JPS5914633A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS5914633A
JPS5914633A JP12301682A JP12301682A JPS5914633A JP S5914633 A JPS5914633 A JP S5914633A JP 12301682 A JP12301682 A JP 12301682A JP 12301682 A JP12301682 A JP 12301682A JP S5914633 A JPS5914633 A JP S5914633A
Authority
JP
Japan
Prior art keywords
electrode
plasma cvd
reaction chamber
cvd apparatus
plate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12301682A
Other languages
Japanese (ja)
Inventor
Hideo Takagi
高木 秀雄
Mitsuharu Konuma
小沼 光晴
Yoshihiro Hirota
広田 善弘
Masahiko Tanaka
雅彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP12301682A priority Critical patent/JPS5914633A/en
Publication of JPS5914633A publication Critical patent/JPS5914633A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Abstract

PURPOSE:To obtain a CVD apparatus which is capable of mass-producing amorphous Si by arranging a second flat electrode oppositely to both sides of a first flat electrode within a reaction chamber and applying a DC or AC voltage to either one of the first or second electrodes while the other is grounded. CONSTITUTION:A high frequency voltage is applied to an electrode 4. The substrate holders 5, 5' are arranged to both sides of the electrode 4 and respectively provided with heaters 9, 9'. The glow discharge is generated between the electrodes 6, 6' and the glow discharge of both sides of the electrode 4 is used and therefore a discharge preventing shield is no longer necessary for the electrode 4. In such an electrode structure, energy and density of ions reaching the substrate holders 5, 5' of both sides of electrode 4 becomes substantially equal. Therefore, the film of the same character is formed at the equal rate on the substrates 8, 8' on the holders 5, 5'. The processing capability can be doubled without changing the size of electrode 4 and lateral size of reaction chamber 3.

Description

【発明の詳細な説明】 本発明は真空中でグロー放電によりガス全会解し、基板
表面に薄膜を堆積するプラズマCVD(chemica
l vapor depoaition)装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention uses plasma CVD (chemical vapor deposition) in which a thin film is deposited on a substrate surface by dissolving the entire gas by glow discharge in a vacuum.
1 vapor deposition) device.

プラズマCVD装置は、非晶質シリコン(以下a−8i
と略記する)膜及び窒化シリコン膜の作成に用いられる
。特に、プラズマCVD装置により作成されたa−8i
U、スパッタリング法やイオンブレーティング法等の他
の成膜法によシ作成したa−3iに較べて、太陽電池材
料としての特性が優れておシまた製造コストが安いとい
う特長を備えている。a−8i作成用のプラズマCVD
装置において平行平板型プラズマCVD装置を使用する
ことは+a−8’を大面積に均一に成膜でき、またガス
の種類の異なった複数の反応室を連結し、基板或いは基
板ホルダを反応室間で移動させることにより、真空中で
連続1−て多層膜を作成するのが容易にできる利点を備
えて、いる。
The plasma CVD equipment uses amorphous silicon (hereinafter referred to as A-8i).
(abbreviated as ) film and silicon nitride film. In particular, a-8i made by plasma CVD equipment
U, compared to a-3i produced by other film forming methods such as sputtering and ion blating, it has superior properties as a solar cell material and is also cheaper to manufacture. . Plasma CVD for creating a-8i
The use of a parallel plate plasma CVD device allows +a-8' to be uniformly deposited over a large area, and also connects multiple reaction chambers with different types of gas, allowing the substrate or substrate holder to be moved between the reaction chambers. It has the advantage that a multilayer film can be easily created continuously in a vacuum by moving the film in a vacuum.

の製造コストを安くしたp、a−8ji多量に生産する
ことに限界があった。
There was a limit to the ability to produce large quantities of p and a-8ji, which had lower manufacturing costs.

又、量産性を向上した方式に、2組のすだれ電極を用い
た方式が特開昭56−45724号公報に記載されてい
る。しかしながら、この方式では。
Further, as a method that improves mass productivity, a method using two sets of interdigital electrodes is described in Japanese Patent Laid-Open No. 56-45724. However, with this method.

有効であるが、太陽電池用のa−8t等に要求される様
な大面積基板に多層膜を堆積する場合に装置を改良し、
従来のものよシ更にa−8i等を安価に製造でき、かつ
量産性に優れたプラズマCVD装置を提供することにあ
る。
Although it is effective, the equipment has been improved when depositing multilayer films on large-area substrates such as those required for A-8T for solar cells.
It is an object of the present invention to provide a plasma CVD apparatus which can manufacture A-8I and the like at a lower cost than conventional ones and which is excellent in mass productivity.

