JPS59146155A - Production method of nonaqueous electrolyte cell - Google Patents

Production method of nonaqueous electrolyte cell

Info

Publication number
JPS59146155A
JPS59146155A JP58019685A JP1968583A JPS59146155A JP S59146155 A JPS59146155 A JP S59146155A JP 58019685 A JP58019685 A JP 58019685A JP 1968583 A JP1968583 A JP 1968583A JP S59146155 A JPS59146155 A JP S59146155A
Authority
JP
Japan
Prior art keywords
positive electrode
conductive material
nonaqueous electrolyte
electrolyte cell
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58019685A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Yoshiro Harada
吉郎 原田
Masanori Nakanishi
正典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP58019685A priority Critical patent/JPS59146155A/en
Publication of JPS59146155A publication Critical patent/JPS59146155A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To produce nonaqueous electrolyte cell reliably excellent in discharge performance by using a light metal for a negative electrode and using a mixture mold of CuO and a conductive material or a conductive material and a binding agent heat-treated at a relatively low temperature for a positive electrode. CONSTITUTION:In a nonaqueous electrolyte cell using Li, K, Na, Ca, Mg, Al for a negative electrode and CuO for a positive electrode respectively, the positive electrode is produced as follows. That is, CuO molded with a conductive material alone or a mixture of a conductive material and a binding agent is heat- treated within a temperature range of 50-250 deg.C to form the positive electrode. Accordingly, only by simply changing process operations, the reduction of the effective active material quantity of the positive electrode can be prevented and the discharge capacity of the nonaqueous electrolyte cell can be improved reliably and largely.

Description

【発明の詳細な説明】 この発明は非水電解液電池の製造方法の特に正極活物質
として酸化第二銅を用いる非水電解液電池の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-aqueous electrolyte battery, particularly to a method for manufacturing a non-aqueous electrolyte battery using cupric oxide as a positive electrode active material.

周知のごとく、酸化第二銅を正極活物質として用いる非
水電解液電池における有効な活物質は、一般にCuOで
現わされる酸化第二銅である。この酸化第二銅CuOは
導電材申独かまたは導N月と結着剤の両者と混合されて
所定の合剤形状に成形されたのち、脱水と焼結の為に高
温度で熱処理される。この場合、非水電解液電池は一般
に結合水も含めて水分を極度に嫌うため、従来に於いて
は充分に高い潤度具体的には300’C以上の温度をか
けて熱処理を行なっていた。しかしながらこの様な高温
度で熱処理を行なう結果、その酸化第二銅CuOの一部
が還元されてC1120あるいはC0になり、これによ
り有効活物質量が減少して放電容量の低下をきたしてい
た。これを防ぐ為に従来においては、熱処理雰囲気とし
て還元雰囲気を用いない方法9例えば真空中で熱処理を
づ゛ることなどが考えられていた。しかし、本発明者ら
が知得したところによると、たとえ還元雰囲気中でなく
とも熱処理を行なうことによりかなりの量の酸化第二銅
CuOがCuzOあるいはCIに還元され、これが放電
容量の低下の大きな原因とな−)でいることが判明した
As is well known, an effective active material in a non-aqueous electrolyte battery using cupric oxide as a positive electrode active material is cupric oxide, generally represented by CuO. This cupric oxide CuO is mixed with a conductive material or both a conductive material and a binder, formed into a predetermined mixture shape, and then heat treated at high temperatures for dehydration and sintering. . In this case, since non-aqueous electrolyte batteries are generally extremely averse to moisture, including bound water, conventionally heat treatment was carried out at sufficiently high moisture levels, specifically at temperatures of 300'C or higher. . However, as a result of heat treatment at such a high temperature, a portion of the cupric oxide CuO is reduced to C1120 or C0, thereby reducing the amount of effective active material and lowering the discharge capacity. In order to prevent this, conventional methods have been considered that do not use a reducing atmosphere as the heat treatment atmosphere, for example, carrying out the heat treatment in a vacuum. However, the present inventors have learned that even if heat treatment is not performed in a reducing atmosphere, a considerable amount of cupric oxide CuO is reduced to CuzO or CI, which causes a large decrease in discharge capacity. It turned out that the cause was -).

一=般に酸化銅を強熱した場合は、酸化銅そのものが強
力な酸化剤としで働くことは良く知られている。真空中
でも、350℃近辺においてはすでに分解は起こってい
ると考えられるのである。雰囲気ガスが水素あるいは一
酸化炭素のような場合には250℃1メ下でも容易に酸
化銅は分解されるとされている。
It is well known that when copper oxide is ignited, the copper oxide itself acts as a strong oxidizing agent. It is thought that decomposition has already occurred at around 350°C even in a vacuum. It is said that when the atmospheric gas is hydrogen or carbon monoxide, copper oxide is easily decomposed even at 1 meter below 250°C.

