JPS59143370A - Semiconductor rectifying device - Google Patents

Semiconductor rectifying device

Info

Publication number
JPS59143370A
JPS59143370A JP1603283A JP1603283A JPS59143370A JP S59143370 A JPS59143370 A JP S59143370A JP 1603283 A JP1603283 A JP 1603283A JP 1603283 A JP1603283 A JP 1603283A JP S59143370 A JPS59143370 A JP S59143370A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
rectifier
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1603283A
Other languages
Japanese (ja)
Inventor
Masami Naito
正美 内藤
Yoshiteru Shimizu
清水 喜輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1603283A priority Critical patent/JPS59143370A/en
Publication of JPS59143370A publication Critical patent/JPS59143370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Abstract

PURPOSE:To increase the withstand voltage and contrive to passess the characteristic excellent in low loss property and in high speed property by introducing a means which induces the action of carrier compensation at a part wherein the main current passage is pinched off by the depletion layer of a region serving as said passage. CONSTITUTION:A semiconductor substrate is adjacent to an n<+> type layer 1 and a layer 1, forming a p-n junction between an n type base layer 2 and a layer 2 of concentrations lower than those of said layers, and having a p type layer 4 thinner than stripe form p<+> type layer 3 and layer 3 and lower in concentration than said layers. The region 10 of the layer 2 is doped with Au. In this constitution, when a positive voltage is impressed on an anode electrode 6 and a negative one on a cathode electrode 5, the most part of forward current flows to a lamination structural part I consisting of a p-n-n<+> structure. Next, when the negative voltage is impressed on the electrode 6 and the negative one on the electrode 5, the depletion layer stretches from the p<+>n junction 7 of a lamination structural part II to the side of the structural part I , pinching off the channel part 10 of the structural part I , and thus blocking a reverse voltage. Therefore, the increase of the withstand voltage can be attained, and the speed-up and the reduction of loss can be contrived in forward directional operation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体整流装置、特に整流用ダイオードに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor rectifier, and in particular to a rectifier diode.

〔従来技術〕 電子計算機およびそれに連なる各種端末機器、あるいは
各種システム機器の′電源として、比較的低電圧の直流
安定化電源全装する。商用交流電源から低電圧の直流安
定化電源を得るためには種々の方法があるが、小型、高
効率の特徴を持つスイッチングレギュレータ方式が優れ
ている。
[Prior Art] A relatively low-voltage DC stabilized power supply is fully installed as a power source for electronic computers and various terminal equipment connected thereto, or various system equipment. There are various methods for obtaining a low-voltage DC stabilized power supply from a commercial AC power supply, but the switching regulator method is superior due to its small size and high efficiency.

上述のような電源に用いられる整流用ダイオードとして
は低損失性、安定性および高速性が要求されるが、従来
公知のダイオードではこれらの点で不満足であった。す
なわち、第1図にその例を示す周知のショットキバリヤ
ダイオードでは逆方向漏れ電流が大きくかつ耐圧が数十
■程腿と低く熱的に不安定であるという欠点があった。
Rectifier diodes used in power supplies such as those described above are required to have low loss, stability, and high speed, but conventionally known diodes have been unsatisfactory in these respects. That is, the well-known Schottky barrier diode, an example of which is shown in FIG. 1, has the drawbacks of large reverse leakage current, low withstand voltage of several tens of microns, and thermal instability.

また、第2図にその1例を示すpn接合型のダイオード
では比較的高耐圧が得られるが低損失性が十分でないと
いう欠点があった。
Further, a pn junction type diode, an example of which is shown in FIG. 2, has a drawback that although a relatively high breakdown voltage can be obtained, the loss is not sufficiently low.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の整流ダイオードの欠点を解決し
、低損失性、高速性に優れると共に高耐圧の半導体整流
装置を提供することにある。
An object of the present invention is to solve the drawbacks of conventional rectifying diodes and to provide a semiconductor rectifying device that has low loss, high speed, and high breakdown voltage.