本発明によれば、少なくとも1つの反応室金有するプラ
ズマCVD装置において、その反応室内に、第1の平板
電極と、その第1の平板電極の両側に対向して配置され
る第2の平板電極とを有し、第1又は第2の平板電極の
、どちらか一方に直流又は交流電圧が印加され、他方が
接地されることを特徴とするプラズマCVD装置が得ら
れる。
According to the present invention, in a plasma CVD apparatus having at least one reaction chamber, a first flat plate electrode and a second flat plate electrode disposed opposite to each other on both sides of the first flat plate electrode are provided in the reaction chamber. A plasma CVD apparatus is obtained, characterized in that a DC or AC voltage is applied to one of the first or second flat plate electrodes, and the other is grounded.

以下図面を参照して詳細に説明する。A detailed explanation will be given below with reference to the drawings.

第1図は従来の平行平板型プラズマCVD装置の構成を
示した正面断面図である。ガス導入口1及び真空排気口
2を備え、真空にすることができる反応室5の中に、平
板電極4及び5が15叫〜100mの間隔をおいて平行
に対置される。
FIG. 1 is a front sectional view showing the configuration of a conventional parallel plate type plasma CVD apparatus. In a reaction chamber 5 which is equipped with a gas inlet 1 and a vacuum exhaust port 2 and which can be evacuated, flat plate electrodes 4 and 5 are placed in parallel at an interval of 15 m to 100 m.

平板電極5を接地し、平板電極4に直流又は交流電圧を
印加することによシ、電極間ギャップ6でグロー放電が
起る。印加電圧としては、−般的に高周波9例えば13
.5.FMHz f用いることが多い。平板電極4には
、電極の裏側でグロー放電が起ることを防ぐ為に、放電
防止シールド7が取付けられている。高周波を用いた場
合。
By grounding the flat plate electrode 5 and applying a DC or AC voltage to the flat plate electrode 4, glow discharge occurs in the interelectrode gap 6. The applied voltage is generally a high frequency 9, for example 13
.. 5. FMHz f is often used. A discharge prevention shield 7 is attached to the flat plate electrode 4 in order to prevent glow discharge from occurring on the back side of the electrode. When using high frequency.

平板電極4が、電子とイオンの易動度の違いにより、直
流的に負にバイアスされる。、それ故。
The flat plate electrode 4 is negatively biased in terms of direct current due to the difference in mobility between electrons and ions. ,Therefore.

平板電極4と5に到達するイオンの゛エネルギーは互い
に異なり、基板が平板電極4又は5に置かれる場合とで
に、生成する膜質や成膜速度が異なる。平板電極5には
高周波電圧が印加されず、従って加熱機構が取付は易く
また連続装置にするときの移動機構が簡単となるため、
基板8は電極5の上に置かれる。以下平板電極5を基板
ホルダと呼ぶことにする。a−8tの成膜は基板温度が
150℃〜400℃の間のときに行なわれるので、基板
ホルダ5#/cは加熱ヒータ9が取付けられる。なお、
10は高周波電源を示している。
The energies of the ions that reach the flat electrodes 4 and 5 are different from each other, and the quality and rate of film formation differ depending on whether the substrate is placed on the flat electrodes 4 or 5. No high frequency voltage is applied to the flat plate electrode 5, and therefore the heating mechanism is easy to install and the moving mechanism when used as a continuous device is simple.
A substrate 8 is placed on top of the electrode 5. Hereinafter, the flat electrode 5 will be referred to as a substrate holder. Since the film formation of a-8t is performed when the substrate temperature is between 150° C. and 400° C., a heater 9 is attached to the substrate holder 5#/c. In addition,
10 indicates a high frequency power source.

第1図において、平板電極4が上に、基板ホルダ5が下
に配置されているが、この配置は上下が逆でも良い。逆
にした場合、基板を基板ホルダに取付ける為の治具を必
要とするが、成膜面が下に向くためゴミが付着しにくい
という長所がある。
In FIG. 1, the flat electrode 4 is placed at the top and the substrate holder 5 is placed at the bottom, but this arrangement may be reversed. If it is reversed, a jig is required to attach the substrate to the substrate holder, but it has the advantage that dust is less likely to adhere because the film-forming surface faces downward.

