JPS59144591A - Filler for welding ultrahigh tension steel - Google Patents

Filler for welding ultrahigh tension steel

Info

Publication number
JPS59144591A
JPS59144591A JP1624483A JP1624483A JPS59144591A JP S59144591 A JPS59144591 A JP S59144591A JP 1624483 A JP1624483 A JP 1624483A JP 1624483 A JP1624483 A JP 1624483A JP S59144591 A JPS59144591 A JP S59144591A
Authority
JP
Japan
Prior art keywords
filler
welding
strength
weld metal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1624483A
Other languages
Japanese (ja)
Inventor
Kazuhisa Suzuki
和久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1624483A priority Critical patent/JPS59144591A/en
Publication of JPS59144591A publication Critical patent/JPS59144591A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide a filler for welding ultrahigh tension steel which prevents the formation of coarse grains in the weld metal structure and improves a joint effect by incorporating Co in said filler in the content larger by a specific amt. than in the base metal. CONSTITUTION:A filler for welding ultrahigh tension steel is a filler for welding ultrahigh tension maraging steel base metal consisting essentially of 17- 19% Ni, 8-12% Co, 4-6% Mo and 0.4-1.8% Ti and has the compsn. consisting essentially of 17-19% Ni, 9-20% Co, 4-6% Mo and 0.4-1.8% Ti in which the content of Co is increased by 1-8% than in said base material. If such filler is used, the decrease in the strength owing to the formation of corse grains in the weld metal structure is prevented, by which the joint effect is improved by 100% and a full advantage is developed for the ultrahigh tension steel. Such filler is applicable to a space developing rocket, ocean developing equipment and apparatus, equipment and apparatus for nuclear power, etc.

Description

【発明の詳細な説明】 本発明は超高力鋼溶接用充塀材に関し、特に溶接金属組
織の粗大化防止を図り、継手効率を100係とすること
のできる上記充填材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filler for welding ultra-high strength steel, and more particularly to the filler described above, which can prevent coarsening of the weld metal structure and achieve a joint efficiency of 100.

宇宙、海洋開発、原子力等の分野で強度150〜250
Kfltwm級の超高張力マルエージング鋼が応用され
ている。
Strength 150-250 in fields such as space, ocean development, nuclear power, etc.
Kfltwm class ultra-high tensile strength maraging steel is applied.

その母材の主成分はN117〜19チ、C08〜12%
、Mo4〜6s、Tio4〜1.8%で、強度に応じて
Co、  Mo、  Ti等の添加量を変え、所定の強
度を得ている1、 その溶接に当っては、母材と同材質(共金)を充填材と
してアーク溶接するか、或は充填材を用いないでエレク
トロンビーム溶接を行うなどの方式がとられている、そ
のために、母材部は調質され細粒化組織になり、充分な
強度、延性、靭性が得られていても、溶接継手部は溶接
熱による組織の粗大化や溶接金属特有の柱状晶組織を呈
し、強度、延性、靭性が劣るので、市むなく継手効率を
80〜90%にせざるを得す、折角の超高張力鋼の利点
を充分に発揮できない、強度150〜250 Kg /
 tan2級の超高張力マルエージング鋼は表1上段に
示すような主要成! 分のものが用いられ、要求強度に応じてCo。
The main components of the base material are N117-19% and C08-12%.
, Mo4~6s, Tio4~1.8%, and the amount of added Co, Mo, Ti, etc. is changed according to the strength to obtain the specified strength1.For welding, the same material as the base material is used. Methods such as arc welding using (common metal) as a filler or electron beam welding without using a filler are used.For this purpose, the base metal is tempered and has a fine-grained structure. Therefore, even if sufficient strength, ductility, and toughness are obtained, the welded joint will coarsen its structure due to welding heat and exhibit a columnar crystal structure peculiar to weld metal, resulting in poor strength, ductility, and toughness. The joint efficiency has to be 80-90%, and the advantages of ultra-high tensile steel cannot be fully utilized, and the strength is 150-250 kg/
Tan2 grade ultra-high tensile strength maraging steel has the main components shown in the upper row of Table 1. Co is used depending on the required strength.

Mo、Ti  の含有量を変えて所定の強度を得ている
、例えば、200〜/燗2の要求強度に対しては表1下
段に示すような成分のものが用いられ、その時の母材の
機械的性質は1例として表2に示すような特性をもつ。
For example, for the required strength of 200~/kan2, the composition shown in the lower part of Table 1 is used, and the content of Mo and Ti is changed to obtain a predetermined strength. As an example, the mechanical properties are as shown in Table 2.

