JPS59145939A - Axial force measuring method of plastic region clamping bolt - Google Patents

Axial force measuring method of plastic region clamping bolt

Info

Publication number
JPS59145939A
JPS59145939A JP2026683A JP2026683A JPS59145939A JP S59145939 A JPS59145939 A JP S59145939A JP 2026683 A JP2026683 A JP 2026683A JP 2026683 A JP2026683 A JP 2026683A JP S59145939 A JPS59145939 A JP S59145939A
Authority
JP
Japan
Prior art keywords
bolt
axial force
natural frequency
plastic region
head bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2026683A
Other languages
Japanese (ja)
Other versions
JPH037250B2 (en
Inventor
Tatsumi Makimae
槙前 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2026683A priority Critical patent/JPS59145939A/en
Publication of JPS59145939A publication Critical patent/JPS59145939A/en
Publication of JPH037250B2 publication Critical patent/JPH037250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • G01L1/106Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To derive easily an axial force of a bolt clamped up to a plastic region by clamping the bolt to the plastic region, measuring a natural frequency of the bolt, subsequently, loosening the bolt, and measuring its natural frequency. CONSTITUTION:A head bolt 4 is clamped so that its axial force becomes about 0.5ton to 1.0ton, and in that state, a natural frequency Fp of the head bolt 4 is measured. At that time, a strain epsilonp detected by strain gauges 3, 3 is measured simultaneously, and basing on this strain epsilonp, the axial force of the head bolt 4 of the clamping time is derived exactly. Thereafter, in a state that its axial force becomes zero by loosening the head bolt 4, a natural frequency Fo of the head bolt 4 is measured. In this way, the axial force of the bolt clamped up to the plastic region can be derived easily by utilizing a relative characteristic of the natural frequency and the axial force of the bolt in the plastic region basing on Fo-Fp.

Description

【発明の詳細な説明】 本発明は、塑性域に至るまで締付けられたボルトの軸力
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the axial force of a bolt that has been tightened to the plastic region.

従来より、例えば、エンジンのシリンダブロックにヘッ
ドガスケットを介してシリンダヘッドをヘッドボルトの
締付(プにより相付番〕る際、上記ヘッドボルトをその
塑性域に至るまで締付けてその軸力を高めることにより
、組付後の馴らし運転中に上記シリンダヘッドの熱膨張
ににつで生じるヘッドガスケットのへタリを上記軸力に
よって吸収し、馴らし運転後に上記ヘッドボルトを地線
めする作業を省いて生産性の向上を図ることを行ってい
る。
Conventionally, for example, when tightening a head bolt on a cylinder head to an engine cylinder block via a head gasket, the head bolt is tightened to its plastic range to increase its axial force. As a result, the axial force absorbs the sagging of the head gasket caused by the thermal expansion of the cylinder head during the break-in operation after assembly, and eliminates the work of grounding the head bolts after the break-in operation. We are working to improve productivity.

一方、弾性域内で締付けられたボルトの軸力を測定する
方法として超音波式計測法は周知である。
On the other hand, the ultrasonic measurement method is well known as a method for measuring the axial force of a bolt tightened within the elastic range.

この計測法は、締付前のポル[−の固有振動数FOと弾
性域締付時のボルトの固有振動数[pとの差(Fo −
Fp )が、弾性域締付時のボルトの軸力Qに比例する
という関係特性、すなわち、Q=K・(Fo −Fp 
) /Fo  ・・・(I’ >(ここでKは締刊前の
ボルトの長さ、直径および材質により決定される換専係
数) で表わされる特性式に基づいて行うもので、超音波を発
信Jる探触子を用いて上記ボルトの各固有振動数FOお
よびF pを測定し、これらを上記特性式の右辺に代入
づることにより、弾性域締付時のボルトの軸力Qを求め
るようにしたものである。
This measurement method is based on the difference (Fo -
Fp) is proportional to the axial force Q of the bolt when tightening in the elastic range, that is, Q=K・(Fo −Fp
) /Fo...(I'> (where K is the conversion coefficient determined by the length, diameter, and material of the bolt before publication) By measuring each natural frequency FO and Fp of the above bolt using a transmitting probe and substituting these into the right side of the above characteristic equation, find the axial force Q of the bolt when tightening in the elastic range. This is how it was done.

しかるに、塑性域に至るまで締付けられたヘツドボル[
−においては、上記固有振動数の差(F。
However, when the head bolt is tightened to the plastic region [
-, the difference in natural frequencies (F.

