JPS59144049A - Optical recording and reproducing system - Google Patents

Optical recording and reproducing system

Info

Publication number
JPS59144049A
JPS59144049A JP1839383A JP1839383A JPS59144049A JP S59144049 A JPS59144049 A JP S59144049A JP 1839383 A JP1839383 A JP 1839383A JP 1839383 A JP1839383 A JP 1839383A JP S59144049 A JPS59144049 A JP S59144049A
Authority
JP
Japan
Prior art keywords
thin film
recording
recording thin
light spot
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1839383A
Other languages
Japanese (ja)
Inventor
「よし」田 富夫
Tomio Yoshida
Isao Sato
勲 佐藤
Shunji Ohara
俊次 大原
Kenji Koishi
健二 小石
Yuzuru Kuroki
譲 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1839383A priority Critical patent/JPS59144049A/en
Publication of JPS59144049A publication Critical patent/JPS59144049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To write a signal to a recording thin film under the temperature rise with quenching condition and to erase the recorded signal under the temperature rise with annealing condition respectively by making use of the state transition due to the difference of heating cycle of the recording thin film. CONSTITUTION:An aperture lens 10 stops incident laser beams a1 and a2 down to microbeams and irradiate them to a recording thin film 3 of an optical disk. The beam a1 is made incident in parallel to the optical axis of the lens 10, for example, and produces a round micro light spot L1 on the film 3. While the beam a2 is made incident with an angle theta to the optical axis of the lens 10 and forms an oval micro light spot L2 on the film 3. The figure (b) shows the positional relations between spots L1 and L2 centering on a groove 2 on the disk. The spots L1 and L2 are set side by side on the groove 2 from the traveling direction of the film 3 in proximity with a distance l. Thus it is possible to perform the recording, reproducing and erasion of the signal by means of a recording thin film changing optical density as much as possible owing to the temperature rise with quenching and annealing conditions respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複数のレーザ光源を用い、これらを微小スポ
ットに絞って、光学的な案内トラックを有する光記録デ
ィスク上に照射して、主にレーザ光の熱エネルギーを用
いて高密度に信号を記録再生し、かつ一旦記録した信号
を消去できる光学的記録再生方式に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a plurality of laser light sources, narrows them down to minute spots, and irradiates them onto an optical recording disk having an optical guide track. The present invention relates to an optical recording and reproducing method that uses the thermal energy of light to record and reproduce signals at high density and that can erase once recorded signals.

従来例の構成と問題点 レーザ光をφ1μm以下の微小スポットに絞り光感応性
記録層を有する光ディスクに照射して信号を高密度に記
録再生できる装置は、■ビット当りのメモリコストを安
くできる点、■高速でアクセスできる点、■非接触で安
定な記録再生を行なえる等の点で多くの特長を有する。
Conventional configuration and problems Devices that can record and reproduce signals at high density by focusing a laser beam onto an optical disk with a light-sensitive recording layer by focusing it on a minute spot with a diameter of 1 μm or less can: ■ Reduce the memory cost per bit. It has many features such as: 1) high-speed access, and 2 stable non-contact recording and playback.

上記の光学的記録再生装置として、従来、ヒートモード
記録に3 ページ よる追記形の記録再生装置と、光磁気による消去可能形
の記録再生装置が提案され研究されている0また上記の
ヒートモードによる記録においても消去可能な記録材料
および、それに対応した光学ヘッドが提案されている。
Conventionally, as the optical recording/reproducing apparatus mentioned above, a write-once type recording/reproducing apparatus using three pages for heat mode recording and an erasable type recording/reproducing apparatus using magneto-optical technology have been proposed and studied. Recording materials that can be erased even during recording and optical heads corresponding thereto have been proposed.

以下にヒートモード記録について簡単に説明する。ヒー
トモードによる信号の記録方法として、微小レーザビー
ムを記録薄膜に照射し、照射部位を局部的に昇温するこ
とによシ、記録薄膜を局部的に蒸発・熔融し小孔を形成
する方式、記録薄膜に微小バブルを形成する方式、記録
薄膜を局部的に昇温し光学的濃度を変化させる方式のも
の等が提案されている。上記の光学的濃度を変化させる
記録薄膜の一例として、非晶質の記録薄膜を用いて、光
学的濃度を可逆的に変化(記録薄膜の屈折率変化した結
光学的濃を変化するものも含む)させうろことも報告さ
れている。
Heat mode recording will be briefly explained below. A method for recording signals in heat mode involves irradiating a recording thin film with a minute laser beam and locally raising the temperature of the irradiated area, thereby locally evaporating and melting the recording thin film to form small holes. A method in which microbubbles are formed in the recording thin film, and a method in which the temperature of the recording thin film is locally raised to change the optical density have been proposed. As an example of the above-mentioned recording thin film that changes the optical density, an amorphous recording thin film is used to reversibly change the optical density (including one that changes the optical density by changing the refractive index of the recording thin film). ) has also been reported to cause scales.