〔発明の概要〕[Summary of the invention]

不発羽生導体整流装置の特徴とするところは、一対の主
電極間の半導体基体が、主電流通路となる第1の領域と
主電流通路全実質的にとり囲、むように設けられ、pn
接合を有し、このpn接合が逆バイアスされたときに生
じる空乏層により主電流通路全ピンチオフする機能金有
する第2の領域とからなシ、第1の領域の少くともピン
チオンされる部分に重金属又は格子欠陥等のキャリヤ補
償作用を引起す手段全導入したことにある。
The feature of the unexploded Hanyu conductor rectifier is that the semiconductor substrate between the pair of main electrodes is provided so as to substantially surround the first region serving as the main current path and the entire main current path;
The second region has a function of pinching off the entire main current path due to the depletion layer generated when this pn junction is reverse biased, and the first region has a heavy metal at least in the portion that is pinched off. Alternatively, all means for causing carrier compensation effects such as lattice defects have been introduced.

このように主電流上流す第1の領域と主電流を実質的に
流さない第2の領域とを備え、逆阻止状態においては第
2の領域で生じる空乏層によって第1の領域がピンチオ
ンされ逆電流が阻止される構成となっているので、第1
の領域の構造を高耐圧化とは一般に相反する関係にある
低損失かつ高速化という点のみから設計でき、よって低
損失、高速、高耐圧を備えた半導体基体内Rを実現でき
る。また、第1の領域のピンチオンされる部分はキャリ
ヤ補償作用により抵抗率が高くなっているので、pn接
合からの静電的影響音強く受はピンチオフ効果が強くな
るので、ピンチオフ會起すための構造寸法上の制限が大
幅に緩和され、素子製造が極めて容易になる。
In this way, it has a first region through which the main current flows and a second region where the main current does not flow substantially, and in the reverse blocking state, the first region is pinched on by the depletion layer generated in the second region and the reverse occurs. Since the current is blocked, the first
The structure of the region can be designed only from the viewpoint of low loss and high speed, which are generally in a contradictory relationship with high withstand voltage, and therefore it is possible to realize R in the semiconductor substrate with low loss, high speed, and high withstand voltage. In addition, since the portion of the first region that is pinched has a high resistivity due to the carrier compensation effect, the electrostatic sound from the pn junction is strongly affected, and the pinch-off effect becomes stronger. Dimensional restrictions are significantly relaxed, and device manufacturing becomes extremely easy.

〔発明の実施例〕[Embodiments of the invention]

以下、実禰例として示した図面により本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to the drawings shown as practical examples.

第3図及び第4図において、一対の主表面101及び1
02を有する半導体基体100は、一対の主表面間に、
カソード電極5にオーミック接触するn層型層1、層1
に隣接しそれよりも低濃度のn型ベース層2、層2に隣
接して層2との間にpn接合を形成しアノード電極6に
達するストライプ状のp+型層3および層3よりも薄く
て低濃度のp型層4を有し、少くとも層2の概略1oで
示す領域には金(Au)がドープされている1これによ
って半導体基体内に、n層層の第1の部分la、n層の
第1の部分2b及び9層4とで構成され7’(第1の積
層構造部Iと、n層層の第2の部分1b、n層の第2の
部分2b、p+層3とで構成され第1の積層構造部Iを
包囲する第2の積層構造部■とが形成される。一方の主
表面102に露出するprt接合は、酸化膜9で保護さ
れている。
In FIGS. 3 and 4, a pair of main surfaces 101 and 1
02, between a pair of main surfaces,
n-type layer 1, layer 1 in ohmic contact with cathode electrode 5
an n-type base layer 2 adjacent to and having a lower concentration than the layer 2, a striped p+ type layer 3 adjacent to the layer 2 forming a pn junction with the layer 2 and reaching the anode electrode 6; has a lightly doped p-type layer 4 and is doped with gold (Au) at least in the region indicated generally at 1o of layer 21. , the first part 2b of the n-layer and the nine-layer 4 7' (the first laminated structure part I, the second part 1b of the n-layer, the second part 2b of the n-layer, the p+ layer 3 and a second laminated structure part (2) surrounding the first laminated structure part I is formed.The prt junction exposed on one main surface 102 is protected by an oxide film 9.