すなわち200 K9/閲2以上の引張強度と、9チ前
後の伸び率、200以上のに、O値、約3 Kq−m/
cn?のVHO値を示す。
In other words, it has a tensile strength of 200 K9/cm2 or more, an elongation rate of around 9 inches, an O value of about 3 Kq-m/
cn? shows the VHO value of

表    1 表2 溶体化処理 850℃×1h(A、c)時効]Q  4
so℃xsh(A、a)このマルエージング鋼を用いて
構造物を製作するには、溶接により接合され組立てられ
る。
Table 1 Table 2 Solution treatment 850°C x 1h (A, c) aging] Q 4
so°C xsh (A, a) To fabricate a structure using this maraging steel, it is joined and assembled by welding.

この場合、第1図に示すように被接合材1.を突合せた
11充填材を用いることなく表5上段に示す条件でエレ
クトロンビーム溶接するか、あるいは第2図に示すよう
に被溶接材1に開先をとシ、母材と同成分の充填材(共
金充填材)を用いて表3下段に示す条件でT工G溶接を
行う等の方法がとられる。
In this case, as shown in FIG. Electron beam welding is performed under the conditions shown in the upper row of Table 5 without using a filler, or by cutting a groove in the welded material 1 as shown in Figure 2 and using a filler with the same composition as the base material. A method such as performing T-welding using (common metal filler) under the conditions shown in the lower row of Table 3 is used.

表   3 このようにして接合された溶接継手部は、溶°接の熱影
響によって金属組織が粗大化し、また溶接金桝特有の柱
状晶組織を呈するので、時効処理を行っても所定の強度
、延性、靭性が得られない入これを確認した際の実験結
果を表4に示すっ なお、表4中の充填材A、B、(、、Dは表5に示すも
のである。また、被溶接材としては一表1下段に示すマ
ルエージング鋼を用いた。
Table 3 The metal structure of the welded joint joined in this way becomes coarse due to the thermal effects of welding, and it also exhibits a columnar crystal structure peculiar to welding holes, so even after aging treatment, it will not maintain the specified strength or strength. Table 4 shows the experimental results to confirm that ductility and toughness cannot be obtained. Maraging steel shown in the lower row of Table 1 was used as the welding material.

表   4 表    5 溶体化処理  850℃X1h(A、C)時効処理 4
50℃X5h (A、O)表4から明らかなようti、
rl、zのものは表2に示す母材の機械的性質に比し、
引張強さは母材の85〜95係に低下し、また隘3〜5
のものは伸び、絞シが低下する。従って、継手効率は8
0〜90チにしか取ることができなかった。
Table 4 Table 5 Solution treatment 850°C x 1h (A, C) Aging treatment 4
50℃×5h (A, O) As is clear from Table 4, ti,
Compared to the mechanical properties of the base material shown in Table 2, those with rl and z have
The tensile strength is lowered to 85-95 of the base material, and 3-5
The material stretches and the shrinkage decreases. Therefore, the joint efficiency is 8
I was only able to get it between 0 and 90 inches.

本発明は、これらの欠点を解決するため罠なされだもの
で、特殊な充填材を用いることによシ、溶接金属組織の
粗大化による強度低下を防止し、継手効率を100%に
向−ヒして超高張力鋼の利点を100係発揮させようと
するものである。
The present invention was developed to solve these drawbacks, and by using a special filler, it prevents a decrease in strength due to coarsening of the weld metal structure and increases the joint efficiency to 100%. The aim is to fully utilize the advantages of ultra-high tensile strength steel.

すなわち本発明はN117〜19係、Co  8〜12
q6、Mo 4〜6係、Ti0.4〜1.8%を主成分
とする超高張力マルエージング鋼母材の溶接用充填材に
おいて、Co 含有量を該母材の1〜8%多くしたNi
17〜19%、Co 9〜20チ、Mo4〜6%、Ti
0.4〜1.8%を主成分とすることを特徴とする超高
張力鋼溶接用充填材に関するものであるっ 本発明充填材は、宇宙開発ロケット、海洋開発用機器、
原子力用機器等に利用できる。
That is, the present invention relates to N117-19, Co 8-12
In a filler for welding an ultra-high tensile maraging steel base material whose main components are q6, Mo 4-6, and Ti 0.4-1.8%, the Co content was increased by 1-8% of the base material. Ni
17-19%, Co 9-20%, Mo 4-6%, Ti
The present invention relates to a filler for ultra-high tensile steel welding, which is characterized by containing 0.4 to 1.8% as a main component.
Can be used for nuclear power equipment, etc.