−Fp)が締付時のヘッドボルトの軸力Qに比例せず複
雑な相関を示づ−ため、上記のような線形の特性式を用
いた超音波式計測法によっては締付時のヘッドボルトの
軸力Qを正確に求めることができないという問題があっ
た。
-Fp) is not proportional to the axial force Q of the head bolt at the time of tightening, but shows a complicated correlation. There was a problem in that the axial force Q of the bolt could not be determined accurately.

本発明は斯かる点に鑑みてなされたものであり、塑性域
に至るまで締付けられたボルトは、緩めた後でもその固
有振動数は締イ]前における固有振動数FOまで戻らず
、塑性変形に対応した分だけ上記固有振動数FOより低
下することを知見し、この知見に基づいて塑性域まで締
付けられたポル1〜の軸力を従来弾性域に対して適用し
ていた線形の関係特性をそのまま用いて簡単に求めるよ
うにすることを目的するものである。
The present invention has been made in view of this point. Even after loosening a bolt that has been tightened to the plastic region, its natural frequency does not return to the natural frequency FO before tightening, and the bolt is plastically deformed. Based on this knowledge, the linear relationship characteristic that was conventionally applied to the elastic region of the axial force of Pol 1 ~ tightened to the plastic region was found to be lower than the natural frequency FO by the amount corresponding to The purpose is to make it easy to find by using as is.

この目的を達成づるため、本発明の軸力測定法は、ポル
[〜を塑性域まで締付けて該ボルトの固有振動数を測定
し、次に、上記ボルトを緩めて該ボルトの固有振動数を
測定し、その後、上記両固有振動数の差を求め、眼差を
もとに弾性域にお(プる該ボルトの固有振動数と軸ツノ
との関係特性を利用して塑性域締付時のボルトの軸力を
求めるものであり、緩めた時のボルトの固有振動数を基
準としてこの固有振動数と締(=1時の固有振動数との
差に基づいて塑性域締付時のボルトの軸力を求めるもの
である。
To achieve this objective, the axial force measurement method of the present invention involves tightening the bolt to the plastic region to measure the natural frequency of the bolt, then loosening the bolt to measure the natural frequency of the bolt. After that, the difference between the two natural frequencies is determined, and based on the eye difference, it is determined that the bolt is in the elastic range. The axial force of the bolt is calculated based on the natural frequency of the bolt when loosened, and the difference between this natural frequency and the natural frequency when tightened (= 1). This is to find the axial force of.

以下、本発明について図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

以下の説明では、本発明をエンジンのシリンダヘッドを
ヘッドガスケットを介してシリンダブロックに所定面圧
を保って組付けるために用いられるヘッドボルトに対し
て適用した場合について述べる。
In the following description, a case will be described in which the present invention is applied to a head bolt used for assembling an engine cylinder head to a cylinder block via a head gasket while maintaining a predetermined surface pressure.

先ず、上記ヘッドボルトを該ヘッドボルトが塑性域に至
るまで締付け、この状態で該ヘッドボルトの上端面にワ
セリンを塗布し、超音波式ボルト軸力計の探触子を接触
させてヘッドボルトの固有振動数を測定し、その測定値
をFpとする。
First, tighten the head bolt until it reaches the plastic region. In this state, apply petroleum jelly to the upper end surface of the head bolt, and bring the probe of an ultrasonic bolt axial force meter into contact with it to measure the head bolt. Measure the natural frequency and let the measured value be Fp.

次に、上記ヘッドボルトを緩め、この状態で上記超音波
式ボルト軸力計により再びヘッドボルトの固有振動数を
測定し、その測定値をFo′とづる。ここで、上記両固
有振動数の差(FO’−Fp〉を求めておく。
Next, the head bolt is loosened, and in this state, the natural frequency of the head bolt is measured again using the ultrasonic bolt axial force meter, and the measured value is written as Fo'. Here, the difference (FO'-Fp) between the two natural frequencies is determined.