この実癩例装置の半導体基体は一辺が約4震の正方形状
である。この装置は周知の半導体製造技術を用いて作製
し得る。その−例を概略説明すれば次の通りである。
The semiconductor substrate of this leprosy example device has a square shape of approximately 4 squares on each side. This device can be fabricated using well-known semiconductor manufacturing techniques. An example of this will be briefly explained as follows.

まず、n+型のシリコン単結晶ウェハを準備し、その一
方面全面に約6Ω確の抵抗率のn型シリコン単結晶層を
約15μmの厚さにエピタキシャル成長する。これをシ
リコン基板とする。次に、リン(I) )を単結晶ウェ
ハの他方面から選択的に将来ペレタイズされたとき半導
体基体周縁となる個所に拡散して他方面に露出しかつエ
ピタキシャル成長したn+層に連らなるn1型層を形成
する。
First, an n+ type silicon single crystal wafer is prepared, and an n type silicon single crystal layer having a resistivity of about 6 Ω is epitaxially grown on the entire surface of the wafer to a thickness of about 15 μm. This is used as a silicon substrate. Next, phosphorus (I) is selectively diffused from the other side of the single crystal wafer into the area that will become the periphery of the semiconductor substrate when it is pelletized in the future, and is exposed on the other side and continues to the epitaxially grown n+ layer. form a layer.

次に、単結晶ウェハの他方面から酸化膜をマスクとして
ほう素(B )を選択的に拡散してp+型層3を約5μ
mの深さに形成する。更に他方面からほう素イオンを打
込み、熱処理を施してp型層4を形成する。続いてエピ
タキシャル成長したn+層表面に金を蒸着し、約915
Cで20分熱処理して金をシリコン基板100内に拡散
させる。次に、シリコン基板100の両面の所定部に例
えばkt8 i、またはcr−Ni−Agの積層膜を蒸
着してアノード電極6およびカソード電極5を形成する
。なお、8102膜9は上述した拡散工程で、あるいは
別途CVD法等により堆積される。
Next, boron (B) is selectively diffused from the other side of the single crystal wafer using the oxide film as a mask to form a p+ type layer 3 of about 5 μm.
Form to a depth of m. Further, boron ions are implanted from the other side and heat treatment is performed to form the p-type layer 4. Subsequently, gold was deposited on the surface of the epitaxially grown n+ layer to a thickness of approximately 915 nm.
Gold is diffused into the silicon substrate 100 by heat treatment at C for 20 minutes. Next, a laminated film of, for example, kt8i or cr-Ni-Ag is deposited on predetermined portions of both surfaces of the silicon substrate 100 to form the anode electrode 6 and the cathode electrode 5. Note that the 8102 film 9 is deposited by the above-mentioned diffusion process or by a separate CVD method.

この装置のアノード・カソード両電極間にアノード電極
6がカソード電極5に対して正の電位となるような屯田
を刃口えると、pnn+nn外ら成る第1の積層構造部
■に順電流の殆んどが流れる。
When a field is inserted between the anode and cathode electrodes of this device so that the anode electrode 6 has a positive potential with respect to the cathode electrode 5, most of the forward current flows to the first laminated structure part (2) consisting of pnn+nn. The water flows.

