JPS59144799A - Purification of coenzyme a - Google Patents

Purification of coenzyme a

Info

Publication number
JPS59144799A
JPS59144799A JP1608483A JP1608483A JPS59144799A JP S59144799 A JPS59144799 A JP S59144799A JP 1608483 A JP1608483 A JP 1608483A JP 1608483 A JP1608483 A JP 1608483A JP S59144799 A JPS59144799 A JP S59144799A
Authority
JP
Japan
Prior art keywords
coa
coenzyme
water
resin
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1608483A
Other languages
Japanese (ja)
Other versions
JPS648000B2 (en
Inventor
Shoichi Izumiya
和泉屋 正一
Yoshitami Ohashi
大橋 良民
Sadao Jinbo
神保 貞夫
Jun Matsumoto
潤 松本
Ryuji Yamaguchi
山口 龍治
Tokio Kobayashi
小林 時夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakamoto Pharmaceutical Co Ltd
Original Assignee
Wakamoto Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakamoto Pharmaceutical Co Ltd filed Critical Wakamoto Pharmaceutical Co Ltd
Priority to JP1608483A priority Critical patent/JPS59144799A/en
Publication of JPS59144799A publication Critical patent/JPS59144799A/en
Publication of JPS648000B2 publication Critical patent/JPS648000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:The purification of coenzyme A with industrial advantage is effected by adsorption of coenzyme A on a nonionic exchanging porous resin in an acidic aqueous solution of a specific pH followed by elution with water or a solvent of a specific pH. CONSTITUTION:Coenzyme A adsorbed on a nonionic exchanging porous resin in an aqueous solution of less than 2pH is eluted with water or an aqueous organic solvent of 3 to 7pH. EFFECT:The process of the present invention enables almost complete and rapid removal of impurities such as pigments or nucleic acids by use of a smaller amount of resin. Desalting process is unnecessary and no decomposition takes place during the concentration of coenzyme A.

Description

【発明の詳細な説明】 本発明はコエンザイムA(以下CoAと略記する)の精
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying coenzyme A (hereinafter abbreviated as CoA).

CoAは1945年Lipmaru1らが7 セf /
l/基転移因子の検索過程において、その研究の端を発
し。
CoA was published in 1945 by Lipmaru1 et al.
The research began in the process of searching for l/transposition elements.

すでに四半世紀が過ぎた歴史的富貴な有機化合物である
It is a historically rich organic compound that has already been around for a quarter of a century.

CoAは生体にとって重要な物質であり2例えば、糖お
よび脂質代謝、ステロイドおよびカロチノイドの生合成
などに重要な役割を果していることは周知の通りであり
、その多彩な生理作用により代謝障害改善剤等の医薬品
として期待される化合物である。
CoA is an important substance for living organisms, and it is well known that it plays an important role in, for example, sugar and lipid metabolism, and the biosynthesis of steroids and carotenoids. Due to its various physiological actions, it is used as an agent for improving metabolic disorders, etc. It is a compound that is expected to be used as a drug.

CoAは微生物体内や動物組織内(二微量存在するが、
工業的には通常微生物の醗酵により製造される。
CoA exists in microorganisms and animal tissues (although it exists in trace amounts,
Industrially, it is usually produced by microbial fermentation.

醗酵濾液又は菌体から純粋なCoAを分離精製するため
には種々の不純物を除去する必要がある。
In order to separate and purify pure CoA from fermentation filtrate or bacterial cells, it is necessary to remove various impurities.

従来、  CoAの精製法としては金属イオン等による
沈殿法、有機溶媒による沈殿法、活性炭による吸脱着法
、アンバーライトIRA−401、DEAEセファデッ
クス、QAEセファデックス等によるアニオン交換樹脂
法、アフィニティークロマトグラライによる方法、さら
には非イオン交換樹脂例えば、アンバーライ) XAD
−2、ダイヤイオン1(P−20等による分配型クロマ
トグラフィーによる方法等が知られている。
Conventionally, CoA purification methods include precipitation using metal ions, precipitation using organic solvents, adsorption/desorption using activated carbon, anion exchange resin using Amberlite IRA-401, DEAE Sephadex, QAE Sephadex, etc., and affinity chromatography. method, and even non-ion exchange resins such as Amberly) XAD
-2, a method using partition chromatography using Diaion 1 (P-20, etc.) is known.