そしC1弾性域における締付時のヘッドボルトの固有振
動数Fpと軸ノJQとの関係特性を示す上記特性式(I
)[Q−K・(Fo −Fp )/Fo ]における換
幹係数Kを利用して、塑性域における締付時のヘッドボ
ルトの固有振動数Fpと軸力Qとの関係特性を与える特
性式として、 Q=K (Fo ’ −Fp )/Fo ’  ・・・
(IT)を得る。この特性式(T[)により、測定され
た上記固有振動数FO′および上記差(FO’ −Fl
l >をもとに塑性域締イ」時のヘッドボルトの軸)I
Qを求める。
The above characteristic equation (I
) [Q-K・(Fo −Fp )/Fo As, Q=K (Fo' - Fp)/Fo'...
Obtain (IT). Based on this characteristic equation (T[), the measured natural frequency FO' and the difference (FO' −Fl
The axis of the head bolt when tightened in the plastic region based on
Find Q.

すなわち、ヘッドボルトが塑性域に至った場合でも、弾
性域で適用される特性式(I>の線形の関係特性および
換算係数Kをそのまま用いて1qた特性式(II )を
適用して超音波式計測法によって塑性織締イ1時のヘッ
ドボルトの軸力Qを簡単に求めることができる。
In other words, even if the head bolt reaches the plastic region, the characteristic formula (II) applied in the elastic region (I> linear relationship characteristic and conversion factor K of 1q) can be applied to generate ultrasonic waves. The axial force Q of the head bolt at the time of plastic weave tightening A1 can be easily determined by the formula measurement method.

次に、塑性域において上記特性式(II)を適用する根
拠について具体的実施例にj;り説明づる。
Next, the basis for applying the above characteristic formula (II) in the plastic region will be explained using specific examples.

先ず、ヘッドボルトの軸力を測定(るために用いる応力
環1の検定を行う。該応力環1は、第1図85よび第2
図に示すように円環状の本体上下の外周壁内に、ヘッド
ボルトを挿通させる取付穴2゜2が対向して設けられて
いるとともに、本体の左右の外周壁にひずみゲージ3.
3が貼付されたもので、該応力IM 1を引張試験機(
こセットして取付穴2,2の軸心方向に圧縮荷重Wを負
荷し、この荷重Wを変化させた時のびずみεを上記ひず
みゲージ3,3によって測定し、この圧縮荷mWとびず
みεとにより、第3図に示す検定線図を作成する。
First, the stress ring 1 used to measure the axial force of the head bolt is verified.
As shown in the figure, mounting holes 2.2 for inserting head bolts are provided in the upper and lower outer circumferential walls of the annular main body, and strain gauges 3.2 are provided on the left and right outer circumferential walls of the main body.
3 was attached, and the stress IM 1 was measured using a tensile tester (
A compressive load W is applied in the axial direction of the mounting holes 2, 2, and when this load W is changed, the strain ε is measured using the strain gauges 3, and this compressive load mW and the strain ε are The verification diagram shown in FIG. 3 is created by this.

次に、第4図および第5図に示す、軸力が測定されるヘ
ッドボルト4を、第6図に示すように上記応力環1の取
付穴2,2に挿通し応力環1上面から突出したヘッドボ
ルト4の先端を、作業台5上に固定された長ナツト6に
軸力がかからない状態で螺合しておく。この締イ」前の
状態で、上記ヘッドボルト4の上端面にワセリンを塗布
し、超音液式ポル1〜袖力削(図示せず)の探触子を接
触させてヘッドボルト4の固有振動数FOを測定する。
Next, the head bolt 4 whose axial force is to be measured, shown in FIGS. 4 and 5, is inserted into the mounting holes 2, 2 of the stress ring 1 and protrudes from the top surface of the stress ring 1, as shown in FIG. The tip of the head bolt 4 is screwed into a long nut 6 fixed on a workbench 5 without applying any axial force. Before tightening, apply petroleum jelly to the upper end surface of the head bolt 4, and touch the probe of the ultrasonic liquid type POL 1 to Sleeve Force Cutting (not shown) to tighten the head bolt 4. Measure the frequency FO.

次に、ヘッドボルト4をその軸力が0.5tonないし
i、Qton程度になるように締付()、その状態でヘ
ッドボルト4の固有振動数Fpを測定づる。その時、同
時にひずみゲージ3,3によって検出されたびずみεp
を測定し、このひずみεpをもとに第3図の検定線図を
参照して締付時のヘッドボルト4の軸力Qを正確に求め
ておく。
Next, the head bolt 4 is tightened so that its axial force is approximately 0.5 ton to i,Q ton, and in this state, the natural frequency Fp of the head bolt 4 is measured. At that time, the strain εp detected by the strain gauges 3 and 3 at the same time
is measured, and based on this strain εp, the axial force Q of the head bolt 4 at the time of tightening is accurately determined by referring to the verification diagram in FIG.