この発明は以上のような従来の問題を鑑みて成されたも
ので、その目的とするところは、正極に酸化第二銅を用
いた非水電解液電池の放電性能を、その製造工程の極め
て簡単な変更だけでもって確実に向トさせられるように
した非水電解液電池の製造方法を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to improve the discharge performance of non-aqueous electrolyte batteries using cupric oxide as the positive electrode by improving the manufacturing process. It is an object of the present invention to provide a method for manufacturing a non-aqueous electrolyte battery that can be reliably adapted to the current situation with only simple changes.

上記目的を達成するためにこの発明は、負極に1i、に
、Na、Ca、AI、MO等の軽金属、正極に酸化第二
銅をそれぞれ用いる非水電解液電池に於いて、上記正極
は、酸化第二銅に導電材単独または、導電材と結着剤を
混合して成形したものを50℃〜250℃の温度範囲ぐ
熱処理して1nられることを特徴どする。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte battery in which the negative electrode uses a light metal such as 1, Na, Ca, AI, or MO, and the positive electrode uses cupric oxide. It is characterized by being formed by molding cupric oxide with a conductive material alone or a mixture of a conductive material and a binder and heat-treating it at a temperature range of 50°C to 250°C.

以上のように、この発明にJ、る製造り法では、2F記
熱処理温度の範囲を50℃−250℃に設定するという
極めて血中な工程操作であるが、これにより正極活物質
中の酸化第二銅C1−10h<Cu ?0あるいはCL
Iに還元されてその有効活物質量が減j0することを確
実に防止することができ、そしてこの結果以下に示すよ
うに放電性能、特に放電容量の大幅な向−1−を1qる
ことが出来たのである。
As mentioned above, in the manufacturing method according to this invention, the 2F heat treatment temperature range is set at 50°C to 250°C, which is a very complicated process operation, but this process reduces the oxidation in the positive electrode active material. Cupric C1-10h<Cu? 0 or CL
It is possible to reliably prevent the amount of effective active material from being reduced to I, and as a result, as shown below, it is possible to significantly improve the discharge performance, especially the discharge capacity. It was possible.

また、」−記の温度範囲による脱水処理を行なっても、
最終的に製造された製品の中から残留水分による不良品
が出ることはなかった。つまり、上記温度範囲でも実際
には充分な脱水処理が行なわれることを確認することが
出来た。また、酸化第ニー銅Cu○とともに使用される
上記導電材どしてカーボンを用いる場合、このカーボン
が上記熱処理時の熱によって酸化第二銅Ct+O中の酸
素と反応するのを防止するために、上記温度範囲は80
℃〜150℃程度の範囲内に設定Jることが望ま()い
In addition, even if dehydration treatment is performed in the temperature range indicated in "-",
There were no defective products due to residual moisture among the final manufactured products. In other words, it was confirmed that sufficient dehydration treatment was actually performed even in the above temperature range. Furthermore, when carbon is used as the conductive material used together with cupric oxide Cu○, in order to prevent this carbon from reacting with the oxygen in cupric oxide Ct+O due to the heat during the heat treatment, The above temperature range is 80
It is desirable to set the temperature within a range of approximately 150°C to 150°C.

実施例 酸化第二銅CuOと導電材(グラファイト)が90:1
0で混合して成形されたものを、減圧下120℃で6時
間熱処理して正極成形合剤を得た。
Example Cupric oxide CuO and conductive material (graphite) are 90:1
The mixed and molded mixture was heat-treated at 120° C. for 6 hours under reduced pressure to obtain a positive electrode molding mixture.

この合剤と、プロピレンカーボネイトとジメトキシエタ
ンの1=1の混合溶媒に塩素酸リチウムを1モル濃度溶
解してなる電解液と、ポリプロピレン不織布よりなるセ
パレータとを用いてAAサイズの非水電解液電池を組み
立てた。またこれと比較するために、上記熱処理を減圧
下350℃の温度で6時間行なってなる正極成形合剤を
用いた同型の電池を組み立てた。そして、前者の電池A
および後者の電池Bをそれぞれ40Ωの定抵抗放電条件
でもってその放電持続時間および端子電圧を連続して測
定してみたところ、それぞれ図に示すような放電特性面
1!A、Bを得た。各曲線A、Bはそれぞれ100個ず
つのサンプルについて測定を行ない、その平均的な特性
を示したものである。
Using this mixture, an electrolytic solution prepared by dissolving lithium chlorate at a 1 molar concentration in a 1=1 mixed solvent of propylene carbonate and dimethoxyethane, and a separator made of polypropylene nonwoven fabric, an AA-sized non-aqueous electrolyte battery is produced. assembled. For comparison, a battery of the same type was assembled using a positive electrode molding mixture that had been subjected to the heat treatment described above at a temperature of 350° C. for 6 hours under reduced pressure. And the former battery A
When we continuously measured the discharge duration and terminal voltage of the latter battery B under a constant resistance discharge condition of 40Ω, we found that the discharge characteristics of each battery are 1! as shown in the figure. I got A and B. Each of the curves A and B shows the average characteristics obtained by measuring 100 samples each.