しかしながら、これら従来の方法は一般に多量の有機溶
媒を必要としたり、多量のクロマト用担体を必要とした
り、また溶出液に塩類等を用いるので脱塩濃縮が必要と
なり、さらには。
However, these conventional methods generally require a large amount of organic solvent, a large amount of chromatographic carrier, and use salts in the eluent, which requires desalting and concentration.

用いた樹脂量に対する溶出液量が厖大となり。The amount of eluate compared to the amount of resin used was enormous.

不安定なCoAを取扱うには数々の問題を残している。Many problems remain in dealing with unstable CoA.

非イオン交換性の多孔性樹脂を利用するCoAの精製法
に関しては1本発明者の一人小林時夫等の発明した方法
(特開昭56−251.99号)が知られているが、こ
の方法は明細書に[粗製CoAをpH2〜7.好ましく
はpH3〜5の水溶液とし。
As for a CoA purification method using a non-ion exchange porous resin, a method invented by Tokio Kobayashi et al. The method is described in the specification [crude CoA at pH 2-7. Preferably, it is an aqueous solution with a pH of 3 to 5.

樹脂12当り粗製CoA約10り以下の比率でカラムに
入れ、これをF■3〜5の水で比速度03以下で展開溶
出する」旨記載されているように。
The column is charged with a ratio of about 10 parts or less of crude CoA per 12 parts of resin, and the column is developed and eluted with F1 water of 3 to 5 at a specific velocity of 03 or less.'

分配型のクロマトグラフィ〜に関するものである。This relates to partition-type chromatography.

これに対し2本発明者等は、  CoAが化学構造」二
、3個のリン酸エステル基、末端チオール基及びアデニ
ン部分の6位にアミノ基を有することに着目し、これら
解離基の解離を出来るだけおさえ、  CoA分子全体
の疎水性を高めることによって、樹脂への吸着量を増加
させる方法を検討した結果、pH2以下の酸性水溶液中
に於いて。
In contrast, the present inventors focused on the fact that CoA has a chemical structure of two or three phosphate ester groups, a terminal thiol group, and an amino group at the 6-position of the adenine moiety, and investigated the dissociation of these dissociative groups. As a result of investigating a method of increasing the amount of CoA adsorbed to the resin by increasing the hydrophobicity of the entire CoA molecule as much as possible, we found that in an acidic aqueous solution with a pH of 2 or less.

CoAの樹脂に対する吸着量が著しく増加し、主要不純
物の核酸類や色素が殆んど吸着しないことを見出した。
It was found that the amount of CoA adsorbed on the resin increased significantly, and that the main impurities, nucleic acids and pigments, were hardly adsorbed.

即ち本発明は、「コエンザイムAをpf(2以下の酸性
水溶液中で非イオン交換性の多孔性樹脂に吸着させ、吸
着したコエンザイムAをメーI3乃至中性の水又は含水
有機溶媒で溶出することを特徴とするコエンザイムAの
精製方法」に関するものである。
That is, the present invention is directed to "adsorbing coenzyme A to a non-ion exchange porous resin in an acidic aqueous solution with a pf of 2 or less, and eluting the adsorbed coenzyme A with water or a water-containing organic solvent ranging from MeI3 to neutral water. A method for purifying coenzyme A characterized by the following.