この可逆的に光学的濃度を変化させつるということは、
信号の記録再生、および消去が可能であるということに
なる。
This reversible optical density change means that
This means that it is possible to record, reproduce, and erase signals.

一般に上記記録薄膜の可逆的濃度変化は記録材料の加熱
サイクルによる状態転移を用いて行なわれ、薄膜の非晶
質状態と結晶状態の間の転移、あるいは1つの非晶質状
態と、他の安定な非晶質状態との間の転移を繰り返し利
用することによシ行なわれる。以下に上記の状態間の転
移を原理的に簡単に説明する。説明の簡単のために、非
晶質状態と結晶状態の間の転移として光学的濃度変化を
得るものとして説明する。
Generally, the reversible concentration change of the recording thin film is carried out using a state transition caused by a heating cycle of the recording material, such as a transition between an amorphous state and a crystalline state of the thin film, or a transition between one amorphous state and another stable state. This is done by repeatedly utilizing transitions between the amorphous state and the amorphous state. The principle of the transition between the above states will be briefly explained below. For the sake of simplicity, the explanation will be based on the assumption that an optical density change is obtained as a transition between an amorphous state and a crystalline state.

第1図に上記の非晶質状態と、結晶状態の間の転移条件
のモデルを簡略化して示す。
FIG. 1 shows a simplified model of the transition conditions between the amorphous state and the crystalline state.

第1図で非晶質状態をAとして示し、非晶質状態におけ
る記録薄膜の光の反射率は小さく、光の透過率は大きい
。結晶状態をCで示し、結晶状態における記録薄膜は反
射率が大きく透過率は小さい。この可逆的光学濃度を変
化しつる記録薄膜で第1図における非晶質状態AKある
記録薄膜の温度を局部的に融点近くまで昇温し徐冷する
と結晶状態Cとなる。一方結晶状態にある記録薄膜の温
度を局部的に融点近くまで上げ急冷すると非晶質6 ペ
ージ 状態Aになる。以上が可逆的光学濃度変化の原理的な内
容である。
In FIG. 1, the amorphous state is shown as A, and the recording thin film in the amorphous state has a low light reflectance and a high light transmittance. The crystalline state is indicated by C, and the recording thin film in the crystalline state has a high reflectance and a low transmittance. With this recording thin film that reversibly changes its optical density, the amorphous state AK shown in FIG. 1 changes to the crystalline state C when the temperature of the recording thin film is locally raised to near the melting point and slowly cooled. On the other hand, when the temperature of a recording thin film in a crystalline state is locally raised to near its melting point and rapidly cooled, it becomes an amorphous state A. The above is the principle of reversible optical density change.

記録薄膜上における昇温急冷条件、および昇温徐冷条件
を実現する方法として、記録薄膜と微小光スポット光と
の相対スピード(光ディスクの回転数)を変える方法が
ある。すなわち、回転数の早い状態でレーザ光を照射す
ると、記録薄膜の局部には短かい時間のみ昇温し急冷す
る条件を満足し、回転数の遅い状態でレーザ光を照射す
ると記録薄膜の局部は長い時間かけて昇温し徐冷する条
件を満足する。しかし、この方法では信号の記録時と消
去時で光ディスクの回転数をいちいち変えなければなら
ず、記録、消去に時間がかがシ、実用性に乏しいものと
なる。
As a method for realizing the rapid heating and cooling conditions and the slow heating and cooling conditions on the recording thin film, there is a method of changing the relative speed (rotation speed of the optical disk) between the recording thin film and the minute light spot. In other words, when the laser beam is irradiated at a high rotational speed, the temperature of the local part of the recording thin film rises for only a short period of time, satisfying the condition of rapid cooling, and when the laser beam is irradiated at a slow rotational speed, the local part of the recording thin film Satisfies the conditions for heating up and slowly cooling over a long period of time. However, in this method, the rotational speed of the optical disk must be changed each time a signal is recorded and erased, and recording and erasing take a long time, making it impractical.