次に両電極間にカソード電極5がアノード電極6に対し
て正の電位となるよりな重圧を加えると、第2の積層構
造部■のp+ n  接合7から空乏層が第1の積層構
造部lll1llに伸び、第1の積j−構造部Iの10
で示した領域(以下チャネル部と称す)をピンチオフし
逆電圧が阻止される。本実I4i例では、チャネルSF
(10の抵抗率は金をドープしたことによるキャリヤ補
償作用により、もとのエピタキシャル成長層の抵抗率よ
りも高くなっており、約500Ωmである。耐圧の高い
p+ n接合7が逆電圧を阻止するので、p型層4とn
型層20間のpn接合11を、高耐圧化と一般に相反す
る高速低損失化の面のみから設計できる。本実施例では
p型層4の厚さを約1μmと薄くかつ不純物濃度を低く
しである。このようにすると、順方向動作時にn型ベー
ス層2へのキャリヤ注入量が少くなり、このため高速化
と共に、pn接合11に印加される接合域圧が低くなっ
て低損失化が図れる。
Next, when more pressure is applied between the two electrodes so that the cathode electrode 5 has a positive potential with respect to the anode electrode 6, the depletion layer flows from the p+ n junction 7 of the second laminated structure part 2 to the first laminated structure part. lll1ll, first product j - 10 of structure I
By pinching off the region shown in (hereinafter referred to as channel section), reverse voltage is blocked. In the real I4i example, channel SF
(The resistivity of 10 is higher than the resistivity of the original epitaxial growth layer due to the carrier compensation effect caused by doping with gold, and is about 500 Ωm.The high withstand voltage p+n junction 7 prevents reverse voltage. Therefore, p-type layer 4 and n
The pn junction 11 between the mold layers 20 can be designed only from the viewpoint of high speed and low loss, which are generally contradictory to high breakdown voltage. In this embodiment, the thickness of the p-type layer 4 is as thin as about 1 μm, and the impurity concentration is low. In this way, the amount of carriers injected into the n-type base layer 2 during forward operation is reduced, and as a result, the speed is increased and the junction region pressure applied to the pn junction 11 is lowered, resulting in lower loss.

第5図及び第6図にp型層40表面不純物損度Napに
対する順電圧降下と逆回復時間t□との関係を示すが、
Nspを101!1C1n匂のオーダーにすると、通常
の10”cm−”のオーダーに比べて順電圧が約0.1
v減となり低損失に、またt rrが約1/3〜1/4
と高速になることがわかる。
FIGS. 5 and 6 show the relationship between the forward voltage drop and the reverse recovery time t□ with respect to the surface impurity loss Nap of the p-type layer 40.
If Nsp is on the order of 101!1C1n, the forward voltage will be about 0.1 compared to the normal order of 10"cm-".
V is reduced, resulting in low loss, and trr is approximately 1/3 to 1/4
You can see that it becomes faster.

第7図に、本実施例装置の嶋流密度100A/cri、
での順電圧降下を示す。チャネル部100幅Wを狭くす
ると順電圧降下が高くなるが、その増加の割合は顕著で
なく、高さ0.02V程度であり低損失性を保つ。これ
に対し、第8図に示すように、逆阻止′醒圧はチャネル
幅Wを狭くすると大幅に上昇する。Wが30μm程度の
ときには逆阻止電圧がpnn+接合11で決る値を持つ
が、Wが22μmより小さくなるとp+ n接合7の静
電効果が現れ(9) て逆阻市′ポ圧が上昇しはじめる。Wが12μmになる
と逆阻止電圧が150■と高くなり十分な効果が得られ
る。
FIG. 7 shows the island flow density of the device of this embodiment, 100 A/cri,
shows the forward voltage drop at When the width W of the channel portion 100 is narrowed, the forward voltage drop increases, but the rate of increase is not significant and the height is about 0.02 V, maintaining low loss. On the other hand, as shown in FIG. 8, the reverse blocking pressure rises significantly when the channel width W is narrowed. When W is about 30 μm, the reverse blocking voltage has a value determined by the pnn+ junction 11, but when W becomes smaller than 22 μm, the electrostatic effect of the p+ n junction 7 appears (9) and the reverse blocking voltage begins to rise. . When W is 12 μm, the reverse blocking voltage becomes as high as 150 μm, and a sufficient effect can be obtained.