同図にて明らかなように、この発明により製造された電
池Aの放電特性は、特に放電容量は、明らかに従来の電
池Bのそれよりも大幅に向上している。
As is clear from the figure, the discharge characteristics of the battery A manufactured according to the present invention, particularly the discharge capacity, are clearly significantly improved over those of the conventional battery B.

以−Vのようにこの発明による製造方法にJ:れば、極
めて簡単な工程操作の変更だi′jでもって正極の有効
活物質量の減損を防止して放電容量を確実。
By using the manufacturing method according to the present invention as shown in FIG. 5, the discharge capacity can be ensured by preventing loss of the effective active material amount of the positive electrode through extremely simple changes in process operations.

かつ大幅に向上させることができる。and can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明により製造される電池Aと従来の方法によ
り製造される電池Bの放電特性を比較して示す図である
The figure is a diagram showing a comparison of the discharge characteristics of a battery A manufactured by the present invention and a battery B manufactured by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] (1)負極にリチウム、カリウム 、ナトリウム 。 力Jレシウム、アルミニウム、マグネシウムなどの軒金
属、正極に酸化第二銅をそれぞれ用いる非水電解液電池
において、上記正極は、酸化第二銅にsN材単独または
導電材と結着剤を混合して成形したものを50℃〜25
0℃の温度範囲で熱処理して得られることを特徴とする
非水電解液電池の製造方法。 (2、特許請求の範囲(1)の方法に於いて、上記導電
材としてカーボンを用いるとともに、上記温度範囲を8
0℃〜150℃とすることを特徴とする非水電解液電池
の製造方法。
(1) Lithium, potassium, and sodium for the negative electrode. In nonaqueous electrolyte batteries that use eaves metals such as lesium, aluminum, and magnesium, and cupric oxide for the positive electrode, the positive electrode is made of cupric oxide mixed with an SN material or a conductive material and a binder. The molded product is heated to 50°C to 25°C.
A method for producing a non-aqueous electrolyte battery, characterized in that it is obtained by heat treatment in a temperature range of 0°C. (2. In the method of claim (1), carbon is used as the conductive material, and the temperature range is
A method for manufacturing a non-aqueous electrolyte battery, characterized in that the temperature is 0°C to 150°C.
JP58019685A 1983-02-10 1983-02-10 Production method of nonaqueous electrolyte cell Pending JPS59146155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58019685A JPS59146155A (en) 1983-02-10 1983-02-10 Production method of nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58019685A JPS59146155A (en) 1983-02-10 1983-02-10 Production method of nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JPS59146155A true JPS59146155A (en) 1984-08-21

Family

ID=12006086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58019685A Pending JPS59146155A (en) 1983-02-10 1983-02-10 Production method of nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS59146155A (en)

Similar Documents

Publication Publication Date Title
JP4801865B2 (en) Lithiated manganese dioxide
CN102044674B (en) Anode material for lithium ion battery and preparation method thereof
JPH0746607B2 (en) Non-aqueous secondary battery
JP2711545B2 (en) Non-aqueous battery
JPH09501257A (en) Preparation of silver vanadium oxide cathode using Ag (O) and V.sub.2 under O.sub.5 under as starting materials
JP2008516884A (en) Method for producing γ-LiV2O5
JP2002050359A (en) Manufacturing method of lithium secondary battery positive electrode material and lithium secondary battery positive electrode material
US4016091A (en) Method of preparing high capacity nickel electrode powder
JP4052695B2 (en) Lithium secondary battery
JP4343618B2 (en) Method for producing polyanion type lithium iron composite oxide and battery using the same
CA2129716A1 (en) Process for producing a positive electrode for lithium secondary batteries
US3941614A (en) Method of preparing high capacity nickel electrode powder
JPS59146155A (en) Production method of nonaqueous electrolyte cell
JPS636496B2 (en)
JPS61135056A (en) Manufacture of organic electrolyte cell
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JPH04363863A (en) Manufacture of positive electrode active material for nonaqueous electrolytic secondary battery
JPH0261095B2 (en)
CN114620722B (en) Porous carbon negative electrode material, preparation method thereof, electrode, battery and capacitor prepared from porous carbon negative electrode material
CA1053325A (en) Method of preparing high capacity nickel electrode powder
JP2547618B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
CN115472823A (en) Sb 2 S 3 @Sb 6 O 13 @ rGO composite material and preparation method and application thereof
JP2001223009A (en) Positive electrode material for lithium secondary battery
JPS62200659A (en) Manufacture of positive electrode for nonaqueous electrolyte cell