本発明の目的 本発明は、例えば、ml記、昇温徐冷条件、昇温急冷条
件によって光学的濃度を可逆的に変化する記録薄膜を用
いて信号を記録、再生、消去できる実用的な方式を提供
することを目的とするものであり、記録薄膜に、昇温急
冷条件で信号を書き込6ベー゛ み、昇温徐冷条件で記録薄膜に記録されている信号を消
去する装置を提供するものである。さらに具体的には、
前記記録薄膜の反射率を増大する方向を信号の記録に用
い、記録薄膜の反射率が減少する方向を信号の消去に用
いる方式を提供する。
OBJECTS OF THE INVENTION The present invention provides a practical method for recording, reproducing, and erasing signals using a recording thin film that reversibly changes optical density depending on, for example, ml recording, heating and slow cooling conditions, and heating and rapid cooling conditions. The purpose of the present invention is to provide a device for writing signals on a recording thin film under heating and rapid cooling conditions, and erasing the signals recorded on the recording thin film under heating and slow cooling conditions. It is something to do. More specifically,
A method is provided in which a direction in which the reflectance of the recording thin film increases is used for recording a signal, and a direction in which the reflectance of the recording thin film decreases is used for erasing the signal.

発明の構成 本発明はレーザ等の光源からの光を微小径の光スポット
に絞って相対的に移動する記録薄膜に照射し、その記録
薄膜の加熱サイクルの相異による状態転移を利用して光
学的な濃度変化として信号を可逆的に記録再生できる可
逆的光学記録再生方式であって、昇温徐冷条件で到達す
る記録薄膜の状態を信号を消去した状態とし、昇温急冷
条件で到達する記録薄膜の状態を信号を記録した状態と
して用いる点に特徴を有する。
Structure of the Invention The present invention focuses light from a light source such as a laser into a microscopic light spot and irradiates it onto a relatively moving recording thin film, and utilizes the state transition caused by the difference in the heating cycle of the recording thin film to generate optical information. This is a reversible optical recording and reproducing method that can reversibly record and reproduce signals as changes in concentration, and the state of the recording thin film that is reached under heating and slow cooling conditions is the state in which the signal is erased, and the state that is reached under heating and rapid cooling conditions. It is characterized in that the state of the recording thin film is used as the state in which the signal is recorded.

実施例の説明 第2図に本発明で用いる信号を記録再生消去できる光記
録ディスクの細部構成例を示す。基材1は、透明な樹脂
またはガラスで構成され、表面に光学的に検出可能な案
内溝2を有する。この溝27 ページ は、ディスク上の信号記録領域において、ディスクの回
転中心に対して、スパイラル状、あるいは同心円状に設
けられ、溝深さは約λ/8n(λは照射レーザ光の波長
、nは屈折率)に選ばれる。記録薄膜3は、基材1の上
に蒸着等の手段で形成される。この記録薄膜3の上に樹
脂の保護層4が形成され記録薄膜を保護する。記録再生
用のレーザビーム6は基材1を通して溝2に照射される
。この光ビームは、溝2による反射光の回折パタンを検
出して公知のトラッキング手段により、溝2に沿って光
を走査して信号を記録し再生する。記録ドツト6は、信
号の記録によって、光学的濃度が変化した部分を示す。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows a detailed configuration example of an optical recording disk on which signals used in the present invention can be recorded, reproduced, and erased. The base material 1 is made of transparent resin or glass, and has optically detectable guide grooves 2 on its surface. These grooves 27 are provided in the signal recording area on the disk in a spiral or concentric manner with respect to the rotation center of the disk, and the groove depth is approximately λ/8n (λ is the wavelength of the irradiated laser beam, n is chosen as the refractive index). The recording thin film 3 is formed on the base material 1 by means such as vapor deposition. A resin protective layer 4 is formed on the recording thin film 3 to protect the recording thin film. A recording/reproducing laser beam 6 is irradiated onto the groove 2 through the base material 1 . This light beam detects the diffraction pattern of the light reflected by the groove 2 and scans the light along the groove 2 using a known tracking means to record and reproduce a signal. Recorded dots 6 indicate areas where the optical density has changed due to signal recording.