静電効果が現れるチャネル幅及び十分な効果が得られる
チャネル幅はチャネル部10の抵抗率に依存し、抵抗率
が高くなる程広くなる。第9図はこの関係を示した図で
ある。チャネル部10の抵抗率は、エピタキシャル層の
抵抗率と金などのキャリヤ補償作用を起す不純物の拡散
温度を制御して調節できる。
The channel width at which the electrostatic effect appears and the channel width at which a sufficient effect is obtained depend on the resistivity of the channel portion 10, and the higher the resistivity, the wider the channel width becomes. FIG. 9 is a diagram showing this relationship. The resistivity of the channel portion 10 can be adjusted by controlling the resistivity of the epitaxial layer and the diffusion temperature of an impurity such as gold that causes a carrier compensation effect.

第9図で実線で示す21.22は本実施例のように半導
体層2がn型の場合、破線で示す31゜32は本実施例
とはpm、n型領域が全て逆になり、層2がp型の場合
である。このように、p型。
21.22 shown by a solid line in FIG. 9 is an n-type semiconductor layer 2 as in this embodiment, and 31° 32 shown by a broken line is a layer in which the pm and n-type regions are all reversed from this embodiment. 2 is a p-type case. In this way, p-type.

n型を逆にしても本実姉例と同様の効果が得られる。2
1.31は静電効果が現れて逆阻止電圧が上りはじめる
チャネル幅を表し、22.32は十分な効果を得られる
チャネル幅を示す。この図かられかるように、チャネル
幅を容易に実現できる寸法として3μm以上とすると、
層2がn型の場(10) 合にはチャネル部の抵抗率が9Ωm以上で逆阻止電圧上
昇の効果を得られ、33Ω口以上で150■以上の高耐
圧と十分な効果を得られる。層2がp型の場合には、対
応する抵抗率はそれぞれ27Ωm及び100Ω鋸である
Even if the n-type is reversed, the same effect as in this example can be obtained. 2
1.31 represents the channel width at which the electrostatic effect appears and the reverse blocking voltage begins to rise, and 22.32 represents the channel width at which a sufficient effect can be obtained. As can be seen from this figure, if the channel width is set to 3 μm or more as a dimension that can be easily realized,
When the layer 2 is n-type (10), the effect of increasing the reverse blocking voltage can be obtained when the resistivity of the channel portion is 9 Ωm or more, and the sufficient effect of a high breakdown voltage of 150 μm or more can be obtained when the resistivity of the channel portion is 33 Ω or more. If layer 2 is p-type, the corresponding resistivities are 27 Ωm and 100 Ωm, respectively.

第10図は本発明の他の実施例の断面構造図であり、第
4図と同じところは、同じ符号で示しである。本実施例
が第3図及び第4図の実施例と異なるところは、第1の
積層構造部Iにおいて、p型層4がなく、n型層2とア
ノード電極6の間にショットキバリヤ12が形成されて
いる点にある。
FIG. 10 is a cross-sectional structural diagram of another embodiment of the present invention, and the same parts as in FIG. 4 are indicated by the same symbols. This embodiment differs from the embodiments shown in FIGS. 3 and 4 in that in the first stacked structure portion I, there is no p-type layer 4, and a Schottky barrier 12 is provided between the n-type layer 2 and the anode electrode 6. It is at the point where it is formed.

この構造では、主電流通路の接合がpn接合でなくショ
ットキ接合なので第3図及び第4図の実施例の場合よシ
も高速かつ低損失になり、高耐圧化については光の実姉
例と同様の効果が得られる。
In this structure, the junction of the main current path is not a pn junction but a Schottky junction, so it has higher speed and lower loss than the embodiments shown in Figs. 3 and 4, and the high breakdown voltage is similar to the optical sister example. The effect of this can be obtained.

