JPS59149126A - Refractive force and eye axial length measuring device - Google Patents

Refractive force and eye axial length measuring device

Info

Publication number
JPS59149126A
JPS59149126A JP58025307A JP2530783A JPS59149126A JP S59149126 A JPS59149126 A JP S59149126A JP 58025307 A JP58025307 A JP 58025307A JP 2530783 A JP2530783 A JP 2530783A JP S59149126 A JPS59149126 A JP S59149126A
Authority
JP
Japan
Prior art keywords
light
axial length
eyeball
calculates
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58025307A
Other languages
Japanese (ja)
Other versions
JPH0349569B2 (en
Inventor
常広 武田
健夫 飯田
幸男 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58025307A priority Critical patent/JPS59149126A/en
Publication of JPS59149126A publication Critical patent/JPS59149126A/en
Publication of JPH0349569B2 publication Critical patent/JPH0349569B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、屈折力・眼軸長測定装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractive power/ocular axial length measuring device.

現在、日本人の数割に当る数千万人の近視者が存在する
が、それにも拘わらず近視の発生原因はいまだに良く知
られていない。その最大の理由は、視力を決定する三大
要因である水晶体屈折力と眼軸長を別々に精度よく測定
する装置がないことにある。従来、眼軸長は超音波ある
いはX線を利用した装置によって測定されているが、そ
れらの装置は1 mm程度の分解能しかなく、精度が不
十分である。実用性のある測定を行うには、上記分解能
を従来のものよシさらに約lO倍高める必要があるが、
超音波やXaを利用した従来の方法では著しく困難であ
る。
Currently, there are tens of millions of people with myopia, which accounts for several tenths of the Japanese population, but the causes of myopia are still not well known. The biggest reason for this is that there is no device that can accurately measure the three major factors that determine visual acuity, the refractive power of the crystalline lens and the axial length of the eye. Conventionally, the axial length of the eye has been measured using devices that use ultrasound or X-rays, but these devices have a resolution of only about 1 mm and are insufficiently accurate. In order to perform practical measurements, it is necessary to increase the above resolution by about 10 times compared to the conventional one.
This is extremely difficult with conventional methods using ultrasound or Xa.

上記に鑑み、本発明Fi、水晶体屈折力と眼軸長を極め
て容易に且つ精度良く測定することのできる屈折力・眼
軸長測定装置を簡単な構成によって提供しようとするも
のである。
In view of the above, it is an object of the present invention to provide a refractive power/ocular axial length measuring device with a simple configuration that can measure crystalline lens refractive power and ocular axial length extremely easily and with high precision.

上記目的を達成するため、本発明の屈折力・眼軸長測定
装置は、ビーム状に収束させた赤外光を高周期でパルス
状に射出する光源部と、上記赤外光を反射する反射面を
高周期で変位させて眼球への入射角度を逐次変化させる
走査部と、それらの赤外光により網膜上に結像した光点
の反射光を光検出器上に結像させてそれらの像の光検出
器上における位置を電気的に出力する検出部と、それら
の位置信号を上記走査部における反射面の変位の位相信
号との関連において演算し、眼球の視力を決定する諸定
数を算出すると共にそれらに基づいて屈折力と眼軸長を
求めるデータ処理とを備えたものとして構成される。
In order to achieve the above object, the refractive power/ocular axial length measuring device of the present invention includes a light source unit that emits infrared light converged into a beam in a pulsed manner at a high frequency, and a reflector unit that reflects the infrared light. A scanning unit that displaces the surface at a high frequency to sequentially change the angle of incidence on the eyeball, and a photodetector that images the reflected light of the light spots formed on the retina by the infrared light, and detects them. A detection unit electrically outputs the position of the image on the photodetector, and these position signals are calculated in relation to a phase signal of the displacement of the reflective surface in the scanning unit, and various constants that determine the visual acuity of the eyeball are calculated. It is configured to include data processing that calculates the refractive power and the axial length based on the calculations.