このような第1図の平行平板型プラズマCVD装置では
、その処理能力を増大させるのに平板電極4及び基板ホ
ルダ5の面積を大きくする必要がある。しかしながら、
平板電極及び基板ホルダの面積を大きくすると、熱ひず
みにより組立精度を維持することが困難になる。−また
、連続装置において、基板ホルダの面積を大きくし重量
が重くなることは、基板ホルダを真空装置内で移動させ
るときや装置外での取扱いに困難な問題が生ずる。また
、第1図の構造のまま平板電極及び基板ホルダを大面積
にすることは。
In such a parallel plate type plasma CVD apparatus shown in FIG. 1, it is necessary to increase the area of the flat plate electrode 4 and the substrate holder 5 in order to increase its processing capacity. however,
When the areas of the flat electrode and substrate holder are increased, it becomes difficult to maintain assembly accuracy due to thermal strain. - Furthermore, in a continuous device, increasing the area and weight of the substrate holder causes problems when moving the substrate holder within the vacuum device or handling it outside the device. Furthermore, it is possible to increase the area of the flat plate electrode and substrate holder while maintaining the structure shown in FIG.

反応室の高さは殆ど変わらないが9反応室の横方向の大
きさが大きくなること[なる。この上−″過森麹ミ装置
コストに対する処理能力があまり改善できない。したが
って第1図の構造のプラズマCVD装置では、装置の低
コスト化と量産性の点で限界がある。
Although the height of the reaction chamber remains almost the same, the lateral size of the reaction chamber increases. Moreover, the throughput cannot be improved much with respect to the equipment cost.Therefore, the plasma CVD equipment having the structure shown in FIG. 1 has limitations in terms of cost reduction and mass production of the equipment.

一方、2組のすだれ状電極を用いて量産性を向上した方
式が、特開昭56−43724号公報に述べられている
。この方式では、基板の加熱方法上の制約から1反応室
は金属ではなく石英ガラスの様な赤外線透明材料で構成
する必要があシ。
On the other hand, Japanese Patent Application Laid-Open No. 56-43724 describes a method that improves mass productivity by using two sets of interdigital electrodes. In this method, one reaction chamber must be made of an infrared transparent material such as quartz glass rather than metal due to limitations in the heating method of the substrate.

また電極は長い反応室の中で細長い構造をとっているの
で、複数の反応室にわたる連続化が不可能である。また
加熱方法上の制約から9例えば−辺が200mの正方形
等のような大面積基板への堆積は非常に困難となる。つ
まり、このような方式によるプラズマCVD装置では、
半導体ウェハの様に比較的小さい基板に単一膜を堆積す
る場合に適しているが、a−8t太陽電池のような大面
積基板に多層膜を堆積する場合には適用できない。
Furthermore, since the electrode has an elongated structure within a long reaction chamber, it is impossible to connect the electrode continuously across a plurality of reaction chambers. Furthermore, due to restrictions on the heating method, it is very difficult to deposit on a large-area substrate, such as a square with a negative side of 200 m. In other words, in a plasma CVD apparatus using this type of system,
Although it is suitable for depositing a single film on a relatively small substrate such as a semiconductor wafer, it is not applicable when depositing a multilayer film on a large area substrate such as an A-8T solar cell.

第2図は本発明による一実施例の構成を示した正面断面
図である。平板電極4には、従来と同様一般に高周波電
圧が印加される。基板ボルダ5及び5′は、平板電極4
の両側に配置されている。また、基板ホルダ5及び5′
には、それぞれ加熱ヒータ9及び9′が取付けられてい
る。グロー放電は電極間ギャップ6及び6′で起る。平
板電極4の両側のグロー放電を利用するので。
FIG. 2 is a front sectional view showing the configuration of an embodiment according to the present invention. Generally, a high frequency voltage is applied to the flat plate electrode 4 as in the conventional case. The substrate boulders 5 and 5' are connected to the flat plate electrode 4.
are placed on both sides. In addition, the substrate holders 5 and 5'
are equipped with heaters 9 and 9', respectively. A glow discharge occurs in the interelectrode gaps 6 and 6'. Because glow discharge on both sides of the flat electrode 4 is used.

平板電極4には放電防止シールドを取付ける必要にない
。このような第2図の電極構造でに。
There is no need to attach a discharge prevention shield to the flat electrode 4. With such an electrode structure as shown in Fig. 2.