本発明充填材は、前記した従来の充填材A〜D[比し、
Co含有量のみを1〜8係多くした点に特徴があり、こ
のCo含有量のみの増加によシ、強度の増加を図ると共
に、金属組織を細粒化させるものである。なお、co 
含有量を1〜8チ多くした理由は次の通シである。
The filler of the present invention is different from the conventional fillers A to D described above [compared to
It is characterized in that only the Co content is increased by a factor of 1 to 8, and by increasing the Co content alone, the strength is increased and the metal structure is made finer. In addition, co
The reason why the content was increased by 1 to 8 chips is as follows.

例えば、18%N1マルエージング鋼の強度は、第3図
(出典:日本金属学会会報VOI 14、Nhlo、阿
部義部著)に示すようにMo等量(Moeq −% M
o +Mx (%Co )+3x(%Tt ) )にほ
ぼ比例して増加し、母材は領域αのようになシ、溶−接
金属は一般に直線βのような傾向を示す。すなわち、溶
接金属は母材と異なり、凝固時に必ず柱状組織となり、
強度レベルが低い範囲では溶接金属の強度は母材の97
チ程度を示すが、強度レベルが上るに従って95〜90
チと柱状細織の影響が頒著になシ、強度の低下率が大に
なって行く。一方、溶接金属の柱状組織は通常の熱処理
を行つ′ても消滅させるととは、できない。言い換えれ
ば、母材と同一成分の溶接金属の場合には、熱処理条件
を変えても、強度レベルが高い範囲では母材と同一の強
度を得ることはできない。
For example, the strength of 18% N1 maraging steel is determined by the Mo equivalent (Moeq -% M
o + Mx (%Co) + 3x (%Tt)), the base metal shows a trend like the area α, and the weld metal generally shows a trend like a straight line β. In other words, unlike the base metal, the weld metal always forms a columnar structure during solidification.
In the range where the strength level is low, the strength of the weld metal is 97% that of the base metal.
As the intensity level increases, it increases from 95 to 90.
The influence of the fibers and columnar weave becomes more pronounced, and the rate of decrease in strength increases. On the other hand, it is impossible to eliminate the columnar structure of weld metal even by ordinary heat treatment. In other words, if the weld metal has the same composition as the base metal, even if the heat treatment conditions are changed, it is not possible to obtain the same strength as the base metal within a high strength level range.

従って、溶接部の強度を母材と同等にするためには、母
材より溶接金属のMo等量を高くして溶接金属の強度を
上げればよい。Mo 当量を高くするには、Ctf、 
Mo 、−Tiの含有量を多くすればよいのであるが、
延性、靭性に最も良い結果を与えるのはCo  である
。そこで本発明では、coのみを増加してM′b 等量
を高く1〜、延性、靭性を低下させないで溶接金属の強
度を上げることとし、溶接金属のMo等量を高くする手
段として充填材のCo含有量を母材よシ増加させること
を採用したものである、 ところで、実際には、溶接金属のMo 当量は溶接金属
中に溶は込む母材と充填材の計によって左右されるので
、母材成分の変化、溶込量の変化、歩留シ率等の検討が
必要となる。溶接条件と充填材の挿入方法が決まれば、
残りは母材成分の変化だけとなる。母材成分は表1に示
したように、要求強度によってN117〜19チ、C0
8〜12チ、Mo4〜6%、T、10.4〜1.8チの
範囲内で変化するが、ここではGoの量が問題なのでO
o のみについて検討する。
Therefore, in order to make the strength of the welded part equivalent to that of the base metal, it is sufficient to increase the strength of the weld metal by making the Mo equivalent content of the weld metal higher than that of the base metal. To increase the Mo equivalent, Ctf,
It would be better to increase the content of Mo and -Ti, but
Co gives the best results in terms of ductility and toughness. Therefore, in the present invention, the strength of the weld metal is increased without reducing the ductility and toughness by increasing only co to raise the M'b equivalent to 1 or more, and as a means of increasing the Mo equivalent of the weld metal, filler By the way, in reality, the Mo equivalent of the weld metal is influenced by the total of the base metal and filler that are injected into the weld metal. It is necessary to consider changes in base material components, changes in penetration amount, yield rate, etc. Once the welding conditions and filler insertion method are determined,
The rest is only a change in the base material components. As shown in Table 1, the base material components are N117-19, C0 depending on the required strength.
It changes within the range of 8 to 12 inches, Mo 4 to 6%, T, and 10.4 to 1.8 inches, but since the amount of Go is the issue here, O
Consider only o.