上記構成の屈折力・眼軸長測定装置において、光源部か
らパルス状に射出するビーム状の赤外光は、走査部の反
射面で反射して被測定対象としての眼球に入射し、その
反射面の変位に対応して逐次反射方向を変え、入射角度
を変えながら眼球に入射する。それによシ、断続的な赤
外光が眼球内の網膜上のそれぞれ異なる位置に結像して
複数の光点を作るが、それらの光点は網膜が乱反射面で
あることから、それらの点が2次光源として作用する。
In the refractive power/ocular axial length measuring device with the above configuration, the beam-shaped infrared light emitted in pulses from the light source is reflected by the reflective surface of the scanning unit, enters the eyeball as the object to be measured, and the reflected The reflection direction is successively changed in response to the displacement of the surface, and the light enters the eyeball while changing the angle of incidence. On the other hand, intermittent infrared light is focused on different positions on the retina in the eyeball, creating multiple light points, but since the retina is a diffusely reflective surface, these light points are acts as a secondary light source.

それらの光点から反射光は、検出部の光検出器上に結像
し、それらの光検出器上の位置が、網膜上における上記
谷光点の位置として次段のデータ処理部に送られる。デ
ータ処理部においては、上記検出部からの信号の他、走
査部から送られた反射面の変位についての位相信号等に
基づいて演算が行われ、眼球における視力を決定する諸
定数を算出すると共に、それらに基づいて水晶体屈折力
及び眼軸長が決定される。
The reflected light from these light spots forms an image on the photodetector of the detection unit, and the positions on the photodetector are sent to the next stage data processing unit as the position of the valley light spot on the retina. In the data processing section, in addition to the signals from the detection section, calculations are performed based on the phase signal regarding the displacement of the reflective surface sent from the scanning section, etc., and various constants that determine visual acuity in the eyeball are calculated. , based on these, the crystalline lens refractive power and axial length are determined.

このように本発明の屈折力・眼軸長測定装置によれば、
水晶体屈折力と眼軸長を谷易且つ高梢度に測定すること
ができる測定装置を極めて簡単な構成のものとして得る
ことができ、従って近視発生原因の究明に有効に役立て
ることができる。
As described above, according to the refractive power and axial length measuring device of the present invention,
A measuring device capable of measuring crystalline lens refractive power and axial length with ease and high accuracy can be obtained with an extremely simple configuration, and can therefore be effectively utilized in investigating the cause of myopia.

以下、本発明の実施例を図面に基づいて詳細に説明する
と、第1図に示す本発明の屈折力・眼軸長測定装置は、
光源部1と、走査部2と、検出部3と、データ処理部及
び表示部とを主体として構成されている。上記光源部I
Fi、十分収束1−たビーム状の赤外光を高周期でパル
ス状に射出するもので、この光源部1からの赤外光は走
査部2によ多角度を変えて測定対象としての眼球Eに入
射される。この走査部20作用によってパルス状の赤外
光は眼球Eの網膜El上の異なる位置に結像するが、そ
れによって得られる複数の光点の位fFi、それらの光
点からの反射光に基づいて検出部3に1 おいて検出される。データ処理部は、検出部3によって
検出した各光点の網膜上の位置とそれらの光点を結像さ
せた入射光線の眼球Eへの入射角度等との関係に基づい
て演算を行い、視力を決定する諸定数を算出すると共に
それらに基づいて屈折力及び眼軸長を決定するもので、
それらの値は表示部において適宜表示される。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.The refractive power and axial length measuring device of the present invention shown in FIG.
The main components include a light source section 1, a scanning section 2, a detection section 3, a data processing section, and a display section. Above light source part I
Fi is a device that emits a sufficiently converged beam of infrared light in a pulsed manner at a high frequency, and the infrared light from the light source section 1 is sent to the scanning section 2 at various angles to scan the eyeball as the measurement target. It is incident on E. Due to the action of the scanning unit 20, the pulsed infrared light forms images at different positions on the retina El of the eyeball E, and the positions fFi of the plurality of light spots obtained thereby are based on the reflected light from those light spots. and is detected by the detection unit 3. The data processing unit performs calculations based on the relationship between the position on the retina of each light spot detected by the detection unit 3 and the angle of incidence of the incident light beam that formed the image of those light spots on the eyeball E, and calculates the visual acuity. It calculates the various constants that determine the refractive power and axial length based on them.
Those values are appropriately displayed on the display section.

