制御を行なうことができる。
Since the control constant of this lead/lag element Gl(S) is determined with emphasis placed on responsiveness, the control calculation unit 100 calculates the influence on the generator side based on the calculation result in response to sudden frequency fluctuations. Control can be performed to minimize it.

また、系統等の状態によシ周波数がゆるやかに変動した
とする。第2図における周波数偏差f8は不感帯21の
設定範囲内であれば、不感帯21の出力は零である。即
ち、制御演算部100は下記(5)式の演算を行なう。
It is also assumed that the frequency fluctuates slowly depending on the state of the grid, etc. If the frequency deviation f8 in FIG. 2 is within the set range of the dead zone 21, the output of the dead zone 21 is zero. That is, the control calculation section 100 performs the calculation of equation (5) below.

ここで、積分要素Ga(S)は制御系の制御精度に重点
をおかれて設計されているために、制御演算部100は
直流送電系統において、山側母線周波数の周波数偏差即
ちオフセットが零となるように制御を行なうことができ
る。
Here, since the integral element Ga(S) is designed with emphasis on the control accuracy of the control system, the control calculation unit 100 calculates the frequency deviation of the mountain side bus frequency, that is, the offset, to be zero in the DC transmission system. It can be controlled as follows.

このように、本実施例の周波数制御装置においては、周
波数偏差f。が不感帯21の設定値を越えた場合には、
応答速度を向上させるために、進み遅れ要素を持つ演算
器22と積分器23が動作し、また、周波数偏差f0が
不感帯21の設定値範囲内であれば、制御系の制御精度
を向上させるために積分器23のみが動作するようにし
たので、安定に電力を直流送電することができるように
なる。
In this way, in the frequency control device of this embodiment, the frequency deviation f. If exceeds the set value of dead zone 21,
In order to improve the response speed, the arithmetic unit 22 and the integrator 23 having lead/lag elements operate, and if the frequency deviation f0 is within the set value range of the dead zone 21, the control accuracy of the control system is improved. Since only the integrator 23 is operated at the same time, it is possible to stably transmit DC power.

尚、上記実施例では、第1図に示したように、発電機台
数を1台および直流系統を1極の場合を例にとシ説明し
たが、複数の発電機および複数極から構成される系統に
おいても同様にして本発明が適用できることは言う迄も
ない。また、複数極で運転している直流系統の送電々力
が相異している場合には、直流系統全体の送電々力指令
値を本発明の周波数制御装置を介して与えることで、本
発明の適用が可能となる。
In the above embodiment, as shown in Fig. 1, the case where the number of generators is one and the DC system is one pole is explained as an example, but the case where the number of generators is one and the DC system is one pole is explained. It goes without saying that the present invention can be similarly applied to other systems. In addition, when the power transmission power of the DC system operating with multiple poles is different, the power transmission power command value of the entire DC system is given via the frequency control device of the present invention. can be applied.

(9) 〔発明の効果〕 以上のように本発明によれば、急激な周波数変動に対す
る制御の応答性と、ゆるやかな周波数変動に対する制御
精度の向上とを同時に満足する制御が可能となり、周波
数変動による発電所側への影響を抑制し、安定に電力を
直流送電することのできる周波数制御装置が得られる。
(9) [Effects of the Invention] As described above, according to the present invention, it is possible to perform control that simultaneously satisfies control responsiveness to sudden frequency fluctuations and improvement of control accuracy to gradual frequency fluctuations. Therefore, a frequency control device that can stably transmit DC power by suppressing the influence on the power plant side due to the above can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用例を示す直流送電システムの構成
図、第2図は本発明の一実施例を示す周波数制御装置の
構成図である。
FIG. 1 is a block diagram of a DC power transmission system showing an example of application of the present invention, and FIG. 2 is a block diagram of a frequency control device showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 電源側母線の周波数を一定に制御するために直流送電電
力を調整する直流系統送電電力指令値を出力する直流送
電の周波数制御装置において、予め設定された値以内の
周波数外乱に対してはゆるやかな制御を行なうだめの積
分要素から成る第1の回路と、予め設定された値を越え
た周波数外乱に対しては前記第1の回路と共に速い制御
を行なうための不感帯と進み遅れ要素から成る第2の回
路と、前記第1の回路と前記第2の回路との出力を加算
し、前記直流系統送電電力指令値を出力する第3の回路
とを備えていることを特徴とする直流送電の周波数制御
装置。
In a DC transmission frequency control device that outputs a DC system transmission power command value that adjusts the DC transmission power in order to control the frequency of the power supply side bus at a constant level, A first circuit consisting of an integral element for performing control, and a second circuit consisting of a dead zone and a lead/lag element for performing fast control together with the first circuit in response to frequency disturbance exceeding a preset value. and a third circuit that adds the outputs of the first circuit and the second circuit and outputs the DC system transmission power command value. Control device.
JP58019675A 1983-02-10 1983-02-10 Frequency controller of dc transmission Pending JPS59149736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58019675A JPS59149736A (en) 1983-02-10 1983-02-10 Frequency controller of dc transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58019675A JPS59149736A (en) 1983-02-10 1983-02-10 Frequency controller of dc transmission

Publications (1)

Publication Number Publication Date
JPS59149736A true JPS59149736A (en) 1984-08-27

Family

ID=12005804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58019675A Pending JPS59149736A (en) 1983-02-10 1983-02-10 Frequency controller of dc transmission

Country Status (1)

Country Link
JP (1) JPS59149736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102124A (en) * 1984-10-24 1986-05-20 株式会社東芝 Frequency controller for direct current transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102124A (en) * 1984-10-24 1986-05-20 株式会社東芝 Frequency controller for direct current transmission system
JPH0515136B2 (en) * 1984-10-24 1993-02-26 Tokyo Shibaura Electric Co

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
JPS6133334B2 (en)
US3764872A (en) Stabilizing means for an a-c motor drive
Rezek et al. The modulus optimum (MO) method applied to voltage regulation systems: modeling, tuning and implementation
US3686552A (en) Synchronous motor field regulator control
JPS59149736A (en) Frequency controller of dc transmission
JPH0530686A (en) Controller for superconducting energy storage device
US3538408A (en) Synchronous motor torque compensator control
JPS61102124A (en) Frequency controller for direct current transmission system
US3549981A (en) Static exciter field suppressor
US3686551A (en) Synchronous motor field regulator control
JP2010119248A (en) Power generating system
RU51796U1 (en) ELECTRICITY QUALITY DEVICE IN ELECTRIC NETWORKS
JPH08237869A (en) Power converter
US3009090A (en) Regulator system for generators
JPS5976200A (en) Exciter for synchronous machine
JPH08289597A (en) Device for restricting operation of generator
JPH056414B2 (en)
JPS58112475A (en) Starting system for ac/dc converter
JPH0795730A (en) Inverter for linking power system
JP3228033B2 (en) Control method of DC intermediate voltage of reactive power compensator
JPH0145825B2 (en)
JPH0126253B2 (en)
JPS6231593B2 (en)
JPH09191567A (en) Controller for self-excited ac/dc converter