本発明方法はブレビバクテリウム・アンモニアゲネスI
AM1641(微工研菌寄第1471号)等のCoA産
生微生物の醗酵濾液や粗製CoAを精製する場合に、従
来法(特開昭56−25199号)に比較して、樹脂使
用量が約吉以下2通液スピードが約10倍の一回操作で
色素やアデノシンモノホスフェート(以下AMPという
)、アデノシンジホスフェート(以下ADPという)、
アデノシントリホスフェート(以下ATPという)等の
核酸類不純物をほぼ完全に除去し得るという格別優れた
特徴を有するが、一方で色素や核酸類以外の不純物例え
ば酸化型CoA 、デポスホCoA等の分離性が劣るた
め一回の操作でただちに高純度品を得るための方法とし
ては適当でない。
The method of the present invention uses Brevibacterium ammoniagenes I
When purifying the fermentation filtrate or crude CoA of CoA-producing microorganisms such as AM1641 (Feikoken Bacterial Serial No. 1471), the amount of resin used is approximately The following 2 liquid passage speeds are approximately 10 times faster in a single operation: dyes, adenosine monophosphate (hereinafter referred to as AMP), adenosine diphosphate (hereinafter referred to as ADP),
It has an exceptional feature of being able to almost completely remove nucleic acid impurities such as adenosine triphosphate (hereinafter referred to as ATP), but on the other hand, it is difficult to separate impurities other than dyes and nucleic acids such as oxidized CoA and depo-CoA. Because of its inferiority, it is not suitable as a method for immediately obtaining a high-purity product in a single operation.

高純度品は通常予備精製された粗製CoAを出発原料と
してイオン交換クロマト法又はゲル濾過法により精製す
ることにより製造されている。
High-purity products are usually produced by using prepurified crude CoA as a starting material and purifying it by ion exchange chromatography or gel filtration.

本発明は、醗酵濾液より粗製CoAを得るための予備精
製法又は粗製CoAより色素及び核酸類を除去するため
の精製法として工業的に極めて優れた方法を提供するも
のである。
The present invention provides an industrially excellent method as a preliminary purification method for obtaining crude CoA from a fermentation filtrate or as a purification method for removing pigments and nucleic acids from crude CoA.

本発明を好適に実施するためには、非イオン交換性の多
孔性樹脂をカラムに充填し、pH2以下好ましくは1.
8の酸性水(希塩酸などで調整)を通塔して充分平衡化
し、これに同−pHの醗酵濾液又は粗製CoA水溶液を
比速度(SV)3.5程度の一定速度で通液する。通液
後間−声の酸性水で洗浄した後、pH3乃至中性の水又
は含水有機溶媒で吸着したCoAを溶出する。
In order to suitably carry out the present invention, a column is filled with a non-ion exchange porous resin, and the pH is 2 or less, preferably 1.
8 acidic water (adjusted with dilute hydrochloric acid, etc.) is passed through the column to achieve sufficient equilibration, and the fermentation filtrate or crude CoA aqueous solution having the same pH is passed through the column at a constant specific velocity (SV) of about 3.5. After passing through the solution, it is washed with acidic water, and then the adsorbed CoA is eluted with water having a pH of 3 to neutral or a water-containing organic solvent.

本発明によれば、12の樹脂で約50mgまでのCoA
を処理することが出来る。
According to the present invention, up to about 50 mg of CoA in 12 resins
can be processed.

醗酵濾液を処理する場合は、共存する酸化型CoAは粗
製CoA中に混合物として採取される。
When processing the fermentation filtrate, the coexisting oxidized CoA is collected as a mixture in the crude CoA.

粗製CoAを処理する場合は、あらかじめ酸化型CoA
を還元しておくのが望ましい。
When processing crude CoA, oxidized CoA must be prepared in advance.
It is desirable to return the

本発明によれば、溶出液として微酸性の水又は含水有機
溶媒を用いるため、脱塩工程など繁雑な操作が不要であ
り、溶出液を低温濃縮もしくは凍結乾燥で効率良く濃縮
できるため、  COA濃縮工程での分解は殆んど起こ
らない。
According to the present invention, since slightly acidic water or a water-containing organic solvent is used as the eluent, there is no need for complicated operations such as a desalting step, and the eluate can be efficiently concentrated by low temperature concentration or freeze drying. Almost no decomposition occurs during the process.