しかる後、ヘッドボルト4を緩めてその軸ツノを零にし
た状態でヘッドボルト4の固有振動数FO′を測定する
Thereafter, the natural frequency FO' of the head bolt 4 is measured with the head bolt 4 loosened and its shaft horn set to zero.

この後、再びヘッドボルト4をその軸力が前回締付けた
時の軸力よりもQ、5tonないし1.0ton上回る
ように締付けてその締付時の固有振動数「pと軸力Q、
および緩めた時の固有振動数FO′を測定する。以下同
様にして締付時の軸力を増加させながら固有振動数Fp
、Fo’ および軸ツノQを測定する。その結果として
締付時の軸力Qに剣Jる固有振動数の差(Fo −Fp
 )を第7図の特性線aに示す。
After that, tighten the head bolt 4 again so that its axial force exceeds the axial force when it was tightened last time by Q, 5 tons to 1.0 ton, and the natural frequency at the time of tightening is ``p'' and the axial force Q.
and measure the natural frequency FO' when loosened. Similarly, while increasing the axial force during tightening, the natural frequency Fp
, Fo' and axis horn Q are measured. As a result, the difference in natural frequency (Fo - Fp) caused by the axial force Q during tightening is
) is shown in characteristic line a in FIG.

同図によると、締付時のへッドボルl〜4の軸力Qが該
ヘッドボルト4の弾性域に相当する7、2ton未渦で
は、固有振動数の差(FO=Fp )は上記軸力Qに比
例する関係特性を有しており、しかもヘッドボルト4を
緩めるとその固有振動数FO′は締付前の固有振動数F
OまC完全に戻っている。このことにより、弾性域では
上記線形の特性式<I)を適用して締付時のヘッドボル
トの軸力Qを求めることができることが判る。
According to the figure, when the axial force Q of the head bolts 1 to 4 during tightening corresponds to the elastic range of the head bolt 4, in a 7.2 ton non-vortex, the difference in natural frequencies (FO=Fp) is equal to the above axial force. It has a relational characteristic proportional to Q, and when the head bolt 4 is loosened, its natural frequency FO' becomes the natural frequency F before tightening.
OmaC is completely back. From this, it can be seen that in the elastic region, the axial force Q of the head bolt during tightening can be determined by applying the above linear characteristic equation <I).

一方、締付時のヘッドボルト4の軸力Qが7゜2 to
nを超えてヘッドボルト4の塑性域に入ると、固有振動
数の差(Fo−Fp)は上記軸力Qに比例せず、またヘ
ッドボルト4を緩めてもその固有振動数Fθ′は締付前
の固有振動数Foまで戻らない。ここで、第7図中破線
で示した特性wAbは締付前の固有振動数FOと緩めた
時の固有振動数FO′との差(FO−Fo ’ )を各
々締付時のヘッドボルト4の軸力Qに対して示したもの
であるが、この特性線すは塑性域における上記特性線a
の形状に対応した形状を有しており、その伯は、弾性域
における特性maを弾性域での勾配でもってイのまま塑
性域まで延長した一点鎖線で示す仮想特性線a′と特性
線aとの差に等しいことが判る。
On the other hand, the axial force Q of the head bolt 4 during tightening is 7°2 to
When the head bolt 4 exceeds n and enters the plastic region, the difference in natural frequencies (Fo - Fp) is not proportional to the axial force Q, and even if the head bolt 4 is loosened, its natural frequency Fθ' remains unchanged. It does not return to the natural frequency Fo mentioned above. Here, the characteristic wAb shown by the broken line in Fig. 7 is the difference (FO - Fo') between the natural frequency FO before tightening and the natural frequency FO' when loosened. This characteristic line is shown for the axial force Q in the plastic region.
It has a shape corresponding to the shape of It turns out that it is equal to the difference between

このことにより、塑性域においては、締付0・Yの軸力
Qに対する関係特性を、固有振動数の差(Fo −Fp
 )に代えて(Fo’ −Fp )との間に求めれば、
第7図の仮想特性線a′に相当する線形の関係特性が得
られる。その結果、上記関係特性は、特性式(I)にお
いで用いられた換搾係数Kをそのまま用いた特性式(I
I)により表わされるのである。
As a result, in the plastic region, the relational characteristics of tightening 0 and Y with respect to the axial force Q can be determined by the difference in natural frequencies (Fo - Fp
) instead of (Fo' - Fp), we get
A linear relationship characteristic corresponding to the virtual characteristic line a' in FIG. 7 is obtained. As a result, the above relational characteristics can be obtained by using the characteristic formula (I) using the reduction coefficient K used in the characteristic formula (I) as is.
I).