第11図に、このような構造で逆阻止電圧が上りはじめ
るチャネル幅とチャネル部抵抗率の関係41.51と1
50Vの高耐圧を得られるチャネル幅とチャネル部抵抗
率の関係42.52を示す。
Figure 11 shows the relationship 41.51 and 1 between channel width and channel resistivity at which the reverse blocking voltage begins to rise in such a structure.
The relationship 42.52 between the channel width and the channel resistivity that allows a high breakdown voltage of 50V to be obtained is shown.

41.42は層2が本実施例のようにn型の場合、(1
1) 51.52は第10図の構造とp型、n型を反転し、層
2がp型の場合である1図示のように、層2がn型の場
合、チャネル部の抵抗率が9Ωm以上で逆阻止電圧上昇
の効果を得られ、166Ω画以上で十分な効果が得られ
る。層2がp型の場合、対応する抵抗率はそれぞれ27
Ωz、5ooΩcn1である。
41.42 is (1
1) 51.52 is the case where the p-type and n-type are reversed from the structure in Figure 10, and the layer 2 is the p-type.1 As shown in the figure, when the layer 2 is the n-type, the resistivity of the channel part is At 9 Ωm or more, the effect of increasing the reverse blocking voltage can be obtained, and at 166 Ωm or more, a sufficient effect can be obtained. If layer 2 is p-type, the corresponding resistivity is 27
Ωz, 5ooΩcn1.

第12図は本発明の更に他の実症例による断面構造図で
ある。本実施例が第3図及び第4図の実施例と異なると
ころは半導体層4がp型ではなくn+型であり、層2が
層4を介してアノード電極6にオーム性の接続をしてい
る点にある。この構造では第1の積層構造部Iに整流性
の接合がないので、高耐圧を出すのは難しいが、より高
速低損失の素子が得られる利点がある。チャネル幅が広
いと整流性が得られにくいが、チャネル幅を狭くすると
整流効果が現れる。
FIG. 12 is a cross-sectional structural diagram of still another actual case of the present invention. This embodiment differs from the embodiments shown in FIGS. 3 and 4 in that the semiconductor layer 4 is of the n+ type instead of the p-type, and the layer 2 is ohmically connected to the anode electrode 6 through the layer 4. It is in the point where it is. In this structure, since there is no rectifying junction in the first laminated structure portion I, it is difficult to produce a high breakdown voltage, but it has the advantage of providing a higher speed and lower loss element. If the channel width is wide, it is difficult to obtain rectification, but if the channel width is narrowed, a rectification effect appears.

第13図にチャネル幅とチャネル部抵抗率の関係を示す
。実線61.62は層2がn型の場合、破線71.72
は本実施例とp型、n型を逆転し、(12) 層2がp型になっている場合である。61.71は整流
ダイオードとして実用に供することのできる逆阻止電圧
50Vを得られるチャネル幅、62゜72は100■の
良好な逆阻止電圧を得られるチャネル幅を示す。図示の
ようにチャネル幅を実用的な加工寸法3μmとして、層
2がn型の場合、チャネル部抵抗率が71Ωロ以上、好
ましくは1.100Ω口以上で良好な逆阻止覗圧を得ら
れる。
FIG. 13 shows the relationship between channel width and channel resistivity. The solid line 61.62 is the dashed line 71.72 when layer 2 is n-type.
(12) This is the case where the p-type and n-type are reversed from the present embodiment, and the layer 2 is of the p-type. 61.71 indicates a channel width at which a reverse blocking voltage of 50 V can be obtained that can be used practically as a rectifier diode, and 62°72 indicates a channel width at which a good reverse blocking voltage of 100 μ can be obtained. As shown in the figure, when the channel width is set to a practical processing dimension of 3 μm and the layer 2 is of n-type, a good reverse blocking pressure can be obtained when the channel resistivity is 71Ω or more, preferably 1.100Ω or more.