先ず、Oo  8%の場合の一例として、Co 8係、
MO5,4チ、TiO,5%、MO当量−956、強度
200 K4/1mr+2級の母材を溶接する場合、第
3図から明らかなように溶接金属のMo 当量が約10
であれば、母材とほぼ同等の強度が得られることが判る
。従って、充填材の成分は、CO約9チ、すなわち母材
中のCo  Bチの1%増でよいことが判る。
First, as an example in the case of Oo 8%, Co 8,
MO5.4, TiO, 5%, MO equivalent -956, strength 200 When welding K4/1mr+2 class base metal, as is clear from Figure 3, the Mo equivalent of the weld metal is approximately 10.
If so, it can be seen that almost the same strength as the base material can be obtained. Therefore, it can be seen that the content of the filler may be approximately 9% CO, ie, 1% more than the Co2B in the base material.

次に、0012%の場合の一例として、0012%、M
O5,4係、TiO,5俤、MO当量−10,9、強度
225 Kg/箭2級の母材を溶接する場合、第3図か
ら明らかなように溶接金属の当量が約13.5であれば
、母材とほぼ同等の強度となる。従って、充填材の成分
は、co 約20チ、すなわち母材中のC!o12%の
8チ増でよいことが判る。
Next, as an example of 0012%, 0012%, M
When welding a base metal of O5.4, TiO, 5, MO equivalent -10,9, strength 225 Kg/2nd grade, as is clear from Figure 3, the equivalent weight of the weld metal is approximately 13.5. If so, the strength will be almost the same as that of the base material. Therefore, the composition of the filler is about 20 co, or C! in the matrix. It turns out that an increase of 8 inches (o12%) is sufficient.

更に、CO含有量を上記のように母材よりも1〜8チ増
加することにより、溶接金属が凝固する際に結晶粒が細
粒化する効果があシ、その後の熱処理によって微細なマ
ルテンサイト組織に調整するととができ、充分な強度と
延性を得ることかできる。この現象はCO含有量の増加
において顕著であシ、MOやTiの増加の場合よシも優
れている。
Furthermore, by increasing the CO content by 1 to 8 cm compared to the base metal as described above, the crystal grains become finer when the weld metal solidifies, and the subsequent heat treatment produces fine martensite. By adjusting the structure, it is possible to obtain sufficient strength and ductility. This phenomenon is remarkable when the CO content increases, and is even better when the MO and Ti contents increase.

以上のような理由によって本発明では充填材のCO含有
量を母材のCO含有量の1〜8チ増加としたのである。
For the reasons mentioned above, in the present invention, the CO content of the filler is increased by 1 to 8 inches compared to the CO content of the base material.

なお、本発明における充填材の量は、余り少な過ぎても
充填材の効果を得ることはできず、また余シ多過ぎても
工学的に使用は無理なので、全溶接金属量に対して15
〜75%とすることが望ましい。
In addition, the amount of filler in the present invention is 15% of the total weld metal amount, because if it is too small, the effect of the filler cannot be obtained, and if it is too large, it is impossible to use it from an engineering perspective.
It is desirable to set it to 75%.

次に、具体例により本発明の効果を示す。Next, the effects of the present invention will be illustrated by specific examples.

充填材として、Co:IK51チ、MO=5.46チ、
Ti:0.61チのものを用い、表1下段に示すマルエ
ージング鋼を、表3上段に示す条件にてエレクトロンビ
ーム溶接を行った。
As a filler, Co: IK51chi, MO=5.46chi,
The maraging steel shown in the lower row of Table 1 was subjected to electron beam welding under the conditions shown in the upper row of Table 3 using a material with Ti: 0.61 inch.

なお、充填材は板厚0.8調のストリップ状にして突合
せ開先内に予め充填しておいた。勿論ワイヤ状にして溶
融地に自動供給してもよいことは言うまで本たい− このようにして溶接した継手の機械的性質は表6の通り
であった。
Note that the filler was in the form of a strip having a thickness of 0.8 and was filled in advance into the butt groove. Needless to say, it is also possible to automatically feed it into the molten material in the form of a wire.The mechanical properties of the joint welded in this manner are shown in Table 6.

表  6 溶体化処理  850℃xth(A、c)時効処理 4
50℃X5h(A、Cり 表6と表41表2を比較して明らかなようK、本発明充
填材を用いることにより、引張強度は母材とには同等、
伸び、靭性等においても、従来のものよ!llはるかに
良好となることが↑4fる。
Table 6 Solution treatment 850°C x th (A, c) Aging treatment 4
50°C x 5h (A, C) As is clear by comparing Table 6 and Table 41 and Table 2, by using the filler of the present invention, the tensile strength is equivalent to that of the base material.
Even in terms of elongation, toughness, etc., it is the same as before! ll will be much better ↑4f.