第3図は、記録薄膜上で、昇温急冷条件、および昇温徐
冷条件を行るための光の照射方法の一例を示す。第3図
aで絞りレンズ1oは、入射するレーザビームa 1.
 a 2を微小な光に絞って光ディスクの記録薄膜3に
照射するレンズを示す。入射ビームa1は例えば絞りレ
ンズ1oの光軸に平行に入射し、記録薄膜3上に円形の
微小光スポットL1 を発生する。一方、入射ビームa
2は絞りレンズ1oの光軸とθの角度をもって入射し、
記録薄膜3上に溝にそって長円形の微小光スポットL2
を発生する。前記ディスク上の溝2に対する、光スポッ
トL1.L2の位置関係は一例としてbに示す。溝2上
で記録薄膜の進行方向から順にり、。
FIG. 3 shows an example of a method of irradiating light to perform a heating and rapid cooling condition and a heating and slow cooling condition on the recording thin film. In FIG. 3a, the diaphragm lens 1o receives the incident laser beam a1.
This figure shows a lens that condenses a 2 light into a minute light and irradiates it onto the recording thin film 3 of the optical disc. The incident beam a1 is incident parallel to the optical axis of the aperture lens 1o, for example, and generates a small circular light spot L1 on the recording thin film 3. On the other hand, the incident beam a
2 enters the aperture lens 1o at an angle of θ with the optical axis,
An oval minute light spot L2 is formed along the groove on the recording thin film 3.
occurs. A light spot L1. on the groove 2 on the disk. The positional relationship of L2 is shown in b as an example. On the groove 2, in order from the direction in which the recording thin film travels.

L2と並び、同一の溝上に距離tだけ近接して配置され
る。光スポツト間の距離tは特に規定されるものでなく
、お互いに重なり合っても良く、あるいはLlとL2が
連続的に連らなっても良く、それぞれの配置に応じた特
長をもたすことができる。
It is arranged in line with L2 and close to it by a distance t on the same groove. The distance t between the light spots is not particularly specified, and they may overlap each other, or Ll and L2 may be continuous, and each may have its own characteristics depending on its arrangement. can.

第3図Cには上記の光スポットL1.L2を短時間記録
薄膜上に照射した時に、それぞれの光スポットによって
、溝2に沿った方向で記録薄膜3上に形成される温度分
布の様子を示す。Slは円形光スポットL1 で形成さ
れる温度分布を示し、光照射部位が局所的に昇温しシャ
ープな温度分布となる。したがって走行している光記録
媒体上に光スポットL1 を短時間の繰り返し光パルス
として照射すると記録薄膜は局所的に昇温後光パルスが
消9ページ えるとすみやかにその熱が周囲に伝播し冷却するので昇
温急冷条件を満たすことになる。したがって光スポット
L1 を照射する前の記録薄膜の状態が前記結晶状態に
あったとすれば、光スポツトL1 による光照射部位の
み、前記非晶質状態となり光学的濃度が変化する。これ
によって記録薄膜上に第2図の記録ドツト6のように濃
淡の繰り返しとして信号を記録することができる。また
第3図Cの82は溝に沿って長円形の光スポットL2の
短時間照射による温度分布の例を示す。図のように溝に
沿ってブロードな温度分布を示す。したがって走行して
いる記録媒体上に光スポットL2を時間的に連続した光
として照射すると記録薄膜は光パルスL1 を照射した
ときと比して、昇温後著しくゆっくり冷却され、昇温徐
冷条件を満足することになる。したがって、連続光L2
を照射する前の記録薄膜の状態が結晶質状態であれば、
光L2を照射することによって非晶質の状態にもどる。
FIG. 3C shows the above light spot L1. This figure shows the temperature distribution formed on the recording thin film 3 in the direction along the groove 2 by each light spot when L2 is irradiated onto the recording thin film 3 for a short time. Sl indicates a temperature distribution formed by the circular light spot L1, and the temperature of the light irradiated area locally rises, resulting in a sharp temperature distribution. Therefore, when a light spot L1 is irradiated onto a moving optical recording medium as short, repeated light pulses, the recording thin film locally heats up, and when the light pulse disappears, the heat quickly propagates to the surrounding area and cools it down. This satisfies the temperature raising and rapid cooling conditions. Therefore, if the recording thin film was in the crystalline state before being irradiated with the light spot L1, only the area irradiated by the light spot L1 becomes the amorphous state and the optical density changes. As a result, a signal can be recorded on the recording thin film as a repetitive pattern of shading, like the recording dots 6 in FIG. 2. Further, 82 in FIG. 3C shows an example of temperature distribution due to short-time irradiation of the oval light spot L2 along the groove. As shown in the figure, there is a broad temperature distribution along the groove. Therefore, when a light spot L2 is irradiated as a temporally continuous light onto a moving recording medium, the recording thin film is cooled down significantly more slowly after being heated than when it is irradiated with a light pulse L1, and the temperature rise and slow cooling conditions are will be satisfied. Therefore, continuous light L2
If the recording thin film is in a crystalline state before being irradiated with
By irradiating the light L2, it returns to an amorphous state.