層2がp型の場合、対応する抵抗率はそれぞれ210Ω
cnr 、 3,300Ωmである。
If layer 2 is p-type, the corresponding resistivity is 210Ω, respectively.
cnr, 3,300 Ωm.

以上、本発明を特定の実施例について説明したが、本発
明はこれらに限られることなく、例えば、キャリヤ補償
作用を起す不純物として全以外のものを用いる場合にも
適用することができる。例えば白金を用いることができ
、この場合キャリヤ補償作用が弱いのでドープ前の層2
の抵抗率を高くすることを要求されるが、金を用いた場
合よりも逆漏れ電流が少いという効果がある。もちろん
キャリヤ補償作用を引起すものであれば他の不純物をド
ープしても良く、また、例えば放射線照射等(13) によって導入された格子欠陥等を利用しても良い。
Although the present invention has been described above with reference to specific embodiments, the present invention is not limited thereto, and can be applied, for example, to cases where impurities other than pure are used as the impurity that causes the carrier compensation effect. For example, platinum can be used; in this case, since the carrier compensation effect is weak, the layer 2 before doping can be used.
Although it is required to have a high resistivity, it has the effect of lower reverse leakage current than when gold is used. Of course, other impurities may be doped as long as they cause a carrier compensation effect, and lattice defects introduced by, for example, radiation irradiation (13) may also be used.

また、素子の構造も第3図、第4図、第10図。The structure of the element is also shown in FIGS. 3, 4, and 10.

第12図の第1の積層構造部Iがストライプ状でも良い
し、それ以外、例えば、円形、角形9曲線状で第2の積
層構造部■がそれを包囲するようにしてもよい。
The first laminated structure I in FIG. 12 may have a striped shape, or it may have another shape, such as a circle or a rectangular curved shape, and the second laminated structure I surrounds it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、高速、低損失、高
耐圧の特性を。つ半導体整流装置を容易に製造すること
ができる。
As explained above, according to the present invention, the characteristics of high speed, low loss, and high withstand voltage are achieved. A semiconductor rectifier can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来例の整流ダイオードの断面構造
図、第3図及び第4図は本発明の一実施例の構造を示す
概略図、第5図ないし第8図は本発明の一長施例の特性
を説明するための各種特性図、第9図は本発明の一実施
例の構造による効果を説明するだめの図、第10図は他
の実施例の構造を示す概略図、第11図は他の実施例の
構造による効果を説明するだめの図、第12図は本発明
のさらに他の実砲例の構造を示す概略図、第13(14
) 図はこの実施例の構造による効果を説明するための図で
ある。 1・・・n+型層、2・・・n型ベース層、3・・・p
+型層、5・・・カソード電極、6・・・アノード電極
、10・・・チ(15) 351− 第 乙 霞 (へン “[−7′□3  @u【 N5F(c/rrL−3) ナヤ辛)し 暢 W ()’机) 拓8図 午ヤ和し 幅 W  (%帆) 午ヤキJし都J艮Jた本 (え。1) 第 10 図 拓71図 午ヤ午jし都右(J電車(几C叛) 菊 /Z 図 第 /3 関 ヂャ挙ル郵抵読十(Ac恨)
1 and 2 are cross-sectional structural diagrams of conventional rectifier diodes, FIGS. 3 and 4 are schematic diagrams showing the structure of an embodiment of the present invention, and FIGS. Various characteristic diagrams for explaining the characteristics of the first embodiment, FIG. 9 is a diagram for explaining the effects of the structure of one embodiment of the present invention, and FIG. 10 is a schematic diagram showing the structure of another embodiment. , FIG. 11 is a diagram for explaining the effects of the structure of another embodiment, FIG. 12 is a schematic diagram showing the structure of still another example of the actual gun of the present invention, and FIG.
) The figure is a diagram for explaining the effects of the structure of this embodiment. 1...n+ type layer, 2...n type base layer, 3...p
+ type layer, 5... cathode electrode, 6... anode electrode, 10... chi (15) 351- No. Otsu Kasumi (Hen "[-7'□3 @u[ N5F(c/rrL- 3) Nayashin)shinobu W ()'Desk) Raku 8 drawing 71 illustrations width W (% sail) illustration 71 illustrations J Shito Right (J Train (几C 叛) Chrysanthemum /Z Diagram No. 3 Kanjiya Guru Post Resistance Reading Ten (Ac Grudge)