平板電極4の両側に設置された基板ホルダ5及び5′に
到達するイオンのエネルギー及び密度が実質上回等とな
る。したがって、基板ホルダ5及び5′上に設置された
基板8及び8′には、同等の性質の膜が同等の速度で成
膜される。このように、平板電極4の大きさ及び反応室
6の横方向の大きさを変えないで、処理能力を2倍にす
ることができる。
The energy and density of ions reaching the substrate holders 5 and 5' placed on both sides of the flat electrode 4 are substantially higher. Therefore, films with the same properties are formed at the same speed on the substrates 8 and 8' placed on the substrate holders 5 and 5'. In this way, the processing capacity can be doubled without changing the size of the plate electrode 4 and the lateral size of the reaction chamber 6.

第3図は本発明による他の一実施例の構成を示した正面
断面図である。この例では、平板電極4及び4′が基板
ホルダ5の両側に配置されている。この基板ホルダ5の
構造は、加熱ヒータ9を内蔵した一体構造でも良いし、
加熱ヒータ9を挾んだサンドインチ構造でも良い。また
平板電極4及び4’[flそれぞれ放電防止ンールド7
及び7′が取付けられている。したがって、第3図の電
極構造でも、第2図の場合と同様に。
FIG. 3 is a front sectional view showing the structure of another embodiment according to the present invention. In this example, flat plate electrodes 4 and 4' are arranged on both sides of the substrate holder 5. The structure of this substrate holder 5 may be an integral structure with a built-in heater 9, or
A sandwich structure in which the heater 9 is sandwiched may also be used. In addition, the flat plate electrodes 4 and 4'[fl each have a discharge prevention ring 7
and 7' are attached. Therefore, the electrode structure shown in FIG. 3 is similar to the case shown in FIG.

電極間ギャップ6及び6′のプラズマの状態は同等であ
シ、また基板′8及び8′は電気的に同一条件の下に置
かれるので9両側の基板ホルダ5.に到達するイオンの
エネルギー及び密度が同等になる。よって基板ホルダ5
の両側に設置された基板8及び8’Vcfl同等の性質
の膜が同等の速度で成膜される。このように第3図のも
のは、第2図のものと同様に、基板ホルダ5の大きさ及
び反応室3の横方向の大きさを変えないで、処理能力を
2倍にすることができる。
Since the plasma conditions in the interelectrode gaps 6 and 6' are the same, and the substrates '8 and 8' are placed under the same electrical conditions, the substrate holders 5. The energies and densities of the ions reaching the ions become the same. Therefore, the substrate holder 5
Films having the same properties as the substrates 8 and 8'Vcfl placed on both sides of the film are formed at the same speed. In this way, the system shown in Figure 3 can double the processing capacity without changing the size of the substrate holder 5 and the lateral size of the reaction chamber 3, similar to the system shown in Figure 2. .

また、第2図及び第6図の実施例では、平板電極及び基
板ホルダが水平に設置されているが。
Further, in the embodiments shown in FIGS. 2 and 6, the flat electrode and the substrate holder are installed horizontally.

これら平板電極及び基板ホルダが垂直に設置されていて
も良い。その場合、基板ホルダのそれぞれの面に取付け
られた基板のすべての成膜面が垂直になるので、基板表
面にごみが付着しにくいという利点がある。
These flat electrodes and substrate holders may be installed vertically. In this case, all the film-forming surfaces of the substrates attached to the respective surfaces of the substrate holder are vertical, so there is an advantage that dust is less likely to adhere to the substrate surfaces.

本発明は、基板ホルダを複数の反応室間又は反応室と反
応室外の間で移動させて連続的に処理するような連続処
理装置の場合に特に利点がある。すなわち、基板ホルダ
の移動方向に面積を大きくすることなく処理能力を2倍
にすることができると共に、従来の平行平板型プラズマ
CVD装置と同じように基板ホルダには高周波電圧が印
加されないので、基板ホルダを移動させるだめの機構が
簡単になる。そのため、装置の量産性が向上すると共に
製造コストが安価になシ、マた装置の設置面積も小さく
てすむ。
The present invention is particularly advantageous in the case of a continuous processing apparatus in which continuous processing is performed by moving the substrate holder between a plurality of reaction chambers or between a reaction chamber and the outside of the reaction chamber. In other words, the processing capacity can be doubled without increasing the area in the moving direction of the substrate holder, and since high frequency voltage is not applied to the substrate holder as in conventional parallel plate plasma CVD equipment, the substrate The mechanism for moving the holder becomes simpler. Therefore, the mass productivity of the device is improved, the manufacturing cost is reduced, and the installation area of the device is also small.