すなわち、第2図の記録トッド6は消えることになる。That is, the recording tod 6 in FIG. 2 disappears.

1oべ一2゛ 第3図に示すように、昇温急冷条件を作る光スポットL
1 は、微小な光ビームで、かつ、光出力を断続的な光
パルスとして加える必要がある。したがって光スポット
L1は、広帯域の繰り返しの早い信号の記録に用いるの
が最適である。何故なら光スポットL2は、溝に沿って
長く、したがって高い周波数による光学的濃度変化を記
録薄膜に与えることはできない。故に光スポットL2の
光出力は繰り返しの遅い信号または直流信号で変調され
、記録媒体上の溝に沿った所望区間の記録信号の消去に
用いられる。
1.1.2゛As shown in Figure 3, a light spot L that creates conditions for rapid heating and cooling.
1 requires a minute light beam and the optical output must be applied as intermittent optical pulses. Therefore, the optical spot L1 is optimally used for recording a broadband signal with rapid repetition. This is because the light spot L2 is long along the groove, and therefore cannot impart optical density changes to the recording thin film due to high frequencies. Therefore, the optical output of the optical spot L2 is modulated with a slow repetition signal or a DC signal, and is used to erase the recorded signal in a desired section along the groove on the recording medium.

一方記録信号の再生は、光スポットL1 を記録薄膜を
余り温度上昇させない程度の弱い連続光して溝に沿って
第2図に示す記録ドツト6を反射率または透過率の変化
として読み取ることにより行なわれる。
On the other hand, the recorded signal is reproduced by using the light spot L1 as a weak continuous beam that does not significantly increase the temperature of the recording thin film, and reading the recording dots 6 shown in FIG. 2 along the groove as changes in reflectance or transmittance. It will be done.

また第3図で光スポットL2を溝2に沿って長円形の例
で説明したが光スポットL1  より径の大きい円形光
スポットでも同じ効果を得ることができる。しかしこの
場合、隣接トラックへの影響を11ページ 考慮する必要がある。
Further, in FIG. 3, the light spot L2 is described as being oval along the groove 2, but the same effect can be obtained with a circular light spot having a larger diameter than the light spot L1. However, in this case, it is necessary to consider the influence on adjacent tracks for 11 pages.

第4図に本発明にもとすいた具体的実施例を示す。記録
再生用レーザ光源と消去用レーザ光源の2ケのレーザ光
源を有し、各レーザ光源によって光ディスクの溝2上に
第3図すに示すように、円形の光ビームL1  と、溝
に沿って長円形の光ビームL2を形成する光学的記録再
生装置の例を示す。
FIG. 4 shows a specific embodiment based on the present invention. It has two laser light sources, a recording/reproducing laser light source and an erasing laser light source, and each laser light source emits a circular light beam L1 onto the groove 2 of the optical disc as shown in Figure 3, and a circular light beam L1 along the groove. An example of an optical recording/reproducing device that forms an oval light beam L2 is shown.

第4図で、10は入射光を光デイスク上で微小な光スポ
ットに絞るための絞りレンズを示す。半導体レーザー1
の出力光は記録再生用の光源で波長λ1を有し、集光レ
ンズ12で集光され、光ビλ 一ム合成器13.偏光ビームスプリッタ14.−板16
を通シ、絞りレンズ10で絞られて、光ディスクD上で
円形の微小光スポットを形成する。
In FIG. 4, reference numeral 10 denotes an aperture lens for focusing the incident light into a minute light spot on the optical disk. Semiconductor laser 1
The output light of the recording/reproducing light source has a wavelength λ1, is condensed by a condenser lens 12, and is converted into a light beam λ1 by a beam combiner 13. Polarizing beam splitter 14. -Plate 16
The light is passed through and condensed by an aperture lens 10 to form a minute circular light spot on the optical disc D.