また、第10図は、上記ヘッドボルト4に代えて第8図
おにび第9図に示すヘッドボルト4′に対し−C締イ」
時のヘッドボルトの軸力Qと固有振動数の差(Fo’−
r=p)とに関する上記一連の測定を行った場合の結果
を示したもので、上記ヘッドボルト14にJ:る場合と
同様の関係特性を示していることが判る。
In addition, in FIG. 10, the head bolt 4' shown in FIG. 8 and FIG. 9 is tightened by −C instead of the head bolt 4 mentioned above.
The difference between the axial force Q of the head bolt and the natural frequency (Fo'-
This figure shows the results of the above-mentioned series of measurements regarding r=p), and it can be seen that the same relational characteristics as in the case where the head bolt 14 is J: are shown.

尚、上記実施例ではヘッドボルトの固有振動数の各測定
値FO’、Fpをもとに特性式(II)によって塑性域
締付時のヘッドボルトの軸力Qを求めるようにしたが、
上記各測定(lIffFo’、Fpをもとに上記軸力Q
との固有振動数の差(FO’−Fp)との間の特性線を
参照して求めるようにしてもよい。
In the above embodiment, the axial force Q of the head bolt at the time of tightening in the plastic region is determined by the characteristic formula (II) based on the measured values FO' and Fp of the natural frequencies of the head bolt.
Based on the above measurements (lIffFo', Fp), the above axial force Q
It may be determined by referring to a characteristic line between the difference in natural frequencies (FO'-Fp) and the difference in natural frequency (FO'-Fp).

また、本発明は、上記実施例の如きヘッドボルトへの適
用の他に、塑性域に至るまで締付りられるボルトに対し
て広く適用することができるのは言うまでもない。
Furthermore, it goes without saying that the present invention can be widely applied to bolts that are tightened to the plastic range, in addition to being applied to head bolts such as those in the above-mentioned embodiments.

以上説明したように、本発明によれば、塑性域まで締付
けられたボルトに対し、その締付時の固有振動数と緩め
た後の固有振動数との差をもとに弾性域における上記ボ
ルトの固有振動数と軸力との関係特性を利用して塑性域
締イ」時のボルトの軸力を求めるものであるので、線形
の関係特性を用いた超音波式計測法によって塑性域まで
締付けられたボルトの軸力を簡単に求めることができる
As explained above, according to the present invention, for a bolt that has been tightened to the plastic region, the bolt in the elastic region is determined based on the difference between the natural frequency at the time of tightening and the natural frequency after loosening. This method uses the relationship between the natural frequency and axial force to find the axial force of the bolt when tightening in the plastic region, so it is possible to tighten the bolt to the plastic region using the ultrasonic measurement method that uses the linear relationship. The axial force of the bolt can be easily determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図J5よび第2図は応力環を示す図、第3図は応ツ
ノ環の検定線図、第4図および第5図はへッドボル1〜
を示す−図、第6図はへッドボル1〜の固有振′#I数
45よび軸力の測定状態を示づ一側面図、第7図はヘッ
ドボルトにおける締付時の軸力と固イi振動数の差との
測定結果図、第8図および第9図は別のヘッドボルトを
示1図、第10図は別のヘッドボルトにおける測定結果
を示す第7図相当図でdうる。 4.4′・・・ヘッドボルト、7・・・探触子。 第1図 204− 第2図 第3図 (xl +r’) 荷  重  W 第7図
Fig. 1 J5 and Fig. 2 are diagrams showing stress rings, Fig. 3 is a verification line diagram of the stress ring, Fig. 4 and Fig. 5 are diagrams showing the stress ring.
Fig. 6 is a side view showing the measurement state of the natural vibrations and axial force of the head bolts 1 to 1, and Fig. 7 shows the axial force and stiffness during tightening of the head bolts. Figures 8 and 9 are diagrams showing the measurement results for the difference in vibration frequency, Figure 1 shows another head bolt, and Figure 10 is a diagram equivalent to Figure 7 showing the measurement results for another head bolt. 4.4'... Head bolt, 7... Probe. Figure 1 204- Figure 2 Figure 3 (xl + r') Load W Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)  ポル1〜を塑性域まで締付(ブて該ポル1〜
の固有振動数を測定し、次に上記ボルトを緩めて該ボル
トの固有振動数を測定し、その後、上記両固有振動数の
差を求め、眼差をもとに弾性域における上記ボルトの固
有振動数と軸力との関係特性を利用して塑性域締付時の
ボルトの軸力を求めることを特徴とづ−る塑性域締付ボ
ルトの軸力測定法。
(1) Tighten the ports 1~ to the plastic region (but tighten the ports 1~
Measure the natural frequency of the bolt, then loosen the bolt and measure the natural frequency of the bolt, then find the difference between the two natural frequencies, and calculate the natural frequency of the bolt in the elastic range based on the eye difference. A method for measuring the axial force of bolts tightened in the plastic region, which is characterized by determining the axial force of the bolt in the plastic region tightening using the relationship between vibration frequency and axial force.
JP2026683A 1983-02-08 1983-02-08 Axial force measuring method of plastic region clamping bolt Granted JPS59145939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026683A JPS59145939A (en) 1983-02-08 1983-02-08 Axial force measuring method of plastic region clamping bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026683A JPS59145939A (en) 1983-02-08 1983-02-08 Axial force measuring method of plastic region clamping bolt