なお9本発明によるプラズマCVD装置は。Note that the plasma CVD apparatus according to the present invention is as follows.

a−8i膜作成のみに適用されるのではなく、平行平板
型プラズマCVD装置で行なっているすべての成膜作成
に適用できるのは言うまでもない。
Needless to say, this method is not only applicable to the formation of the a-8i film, but is also applicable to all film formation performed using a parallel plate plasma CVD apparatus.

以上の説明で明らかなように1本発明によれば、従来の
ものより更に成膜作成の処理能力を増大し、かつ安価な
プラズマCVD装置が得られるという効果がある。
As is clear from the above description, the present invention has the advantage that it is possible to obtain a plasma CVD apparatus which has a higher throughput for film formation and is less expensive than the conventional apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の平行平板型プラズマCVD装置の構成を
示した正面断面図、第2図は本発明による一実施例の構
成を示した正面断面図、第3図は本発明による他の一実
施例の横取ヲ示した正面断面図である。 記号の説明=1はガス導入口、2は真空排気口、3は反
応室、4.4’は平板電極、5.5’は基板ホルダ、 
6.6’H電極間ギャップ、7.7’は放電防止シール
ド、 8.8’fl基板、9.9’は加熱ヒータ、10
は高周波電源をそれぞれあられしている。 第1図 第2図
FIG. 1 is a front sectional view showing the configuration of a conventional parallel plate type plasma CVD apparatus, FIG. 2 is a front sectional view showing the configuration of an embodiment according to the present invention, and FIG. FIG. 2 is a front cross-sectional view showing the cross section of the embodiment. Explanation of symbols = 1 is gas inlet, 2 is vacuum exhaust port, 3 is reaction chamber, 4.4' is flat plate electrode, 5.5' is substrate holder,
6.6'H gap between electrodes, 7.7' is discharge prevention shield, 8.8'fl board, 9.9' is heater, 10
are respectively generating high-frequency power sources. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、少なくとも1つの反応室を有するプラズマCVD装
置において、前記反応室内に、、第1の平板電極と、該
第1の平板電極の両側に対向して配置される第2の平板
電極とを有するプラズマCVD装置。 2、前記第1及び第2の平板電極の電極面が鉛直である
特許請求の範囲第1項記載のプラズマCVD装置。 3、前記第1の平板電極が直流又は交流電圧が印加され
る側であシ、前記第2の平板電極が接地される側である
特許請求の範囲第1項又は第2項記載のプラズマCVD
装置。 4、前記第2の平板電極が複数の前記反応室間又は前記
反応室と前記反応室外の間を移動可能である特許請求の
範囲第6項記載のプラズマCVD装置。 5、前記第1の平板電極が接地される側であり。 前記第2の平板電極が直流又は交流電圧が印加される側
である特許請求の範囲第1項又は第2項記載のプラズマ
CVD装置 6、前記第1の平板電極が複数の前記反応室間又は前記
反応室と前記反応室外の間を移動可能である特許請求の
範囲第5項記載のプラズマCVD装置。
[Scope of Claims] 1. In a plasma CVD apparatus having at least one reaction chamber, in the reaction chamber, a first plate electrode and a second plate electrode disposed opposite to each other on both sides of the first plate electrode are provided. A plasma CVD apparatus having a flat plate electrode. 2. The plasma CVD apparatus according to claim 1, wherein the electrode surfaces of the first and second flat electrodes are vertical. 3. The plasma CVD according to claim 1 or 2, wherein the first plate electrode is on the side to which a DC or AC voltage is applied, and the second plate electrode is on the side to be grounded.
Device. 4. The plasma CVD apparatus according to claim 6, wherein the second flat plate electrode is movable between the plurality of reaction chambers or between the reaction chamber and the outside of the reaction chamber. 5. The first flat plate electrode is on the grounded side. The plasma CVD apparatus 6 according to claim 1 or 2, wherein the second flat plate electrode is the side to which a DC or AC voltage is applied, and the first flat plate electrode is located between a plurality of reaction chambers or The plasma CVD apparatus according to claim 5, which is movable between the reaction chamber and the outside of the reaction chamber.
JP12301682A 1982-07-16 1982-07-16 Plasma cvd apparatus Pending JPS5914633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12301682A JPS5914633A (en) 1982-07-16 1982-07-16 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12301682A JPS5914633A (en) 1982-07-16 1982-07-16 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS5914633A true JPS5914633A (en) 1984-01-25