他の半導体レーザー7の出力光は記録された信号を消去
するための光源で波長λ2を有し、集光レンズ18で集
光され、光ビーム合成器13で反射され、偏光ビームス
プリッタ14.λ/4板16゜絞りレンズ10を通って
光ディスクDの溝2に沿って長円形の光スポットL2を
形成する。光スポットL、とL2は同一の溝上に形成さ
れるように、光源11と光源17の配置が決められる。
The output light of the other semiconductor laser 7 is a light source for erasing recorded signals and has a wavelength λ2, is focused by a condenser lens 18, reflected by a light beam combiner 13, and is reflected by a polarizing beam splitter 14. An elliptical light spot L2 is formed along the groove 2 of the optical disc D through the λ/4 plate 16° aperture lens 10. The arrangement of the light sources 11 and 17 is determined so that the light spots L and L2 are formed on the same groove.

ディスクからの反射光b1.b2は従来公知の再生信号
の検出、フォーカスやトラッキングの誤差信号の検出に
用いられる。図ではディスクの反射光は偏光ビームスプ
リッタ14で入射光路と分離され、単レンズ19で集束
光に変換され、従来公知のナイフエッヂ2oによるフォ
ーカス誤差信号の検出方法を示している。光検出器21
は2分割ピンダイオード等が用いられ、これより、フォ
ーカス誤差信号、再生信号が検出される。アクチュエイ
タ16は、絞りレンズ1oを駆動して、フォーカス制御
およびトラッキング制御を行なうものである。フォーカ
ス制御に対しては絞りレンズ1゜をディスクに対して垂
直方向に駆動し、トラッキング制御に対しては、絞りレ
ンズ1oをディスク上の溝2に対して直角方向に駆動す
る。
Reflected light from the disk b1. b2 is used for conventionally known detection of reproduction signals and detection of focus and tracking error signals. In the figure, the reflected light from the disk is separated from the incident optical path by a polarizing beam splitter 14, and converted into a focused light by a single lens 19, showing a conventionally known method of detecting a focus error signal using a knife edge 2o. Photodetector 21
A two-split pin diode or the like is used, and the focus error signal and reproduction signal are detected from this. The actuator 16 drives the aperture lens 1o to perform focus control and tracking control. For focus control, the aperture lens 1° is driven in a direction perpendicular to the disk, and for tracking control, the aperture lens 1o is driven in a direction perpendicular to the groove 2 on the disk.

22は半導体レーザ11の駆動回路を示し、信号の記録
時には、端子22aに印加される記録信号に応じて半導
体レーザ11の出力光を強度変調13ページ する。また信号の再生時には半導体レーザの出力光を記
録材料の光学的特性が変化しない弱い一定の連続光に保
持する。23は半導体レーザ17の駆動回路を示し、端
子23aから入力される消去指令信号に応じて、必要な
時間のみ消去光を発生し、ディスク上の溝2上の光スポ
ットL2を所定の時間、所定の強さで発光させる。
Reference numeral 22 denotes a drive circuit for the semiconductor laser 11, and when recording a signal, the output light of the semiconductor laser 11 is intensity-modulated 13 pages in accordance with the recording signal applied to the terminal 22a. Furthermore, when reproducing a signal, the output light of the semiconductor laser is maintained at a constant, weak continuous light that does not change the optical characteristics of the recording material. Reference numeral 23 denotes a drive circuit for the semiconductor laser 17, which generates erasing light only for a necessary time in response to an erasing command signal inputted from a terminal 23a, and focuses the light spot L2 on the groove 2 on the disk for a predetermined time. emit light with the intensity of

第5図にディスク上の溝2上に円形光スポットL1 と
溝方向に長円形の光L2を作る場合の絞りレンズ10へ
の光の入射方法を示す。円形光スポットL1を作るため
の入射光a1は絞りレンズ1゜□  の開口の全域を均
等に使用する。−力先スポットL2を作る入射ビームは
絞りレンズ10の開口のうち溝方向には一部のみ用い溝
方向に直角な方向には全域を用いるように入射すること
によって溝上に溝方向に長円形の光スポットを得ること
ができる。光スポットL1.L2間の距離は第3図aに
示すように、入射光ビームa1  とa2の光軸の角度
を変えることによって任意に設定できる。
FIG. 5 shows how light is incident on the aperture lens 10 when creating a circular light spot L1 on the groove 2 on the disk and an oval light L2 in the direction of the groove. The incident light a1 for creating the circular light spot L1 equally uses the entire area of the aperture of the aperture lens 1°□. - The incident beam that creates the force tip spot L2 is incident on the groove in such a way that only a part of the aperture of the diaphragm lens 10 is used in the direction of the groove, and the entire area is used in the direction perpendicular to the direction of the groove. You can get a light spot. Light spot L1. The distance between L2 can be arbitrarily set by changing the angle of the optical axes of the incident light beams a1 and a2, as shown in FIG. 3a.