使用後の非イオン交換性の多孔性樹脂はアセトン水、メ
タノール水などの含水有機溶媒で簡単に再生出来、繰返
し再利用出来る。
After use, the non-ion exchange porous resin can be easily regenerated with a water-containing organic solvent such as acetone water or methanol water, and can be reused repeatedly.

次に1本発明の詳細な説明するため、試験例を示す。Next, in order to explain the present invention in detail, test examples will be shown.

試験例  CoA及び核酸類のHP−20樹脂に対する
吸着性に及ぼすpHの影響 (1)  試験方法 FOP−20樹脂700〜(2,5m/)を蒸留水に分
散させ、これを希塩酸で所定pi((1,5,2,0,
3,0,5,0及び60)に平衡化されるよう調整し、
併わせて液量を5−に調整した。
Test Example Effect of pH on Adsorption of CoA and Nucleic Acids to HP-20 Resin (1) Test Method FOP-20 resin 700 ~ (2.5 m/) is dispersed in distilled water, and diluted with dilute hydrochloric acid to a specified pi ( (1, 5, 2, 0,
3,0,5,0 and 60),
At the same time, the liquid volume was adjusted to 5-.

各pHに平衡化された樹脂分散液に、それぞれ同−田の
蒸留水で濃度10%に溶解したAMP。
AMP was dissolved at a concentration of 10% in each pH-equilibrated resin dispersion with distilled water from the same field.

ADP、ATP及びCoAの溶液0.5−を添加し、1
0分間激しく振盪し、1時間静置後上澄みの未吸着成分
を定量し、各成分のそれぞれのpHに於ける吸着率を求
めた。
Add 0.5- solution of ADP, ATP and CoA, 1
After shaking vigorously for 0 minutes and standing still for 1 hour, the amount of unadsorbed components in the supernatant was determined, and the adsorption rate of each component at each pH was determined.

(2)試験結果 本試験の結果は第1表に示す通りであり、HP−20樹
脂に対し、 pH2以下の水溶液中でCoAは非常に高
い吸着性を示すが、pHが中性に近付くにつれて溶出が
起ることが認められた。
(2) Test results The results of this test are shown in Table 1. CoA shows very high adsorption to HP-20 resin in an aqueous solution with a pH of 2 or less, but as the pH approaches neutrality, It was observed that elution occurred.

これに対し、核酸類のATPとADPは全く吸着せず、
A、MPは若干吸着するが CoAに比較しく7) 次に本発明の実施態様を具体的に説明するたてその吸着
率はp)11.5の場合20/94.  pH2,0の
場合11/76と著しく低い値を示した。
On the other hand, ATP and ADP of nucleic acids do not adsorb at all,
A, MP is slightly adsorbed, but compared to CoA7) Next, the embodiment of the present invention will be specifically explained.The adsorption rate is 20/94 for p)11.5. In the case of pH 2.0, it showed a significantly low value of 11/76.

第1表 備考 ■ CoAは高速液体クロマトグラフィーにより定量し
た。
Table 1 Notes ■ CoA was determined by high performance liquid chromatography.

カラム:ウォーターズ社製マイクロボンダパック018 移動相:0.005M硫酸テトラ−n−ブチルアンモニ
ウムを含む0.075M!Jン酸緩衝液とアセトニトリ
ルの混液(4:1) ■ 核酸類は260nmの吸光度により定量した。
Column: Microbondapak 018 manufactured by Waters Mobile phase: 0.075M containing 0.005M tetra-n-butylammonium sulfate! Mixture of J acid buffer and acetonitrile (4:1) (4) Nucleic acids were quantified by absorbance at 260 nm.