Family

ID=14850139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12301682A Pending JPS5914633A (en) 1982-07-16 1982-07-16 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS5914633A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236218A (en) * 1984-05-10 1985-11-25 Toshiba Corp Device for plasma processing
JPS618914A (en) * 1984-06-22 1986-01-16 Kanegafuchi Chem Ind Co Ltd Glow discharge type film formation equipment
JPS6115321A (en) * 1984-07-02 1986-01-23 Kanegafuchi Chem Ind Co Ltd Formation of film
FR2589168A1 (en) * 1985-10-25 1987-04-30 Solems Sa APPARATUS AND METHOD OF USE FOR PLASMA-ASSISTED THIN FILM FORMATION
JPH01239917A (en) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd Plasma treatment
US4949671A (en) * 1985-10-24 1990-08-21 Texas Instruments Incorporated Processing apparatus and method
US5039376A (en) * 1989-09-19 1991-08-13 Stefan Zukotynski Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
US7913752B2 (en) 2003-02-17 2011-03-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Cooling device for vacuum treatment device
US8034418B2 (en) 2002-10-04 2011-10-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for forming thin film and apparatus therefor
JP2013531373A (en) * 2010-06-11 2013-08-01 深▲せん▼市創益科技発展有限公司 Discharge electrode plate array for film solar cell deposition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710937A (en) * 1980-06-25 1982-01-20 Mitsubishi Electric Corp Plasma gaseous phase growth device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710937A (en) * 1980-06-25 1982-01-20 Mitsubishi Electric Corp Plasma gaseous phase growth device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236218A (en) * 1984-05-10 1985-11-25 Toshiba Corp Device for plasma processing
JPS618914A (en) * 1984-06-22 1986-01-16 Kanegafuchi Chem Ind Co Ltd Glow discharge type film formation equipment
JPS6115321A (en) * 1984-07-02 1986-01-23 Kanegafuchi Chem Ind Co Ltd Formation of film
US4949671A (en) * 1985-10-24 1990-08-21 Texas Instruments Incorporated Processing apparatus and method
FR2589168A1 (en) * 1985-10-25 1987-04-30 Solems Sa APPARATUS AND METHOD OF USE FOR PLASMA-ASSISTED THIN FILM FORMATION
US4798739A (en) * 1985-10-25 1989-01-17 Solems Plasma-assisted method for thin film fabrication
JPH01239917A (en) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd Plasma treatment
US5039376A (en) * 1989-09-19 1991-08-13 Stefan Zukotynski Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
US8034418B2 (en) 2002-10-04 2011-10-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for forming thin film and apparatus therefor
US7913752B2 (en) 2003-02-17 2011-03-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Cooling device for vacuum treatment device
JP2013531373A (en) * 2010-06-11 2013-08-01 深▲せん▼市創益科技発展有限公司 Discharge electrode plate array for film solar cell deposition

Similar Documents

Publication Publication Date Title
US6245648B1 (en) Method of forming semiconducting materials and barriers
US20010054382A1 (en) Chemical vapor deposition system
US20100151680A1 (en) Substrate carrier with enhanced temperature uniformity
US4452828A (en) Production of amorphous silicon film
JP2588388B2 (en) Coating method
JP2616760B2 (en) Plasma gas phase reactor
JPS5914633A (en) Plasma cvd apparatus
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
GB2148947A (en) Method of depositing an amorphous semiconductor layer from a glow discharge
EP0118644A1 (en) Cathode assembly for glow discharge deposition apparatus
US6470823B2 (en) Apparatus and method for forming a deposited film by a means of plasma CVD
EP0118643B1 (en) Cathode assembly for glow discharge deposition apparatus
JPS5972722A (en) Substrate shield for preventing irregular film from deposit-ing
JPH0351971Y2 (en)
JPH0510818B2 (en)
EP0140130B1 (en) Process and apparatus for preparing semiconductor layer
JP3006029B2 (en) Vacuum deposition equipment
JPS618914A (en) Glow discharge type film formation equipment
JP2562686B2 (en) Plasma processing device
JP2776859B2 (en) Thin film formation method
US20040035361A1 (en) Apparatus and method for forming deposited film
JP2890032B2 (en) Silicon thin film deposition method
JPH06120153A (en) Film-forming apparatus
JPS63142627A (en) Manufacture of semiconductor thin film
JPH0236058B2 (en)