発明の効果 14ページ 以上のようにして、レーザの熱作用を主体的に利用した
ヒートモードによる光学的に信号を記録再生消去を行な
える光学的記録再生装置を得ることができ、以下の効果
を得ることができる。
Effects of the Invention As described on page 14 and above, it is possible to obtain an optical recording and reproducing device that can optically record, reproduce, and erase signals in a heat mode that mainly utilizes the thermal action of a laser, and has the following effects. Obtainable.

1 記録媒体と照射光の相対速度を変えることなく、信
号の記録再生消去を行なえる。
1 Signals can be recorded, reproduced, and erased without changing the relative speed between the recording medium and the irradiation light.

2 記録薄膜が昇温徐冷条件で到達する状態、(記録薄
膜の反射率が低い状態、または記録薄膜の透過率の高い
状態)を信号が消去される状態とし、昇温急冷条件で記
録薄膜が到達する状態(記録薄膜の反射率が高い状態、
または記録薄膜の透過率が低い状態)を信号が記録され
る状態とすることにより、高帯域の信号を記録再生でき
る。
2. The state that the recording thin film reaches under heating and slow cooling conditions (the state in which the recording thin film has low reflectance or the recording thin film's transmittance is high) is the state in which the signal is erased, and the recording thin film is heated and rapidly cooled under heating and rapid cooling conditions. (state where the recording thin film has high reflectance,
By setting a state in which a signal is recorded (or a state in which the transmittance of the recording thin film is low) to be a state in which signals are recorded, high-band signals can be recorded and reproduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光学的に信号を記録消去できる記録薄膜の原理
的動作を間単に説明するための動作説明図、第2図は本
発明で用いる溝付き光記録ディスクの1例の要部断面斜
視図、第3図aは本発明で用いる、1つの絞りレンズを
用いて、円形の記録16ページ 再生光り、と、溝方向に長円形をした光L2を作る方法
、および、構成を示す図、bは溝上における光スポット
の平面図、Cは光り4.L2が、記録薄膜に与える熱的
効果を説明するための図、第4図aは本発明の1実施例
である光学的記録再生方式の構成を示すブロック図、b
は同要部の平面図、第6図は絞りレンズと絞りレンズへ
の入射光a1+a2および溝の方向と溝上に形成される
絞り光スポットL1.L2の相互の関係を説明するため
の平面図である。 1・・・・・・基材、2・・・・・・溝、3・・・・・
・記録薄膜、10・・・・・・絞りレンズ、Ll、L2
・・・・・・光スポット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第五
図 ρ 第2図
Fig. 1 is an operation explanatory diagram for simply explaining the principle operation of a recording thin film that can optically record and erase signals, and Fig. 2 is a cross-sectional perspective view of an important part of an example of a grooved optical recording disk used in the present invention. Figure 3a is a diagram showing a method and configuration of creating a circular recording 16 page playback light and an oval light L2 in the groove direction using one aperture lens, which is used in the present invention. b is a plan view of the light spot on the groove, C is the light 4. A diagram for explaining the thermal effect that L2 has on the recording thin film, FIG.
6 is a plan view of the same main part, and FIG. 6 shows the aperture lens, the incident light a1+a2 to the aperture lens, the direction of the groove, and the aperture light spot L1. FIG. 3 is a plan view for explaining the mutual relationship of L2. 1...Base material, 2...Groove, 3...
・Recording thin film, 10...Aperture lens, Ll, L2
・・・・・・Light spot. Name of agent: Patent attorney Toshio Nakao and one other person Figure 5 ρ Figure 2

Claims (1)