さらに具体的に説明すると、上記光源部1は、例えばフ
ォトダイオード4と赤外光フィルタ5を備え、フォトダ
イオード4から十分に収束させたビーム状の光線を高周
期でパルス状に射出させ、それらの光線を赤外光フィル
タ5に通すことにより800rLm以下の光の成分を除
去し、それによって人の眼で知覚できない赤外光のみを
抽出しb e#j定時に眼球Eの各部が反応を示さない
ようにして測定NUの向上を図っている。
More specifically, the light source section 1 includes, for example, a photodiode 4 and an infrared light filter 5, and emits sufficiently converged beam-like light from the photodiode 4 in a pulsed manner at a high frequency. By passing the light beam through the infrared light filter 5, light components of 800 rLm or less are removed, thereby extracting only the infrared light that cannot be perceived by the human eye. The measurement NU is improved by not showing it.

上記光源部lの次段に配設した走査部2は、例えば電磁
駆動形の音叉偏光器6を備え、その音叉7における一方
の振動杆7αの先端に赤外光を反射する反射面7bを形
設すると共に、その振動杆7αの側面に電磁石8を配設
したもので2発振器から電磁石8に走査用の一定周期の
電流を流すことにょシ、音叉7をその固有振動数1例え
ば1 kklzで振動させる。この振動に伴って、上記
反射面7bで反射した赤外光は光路10 、11の間で
繰返し往復することになる。而して、上記光路10 、
11間の反射光は、ハーフプリズム12及びレンズ13
を通った後、ハーフミラ−14で反射し、ハーフξ2−
14を通して前方に視線を合わせた眼球Eに異なる角度
で繰返して入射し、それによシ眼球Eの網J[B、上の
それぞれ異なる位置に光点が結像し、例えばA、B。
The scanning section 2 disposed next to the light source section 1 is equipped with, for example, an electromagnetically driven tuning fork polarizer 6, and a reflecting surface 7b for reflecting infrared light is provided at the tip of one vibrating rod 7α of the tuning fork 7. At the same time, an electromagnet 8 is arranged on the side of the vibrating rod 7α, and a current with a constant period for scanning is passed from two oscillators to the electromagnet 8. make it vibrate. With this vibration, the infrared light reflected by the reflecting surface 7b repeatedly travels back and forth between the optical paths 10 and 11. Therefore, the optical path 10,
The reflected light between 11 and 11 is reflected by half prism 12 and lens 13.
After passing through, it is reflected by half mirror 14, and half ξ2-
14 and repeatedly enter the eyeball E, which is looking forward, at different angles, and the light spots are imaged at different positions on the mesh J[B, for example, A and B of the eyeball E.

C等が得られる。C etc. are obtained.

上記網膜El上における光点A、B、Cの位置を検出す
る検出部3は、それらの光点の反射光を光点A、I 、
 Bl 、 clとして光検出器15上に結像させ、そ
の光検出器15上における各光点位置から網膜上の光点
位置を間接的に検出するもので、破線で示すように、網
g Bi上の光点A、B、Cからの反射光をハーフミラ
−14で反射させ、レンズ13を通過させた稜、ハーフ
プリズム12で再び反射させ、集光レンズ16で上記光
検出器15に結像させる。上記光検出器15としては光
点A’ 、 H’ r (”の位置を21度良く検出す
るに足る各種構成のものを採用することができ、PSD
、CCDの他Pb8.Cd8あるいはフォトトランジス
タ、フォトダイオード等をマトリックス状に配設したも
のを用いることができる。
The detection unit 3 detects the positions of the light points A, B, and C on the retina El, and the detection unit 3 detects the positions of the light points A, B, and C on the retina El.
Images are formed on the photodetector 15 as Bl and cl, and the light spot position on the retina is indirectly detected from each light spot position on the photodetector 15. As shown by the broken line, the mesh g Bi The reflected light from the upper light points A, B, and C is reflected by the half mirror 14, passed through the lens 13, reflected again by the half prism 12, and is imaged on the photodetector 15 by the condensing lens 16. let As the photodetector 15, various configurations can be adopted that are sufficient to detect the positions of the light points A', H' r ('' with a good accuracy of 21 degrees,
, CCD and other Pb8. Cd8, phototransistors, photodiodes, etc. arranged in a matrix can be used.