従って、継手効率を100%にすることができ、超高張
力鋼の利点を充分に発揮させ得メことが明らかである。
Therefore, it is clear that the joint efficiency can be increased to 100% and the advantages of ultra-high tensile strength steel can be fully exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の効果を確認するために用
いられた溶接時の開先形状を示す図、第3図はMO当一
般と引張強度との関係を示す図表である。 復代理人  内 1)  明 復代理人   萩  原  亮  −
FIGS. 1 and 2 are diagrams showing groove shapes during welding used to confirm the effects of the present invention, and FIG. 3 is a chart showing the relationship between MO in general and tensile strength. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] N117〜19チ、CQ 8〜12係、Mo4〜6チ、
Ti0.4〜1.8チを主成分とする超高張力マルエー
ジング鋼母材の溶接用充」信材において、CO含有量を
該母材の1〜8%多くしたN117〜19チ、Co  
9〜20%、Mo  4〜6チ、T104〜1.8 ’
I!を主成分とすることを特徴とする超高張力鋼溶接用
充填材。
N117-19chi, CQ 8-12, Mo4-6chi,
In the welding reinforcement material for ultra-high tensile maraging steel base material whose main component is Ti0.4~1.8CH, N117~19CH and Co
9-20%, Mo 4-6chi, T104-1.8'
I! A filler for ultra-high tensile steel welding, which is characterized by having as its main component.
JP1624483A 1983-02-04 1983-02-04 Filler for welding ultrahigh tension steel Pending JPS59144591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1624483A JPS59144591A (en) 1983-02-04 1983-02-04 Filler for welding ultrahigh tension steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1624483A JPS59144591A (en) 1983-02-04 1983-02-04 Filler for welding ultrahigh tension steel

Publications (1)

Publication Number Publication Date
JPS59144591A true JPS59144591A (en) 1984-08-18

Family

ID=11911138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1624483A Pending JPS59144591A (en) 1983-02-04 1983-02-04 Filler for welding ultrahigh tension steel

Country Status (1)

Country Link
JP (1) JPS59144591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038741A2 (en) * 2007-09-18 2009-03-26 Exxonmobil Research And Engineering Company Weld metal compositions for joining steel structures in the oil and gas industry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038741A2 (en) * 2007-09-18 2009-03-26 Exxonmobil Research And Engineering Company Weld metal compositions for joining steel structures in the oil and gas industry
WO2009038741A3 (en) * 2007-09-18 2009-06-25 Exxonmobil Res & Eng Co Weld metal compositions for joining steel structures in the oil and gas industry

Similar Documents

Publication Publication Date Title
KR100910493B1 (en) Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
KR101271866B1 (en) High strength flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
JP2016508877A (en) Ultra-high strength flux cored arc welded joint with excellent impact toughness and welding wire for producing the same
KR101220618B1 (en) Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same
KR100508399B1 (en) Large heat input submerged arc welding joint, method for producing the joint, steel wire for the submerged arc welding joint, and flux for the submerged arc welding joint
JP3120912B2 (en) Flux-cored wire for gas shielded arc welding
JPS63273594A (en) Flux cored wire for gas shielding arc welding
JP3735001B2 (en) Weld metal with excellent toughness
DE10260358A1 (en) Process for arc welding ductile cast iron
JPS59144591A (en) Filler for welding ultrahigh tension steel
KR20090068868A (en) Steel for welding structure having welded joint with superior ctod properties in weld heat affected zone
KR100914796B1 (en) Metallic flux cored wire, gas shielded arc welding process with the same, and process for production of welded joints having high fatigue strength with little slag
DE1558672B2 (en) WELDED CONSTRUCTION FOR PRESSURE TANK
JP3740725B2 (en) Filler material for laser welding of martensitic stainless steel
JPS60196286A (en) Steel wire for gas shielded arc welding for 80-kg/cm2 class high tensile steel
DE1533543C3 (en) Welding electrode
JP3934863B2 (en) High heat input electroslag welding wire with excellent weld metal toughness
KR20110072880A (en) Flux cored arc weld wire for high tensile steel and weld metal joint using the same
KR100217835B1 (en) Submerged arc welding of high tension steel
JP3335509B2 (en) Method for producing high-strength thick steel plate excellent in toughness of base metal and heat-affected zone of multilayer welding
JPH0716763A (en) Electron beam welding method of steel plate
JPS60204863A (en) Steel for high heat input welded structure
KR101637471B1 (en) Flux cored wire for Gas shielded arc welding
JPH08155658A (en) Welding method for low alloy high tensile steel