【特許請求の範囲】 0)レーザ等の光源からの光ビームを微小径の光スポッ
トに絞って相対的に移動する記録薄膜に照射し、その記
録薄膜の加熱サイクルの相異による状態転移を利用して
光学的な濃度変化として信号を可逆的に記録、および消
去する光学記録再生方式であって、昇温徐冷条件で到達
する記録薄膜の状態を信号を消去した状態とし、昇温急
冷条件で到達する記録薄膜の状態を信号と記録した状態
として用いることを特徴とする光学的記録再生方式。 (2)昇温急冷条件を、微小円形光スポットを、高い周
波数の第1の信号で強度変調して記録薄膜上に照射して
形成し、昇温徐冷条件を、微小で記録薄膜の相対的移動
方向に長円形の光スポットを、第1の信号よシ低い周波
数の信号で強に変調して記録薄膜上に形成して、それぞ
れ得ることを特徴とする特許請求の範囲第1項記載の光
学記録再生方式 ンベー゛ (3)微小円形光スポットと、長円形の光スポットを同
一の絞りレンズで絞り、記録薄膜上に近接して形成する
ことを特徴とする特許請求の範囲第2項に記載の光学的
記録方式。
[Claims] 0) Focusing a light beam from a light source such as a laser into a microscopic light spot and irradiating it onto a relatively moving recording thin film, utilizing state transitions due to differences in heating cycles of the recording thin film. This is an optical recording and reproducing method that reversibly records and erases signals as optical density changes by heating and cooling. An optical recording and reproducing method characterized in that the state of the recording thin film reached at 1 is used as a signal and a recorded state. (2) Temperature raising and rapid cooling conditions are formed by irradiating a minute circular light spot onto the recording thin film with intensity modulation using a first signal of a high frequency, and heating and slow cooling conditions are created by Claim 1, characterized in that an oval light spot in the target movement direction is formed on the recording thin film by strongly modulating it with a signal of a lower frequency than the first signal, thereby obtaining each light spot. Claim 2: Optical recording/reproducing method (3) A minute circular light spot and an oval light spot are apertured by the same aperture lens and formed close to each other on the recording thin film. The optical recording method described in .
JP1839383A 1983-02-07 1983-02-07 Optical recording and reproducing system Pending JPS59144049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1839383A JPS59144049A (en) 1983-02-07 1983-02-07 Optical recording and reproducing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1839383A JPS59144049A (en) 1983-02-07 1983-02-07 Optical recording and reproducing system

Publications (1)

Publication Number Publication Date
JPS59144049A true JPS59144049A (en) 1984-08-17

Family

ID=11970458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1839383A Pending JPS59144049A (en) 1983-02-07 1983-02-07 Optical recording and reproducing system

Country Status (1)

Country Link
JP (1) JPS59144049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131235A (en) * 1984-11-30 1986-06-18 Hitachi Ltd Information recording method
EP0218243A2 (en) * 1985-10-08 1987-04-15 Matsushita Electric Industrial Co., Ltd. Data recording and reproducing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629785U (en) * 1979-08-10 1981-03-20
JPS5754856A (en) * 1980-09-19 1982-04-01 Matsushita Electric Ind Co Ltd Oxygen concentration detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629785U (en) * 1979-08-10 1981-03-20
JPS5754856A (en) * 1980-09-19 1982-04-01 Matsushita Electric Ind Co Ltd Oxygen concentration detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131235A (en) * 1984-11-30 1986-06-18 Hitachi Ltd Information recording method
EP0218243A2 (en) * 1985-10-08 1987-04-15 Matsushita Electric Industrial Co., Ltd. Data recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
US4566088A (en) Optical and reversible recording and reproducing apparatus
JPH0777025B2 (en) Optical recording / reproducing device
JP3201759B2 (en) Magneto-optical recording / reproducing method, recording medium suitable for use in this method, and magneto-optical recording / reproducing apparatus
US5297128A (en) Optical information recording/reproducing apparatus including means for varying intensity of a preheating light beam
US4679184A (en) Optical recording and reproducing apparatus having erasing beam spot with asymmetrical intensity distribution
JPH0532811B2 (en)
JPH0816987B2 (en) Optical recording / reproducing device
JPH01199344A (en) Magneto-optical recording and reproducing system
JPS59144049A (en) Optical recording and reproducing system
JPS5920168B2 (en) optical recording/playback device
JPH02177131A (en) Method and device for erasing/recording of optical recording medium
JPS59172167A (en) Reversible optical recorder and reproducing device
JPS5971143A (en) Optical recorder and reproducer
JP2749067B2 (en) Information recording method and apparatus and information recording / reproducing method and apparatus
JPS60258733A (en) Erasable optical recording and reproducing device
JPS60197935A (en) Erasable optical recording and reproducing device
JPS61187139A (en) Optical information recording method
JPS61133033A (en) Optical recording and reproducing system
JP3205050B2 (en) Optical information recording device and optical information reproducing device
JPS6113454A (en) Optical recording and reproducing device
JPS61239427A (en) Rewritable optical disk device
JP2854962B2 (en) Information playback device
JPS60263351A (en) Erasable optical recording and reproducing device
JPS60256924A (en) Optical reversible recording and reproducing device
JPS615447A (en) Erasable optical recording and reproducing device