(8) 氷晶は、還元型CoAとして純度30チ、工程間実施例
1゜ ブレビバクテリウム・アンモニャゲネスT、A、M−1
641株の醗酵濾液2(10ml (CoA 1.3m
9/−を含む)を3規定塩酸水でpH1,8に調整して
おく。
(8) The ice crystals had a purity of 30% as reduced CoA, and interprocess example 1° Brevibacterium ammoniagenes T, A, M-1.
Fermentation filtrate 2 of 641 strains (10ml (CoA 1.3m
9/-) to pH 1.8 with 3N hydrochloric acid.

一方、あらかじめ準備したダイヤイオント(P−20樹
脂50−をガラス製カラム(直径1.8 cm、高さ4
9m)へ蒸留水で充填し、その後pH1,8の塩酸水で
充分平衡化しておく。先の酸性に調整した醗酵濾液を5
V=3.5で通液後、 pH2,0の塩酸水150−で
充分洗滌して、300fn1.の50q6メタノール水
で溶出した。
On the other hand, the previously prepared diamond iont (P-20 resin 50-) was placed in a glass column (diameter 1.8 cm, height 4 cm).
9m) with distilled water, and then sufficiently equilibrated with hydrochloric acid water of pH 1.8. The fermentation filtrate adjusted to acidity was
After passing through the solution at V=3.5, it was thoroughly washed with 150-hydrochloric acid solution having a pH of 2.0, and was heated to 300 fn1. It was eluted with 50q6 methanol water.

CoAを含む各溶出フラクションを薄層クロマトグラフ
ィーおよび高速液体クロマトグラフィーで検出し、主分
画160コを集め、1規定の苛性ソーダでpi(3,0
に調整後、40℃以下でメタノールを回収し、凍結乾燥
すると823りの粗物質が得られた。
Each eluted fraction containing CoA was detected by thin layer chromatography and high performance liquid chromatography, and 160 main fractions were collected and diluted with 1N caustic soda at pi (3,0
After adjusting the methanol to 40° C. or below, methanol was recovered and freeze-dried to obtain 823 crude materials.

実施例2゜ 粗物質1.03 F (還元型CoA 39.3 %を
含有)を蒸留水2−に溶解後、1規定の苛性ソーダでβ
(7,0に調整後、チオグリセロール03−を加えて、
窒素ガスを封入して室温で1夜放置して還元を行った。
Example 2 After dissolving 1.03 F of crude material (containing 39.3% reduced CoA) in distilled water, β was dissolved with 1N caustic soda.
(After adjusting to 7.0, add thioglycerol 03-,
The mixture was sealed with nitrogen gas and left overnight at room temperature to carry out reduction.

還元終了後5℃に冷却したアセトン20−を加え生じた
黄白色沈殿物を冷却遠心分離して1?(純度393%)
の還元型CoAを得た。上記粗物質を蒸留水50tnt
に溶解後、1規定塩酸水でpH1,8に調整しておく。
After the reduction was completed, 20°C of acetone was cooled to 5°C, and the resulting yellow-white precipitate was cooled and centrifuged. (purity 393%)
Reduced CoA was obtained. The above crude substance was mixed with 50 tons of distilled water.
After dissolving in water, adjust the pH to 1.8 with 1N hydrochloric acid.

一方、あらかじめ準備したダイヤイオンHP−20樹脂
50−をガラス製カラム(直径1.8crn+ 高さ3
80)へ水で充填後、 pH1,8の塩酸水で充分平衡
化しておく。
On the other hand, a glass column (diameter 1.8 crn + height 3
After filling the tank (80) with water, equilibrate it thoroughly with hydrochloric acid water with a pH of 1.8.

先のCoAを含む酸性溶液を流速5V=3.5で通液後
、 pH2,0の塩酸水100−で充分洗滌して蒸留水
400−で溶出した。
After passing the above-mentioned acidic solution containing CoA at a flow rate of 5V=3.5, it was thoroughly washed with 100% hydrochloric acid solution having a pH of 2.0, and eluted with 400% distilled water.