Publications (2)

Publication Number Publication Date
JPS59145939A true JPS59145939A (en) 1984-08-21
JPH037250B2 JPH037250B2 (en) 1991-02-01

Family

ID=12022386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026683A Granted JPS59145939A (en) 1983-02-08 1983-02-08 Axial force measuring method of plastic region clamping bolt

Country Status (1)

Country Link
JP (1) JPS59145939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126002A (en) * 1984-07-17 1986-02-05 Hoya Corp Production for condensing distributed index rod lens array
KR100569106B1 (en) 2004-07-06 2006-04-07 현대자동차주식회사 Apparatus for checking deformation for plastic bolt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560242B2 (en) * 2001-06-13 2010-10-13 西日本金網工業株式会社 Greening for hard steep slope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126002A (en) * 1984-07-17 1986-02-05 Hoya Corp Production for condensing distributed index rod lens array
KR100569106B1 (en) 2004-07-06 2006-04-07 현대자동차주식회사 Apparatus for checking deformation for plastic bolt

Also Published As

Publication number Publication date
JPH037250B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
CN109781332A (en) Method based on axle power and elongation control bolt pretightening
CN109668672A (en) Ultrasonic bolt pre-tightens force measuring method
Hubbard Crack growth under cyclic compression
CN107421677B (en) Device and method for monitoring axial force of shield tunnel joint bolt
CN106768584A (en) A kind of aero-engine low-pressure turbine reel fastening force detection method and device based on line laser displacement transducer group
US2413797A (en) Fastening device
CN110658129A (en) Device for testing total friction coefficient of threaded fastener
KR101450253B1 (en) Method for Evaluation of Nut Lossening
JPH02118209A (en) Screw fixture and manufacture thereof
JP2007102589A (en) Design method for screw fastening element
Kirk et al. The failure of torispherical ends of pressure vessels due to instability and plastic deformation—an experimental investigation
JPS59145939A (en) Axial force measuring method of plastic region clamping bolt
Su et al. A simplified residual stress model for predicting fatigue crack growth behavior at coldworked fastener holes
CN112710423B (en) Method for measuring and evaluating clamping force of engine key bolt after test
CN212645940U (en) Bolt axial stress measuring device based on ultrasonic wave
US6314817B1 (en) Method for tightening a threaded fastener above its yield point
Batte et al. A comparison of the J* integral with other methods of post yield fracture mechanics
GB2621519A (en) Ultrasonic probe for on-line measurement of axial force of high-temperature bolt
CN205449358U (en) Answer modification torque sensor with from function of decoupling
Blatherwick et al. Stress redistribution in notched specimens during fatigue cycling: Purpose of this work was to investigate the change in stress distribution resulting from a variation in the cyclic modulus
WO1997025852A3 (en) Ultrasound method for measuring the characteristics of stress-deformed bolt and pin joints
CN109470472A (en) A kind of shaft coupling failure measuring method
JP2001174343A (en) Measuring method and measuring device for bolt axial tension
CN117077441A (en) Bolt axial stress double-wave calculation method
CN218156648U (en) In-situ calibrator for ultrasonic bolt pretightening force measurement