上記光検出器15で検出した光点A’ 、 B’ 、 
C’等の位置信号は、へ自〕変換器を介してデータ処理
部に伝達される。データ処理部はマイクロコンビ−〜り
等によって構成され、入力情報その他を記録するデータ
記録部と、それらのデータに基づいて演算を行う演算部
と、それらにおける各種動作を制御する制御部とを備え
、上記vD変換器から送られる光点AI 、 Bl 、
 cl等の信号と、上記発信器から送られる位相信号に
基づいて演算を行い、眼球の視力を決定する諸定数、例
えば角膜E2の前後面の半径と中心位置、水晶体E3の
半径と中心位置、及び眼の媒質の屈折率等をスネルの法
則を利用して算出すると共に、それらに基づいて眼軸長
及び屈折力を決定し、それらを次段の表示部に出力する
The light spots A', B', detected by the photodetector 15,
The position signals such as C' are transmitted to the data processing unit via the to/from converter. The data processing unit is composed of a microcomputer, etc., and includes a data recording unit that records input information and other information, a calculation unit that performs calculations based on the data, and a control unit that controls various operations therein. , the light spots AI, Bl sent from the above vD converter,
cl, etc. and the phase signal sent from the transmitter, and various constants that determine the visual acuity of the eyeball, such as the radius and center position of the front and rear surfaces of the cornea E2, the radius and center position of the crystalline lens E3, and the refractive index of the eye medium using Snell's law, determine the axial length and refractive power based on these, and output them to the next stage display section.

なお、上記フォトダイオード4に代、えてレーザダイオ
ードやランプ等の光源を用いることができる。また、上
記音叉偏光器6に代えて鏡を高速で回転する等の手段を
採用することができる。
Note that instead of the photodiode 4, a light source such as a laser diode or a lamp may be used. Furthermore, instead of the tuning fork polarizer 6, a means such as rotating a mirror at high speed can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図である。 1・・・光源部、    2・・・走査部、3・・・検
出部、    7A・・・反射面、15・・・光検出器
、  A、B、C・・・光点、E・・・眼球、El・・
・網膜。 指定代理人 工業技術院製品科学研究所長 高橋教司
FIG. 1 is a block diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Light source part, 2... Scanning part, 3... Detection part, 7A... Reflection surface, 15... Photodetector, A, B, C... Light spot, E...・Eyeball, El...
·retina. Designated Agent: Director of Product Science Research Institute, Agency of Industrial Science and Technology, Keiji Takahashi

Claims (1)

【特許請求の範囲】 1、 ビーム状に収束させた赤外光を高周期でパルス状
に射出する光源部と、 上記赤外光を反射する反射面を高周期で変位させて眼球
への入射角度を逐次変化させる走査部と、それらの赤外
光によシ網膜上に結像した光点の反射光を光検出器上に
結像させてそれらの像の光検出器上における位置を電気
的に出力する検出部と、 それらの位置信号を上記走査部における反射面の変化の
位相信号との関連において演算し、眼球の視力を決定す
る諸定数を算出すると共にそれらに基づいて眼軸長を求
めるデータ処理部と。 を備えたことを特徴とする屈折力・眼軸長測定装置。
[Scope of Claims] 1. A light source unit that emits infrared light converged into a beam in a pulsed manner at a high frequency, and a reflective surface that reflects the infrared light is displaced at a high frequency so that the light is incident on the eyeball. A scanning section that sequentially changes the angle, and the reflected light of the light spot that is imaged on the retina by the infrared light is imaged on the photodetector, and the position of the image on the photodetector is electrically determined. A detection unit that outputs an optical signal, calculates these position signals in relation to a phase signal of changes in the reflective surface in the scanning unit, calculates various constants that determine the visual acuity of the eyeball, and calculates the axial length based on them. and the data processing unit that calculates the A refractive power/ocular axial length measuring device characterized by comprising:
JP58025307A 1983-02-17 1983-02-17 Refractive force and eye axial length measuring device Granted JPS59149126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025307A JPS59149126A (en) 1983-02-17 1983-02-17 Refractive force and eye axial length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025307A JPS59149126A (en) 1983-02-17 1983-02-17 Refractive force and eye axial length measuring device