CoAを含む各溶出フラクションを薄層クロマトグラフ
ィーおよび高速液体クロマトグラフィーで検出し、主分
画360−を集め、1規定の苛性ソーダでpH3,0に
調整後、凍結乾燥すると400〜の淡黄白色の粉末が得
られた。
Each eluted fraction containing CoA was detected by thin layer chromatography and high performance liquid chromatography, and the main fraction 360- was collected, adjusted to pH 3.0 with 1N caustic soda, and then lyophilized to give a pale yellowish white fraction with a pH of 400~. A powder was obtained.

水晶は、還元型CoAとして純度65.0%、工程間収
率66.2チであった。
The crystal had a purity of 65.0% as reduced CoA and an inter-process yield of 66.2%.

特許出願人 わかもと製薬株式会社 944−patent applicant Wakamoto Pharmaceutical Co., Ltd. 944-

Claims (1)

【特許請求の範囲】[Claims] コエンザイムAをpH2以下の酸性水溶液中で非イオン
交換性の多孔性樹脂に吸着させ、吸着したコエンザイム
AをpH3乃至中性の水又は含水有機溶媒で溶出するこ
とを特徴とするコエンザイムAの精製方法。
A method for purifying coenzyme A, which comprises adsorbing coenzyme A on a non-ion exchange porous resin in an acidic aqueous solution with a pH of 2 or less, and eluting the adsorbed coenzyme A with water or a water-containing organic solvent with a pH of 3 or neutral. .
JP1608483A 1983-02-04 1983-02-04 Purification of coenzyme a Granted JPS59144799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1608483A JPS59144799A (en) 1983-02-04 1983-02-04 Purification of coenzyme a

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1608483A JPS59144799A (en) 1983-02-04 1983-02-04 Purification of coenzyme a

Publications (2)

Publication Number Publication Date
JPS59144799A true JPS59144799A (en) 1984-08-18
JPS648000B2 JPS648000B2 (en) 1989-02-10

Family

ID=11906675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1608483A Granted JPS59144799A (en) 1983-02-04 1983-02-04 Purification of coenzyme a

Country Status (1)

Country Link
JP (1) JPS59144799A (en)

Also Published As

Publication number Publication date
JPS648000B2 (en) 1989-02-10

Similar Documents

Publication Publication Date Title
JPH07252291A (en) Purification of anthracyclinone glycoside
US3450712A (en) Method for isolating tryptophan
JPH0645626B2 (en) How to collect ceftazidime
JPS59144799A (en) Purification of coenzyme a
JPH07113024B2 (en) Method for purifying pyrroloquinoline quinone
JPS6119485A (en) Adsorbent for protease
WO2001030796A1 (en) A process for preparing acarbose with high purity
JP3315158B2 (en) Glutathione purification method
PT100755B (en) PROCESS FOR PURIFYING PENTOSTATIN
JPS635039B2 (en)
JPS62242692A (en) Production of moranoline derivative
JPH06345683A (en) Purification of pyruvic acid
JPS6337635B2 (en)
JPH0372638B2 (en)
JPS62108898A (en) Purification of nicotinamide adenine dinuclelotide (nad)
JPS61115093A (en) Production of moranoline derivative
JPS6127999A (en) Method for purifying glutathione
JPS604168A (en) Crystallization of tryptophan
JPH0283394A (en) Purification of s-adenosyl-l-homocystein
JP2971128B2 (en) Purification method of mitomycin C
CN117964672A (en) Macroporous adsorption resin separation and purification method for beta-nicotinamide mononucleotide
JPS63222200A (en) Production of avidin
JPS62246573A (en) Method for purifying pyrroloquinolinequinone
JPS604155A (en) Separation of l-leucine and l-isoleucine
SU1392902A1 (en) Method of extracting and purifying bacterial endonuclease from cultural serratia marcescens