Publications (2)

Publication Number Publication Date
JPS59149126A true JPS59149126A (en) 1984-08-27
JPH0349569B2 JPH0349569B2 (en) 1991-07-30

Family

ID=12162351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025307A Granted JPS59149126A (en) 1983-02-17 1983-02-17 Refractive force and eye axial length measuring device

Country Status (1)

Country Link
JP (1) JPS59149126A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109837A (en) * 1986-10-25 1988-05-14 キヤノン株式会社 Ophthalmic examination machine
JPS63109838A (en) * 1986-10-25 1988-05-14 キヤノン株式会社 Ophthalmic examination machine
JPS63125237A (en) * 1986-11-15 1988-05-28 キヤノン株式会社 Ophthalmic apparatus
US5280313A (en) * 1991-07-25 1994-01-18 Canon Kabushiki Kaisha Ophthalmic measuring apparatus
JP2008505696A (en) * 2004-07-09 2008-02-28 ヴィスクス インコーポレイテッド Laser pulse position monitor for scanning laser eye surgery equipment
JP2017006456A (en) * 2015-06-24 2017-01-12 株式会社トーメーコーポレーション Light interference tomographic meter and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109837A (en) * 1986-10-25 1988-05-14 キヤノン株式会社 Ophthalmic examination machine
JPS63109838A (en) * 1986-10-25 1988-05-14 キヤノン株式会社 Ophthalmic examination machine
JPH0566808B2 (en) * 1986-10-25 1993-09-22 Canon Kk
JPH0566807B2 (en) * 1986-10-25 1993-09-22 Canon Kk
JPS63125237A (en) * 1986-11-15 1988-05-28 キヤノン株式会社 Ophthalmic apparatus
JPH0576294B2 (en) * 1986-11-15 1993-10-22 Canon Kk
US5280313A (en) * 1991-07-25 1994-01-18 Canon Kabushiki Kaisha Ophthalmic measuring apparatus
JP2008505696A (en) * 2004-07-09 2008-02-28 ヴィスクス インコーポレイテッド Laser pulse position monitor for scanning laser eye surgery equipment
JP2017006456A (en) * 2015-06-24 2017-01-12 株式会社トーメーコーポレーション Light interference tomographic meter and control method thereof

Also Published As

Publication number Publication date
JPH0349569B2 (en) 1991-07-30

Similar Documents

Publication Publication Date Title
US4761071A (en) Apparatus and method for determining corneal and scleral topography
JP3269665B2 (en) Alignment detection device and ophthalmic apparatus using the alignment detection device
JPH0160253B2 (en)
JP4494779B2 (en) Non-invasive glucose meter
EP0392743B1 (en) Ophthalmological measurement method and apparatus
US3639041A (en) System and method for scanning the depth of the optic fundus
US5144346A (en) Ophthalomological apparatus for alignment and refraction
US4632528A (en) Method for determining refractive index of an object
US5280313A (en) Ophthalmic measuring apparatus
JPH10276986A (en) Fundus blood vessel observation system
JPS59149126A (en) Refractive force and eye axial length measuring device
US4950068A (en) Ophthalmic disease detection apparatus
JP2002090681A (en) Optical scanner and three-dimensional measuring instrument
JPH05317256A (en) Intraocular size measuring instrument
JP2612177B2 (en) Tonometry device
JP3207510B2 (en) Eye measurement device
JP2018115977A (en) Observation device and observation method
US5776061A (en) Noncontact tonometer
JPH09103411A (en) Eye measurement device
JPS6354145A (en) Highly accurate eyeball motion measuring apparatus
JP2787489B2 (en) Eye gaze detection device
JP4436914B2 (en) Eye refractive power measuring device
WO2023078689A1 (en) Retinal imaging
JPH03267039A (en) Eye refractometer
Westheimer et al. Automatic photoelectric keratometer