Claims (1)

【特許請求の範囲】 1、一対の主表面を有する半導体基体と、半導体基体の
両生表面にコンタクトする一対の主電極と金有し、半導
体基体は一方の主表面に隣接する一方導゛眠型の第1の
半導体層の第1の部分と、第1の半導体層に隣接し第1
の半導体層より低い不純物濃度を有する一方導成型の第
2の半導体層の第1の部分と、第2の半導体層の第1の
部分と他方の主表面に隣接し、第2の半導体層の第1の
部分との間にpn接合を形成する他方導電屋の第3の半
導体層からなる一方の積層構造部と、第1の半導体層の
$2の部分と、第2の半導体層の第2の部分とで形成さ
れ一方の積層構造部で包囲された他方の積層構造部とか
ら成9、他方の積層構造部は一方の積層構造部のpn接
合を逆バイアスした時に生じる空乏層の拡がりによって
ピンチオフされる寸法形状となっており、かつ他方の積
層構造部の第2の半導体層の第2の部分の少くとも空乏
層によってピンチオンされる個所にはキャリヤ補償作用
を引起す手段が導入されていること’t%徴とする半導
体整流装置。 2、特許請求の範囲第1項において、他方の積層構造部
が、第2の半導体層の第2の部分及び他方の主表通に隣
接し、第2の半導体層の第2の部分との間にpnn金合
金形成第3の半導体層よりも低不純濃度でかつ厚さの薄
い他方導電型の第4の半導体層を有することを特徴とす
る半導体整流装置。 3、t¥i許稍求の範囲第1項において、他方の積層構
造部の第2の半導体層の第2の部分が、主電極の一方と
整流性の接触をすることを特徴とする半導体整流装置。 4、特許請求の範囲第1項において、他方の積層構造部
の第2の半導体層の第2の部分が、主電極の一方とオー
ム性の低抵抗接続をしていることを特徴とする半導体整
流装置。 5、特許請求の範囲第4項において、他方の積層構造部
の第2の半導体層の第2の部分が、それよシも高不純物
製置の一方導電型の第5の半導体層を介して主1JL&
の一方に低抵抗接続していることを特徴とする半導体整
流装置。 6、%許請求の範囲第1項、第2項、第3項、第4項、
或いは第5項において、キャリヤ補償作用を有する手段
が、重金F4原子を含む不純物でおること全特徴とする
半導体!@流装置。 7、特許請求の範囲第1項、第2項、第3項、第4項、
或いは第5項において、キャリヤ補償作用を引起す手段
が半導体中の格子欠陥であることを特徴とする半導体整
流装置。
[Scope of Claims] 1. A semiconductor substrate having a pair of main surfaces, a pair of main electrodes in contact with the bidirectional surfaces of the semiconductor substrate, and a metal, the semiconductor substrate being adjacent to one of the main surfaces. a first portion of the first semiconductor layer; and a first portion adjacent to the first semiconductor layer;
a first portion of a second semiconductor layer of one conductivity type having an impurity concentration lower than that of the semiconductor layer; One laminated structure part consists of a third semiconductor layer of the other conductive layer forming a pn junction with the first part, a $2 part of the first semiconductor layer, and a second part of the second semiconductor layer. 9, the other stacked structure is formed by the expansion of the depletion layer that occurs when the pn junction of one stacked structure is reverse biased. and a means for causing a carrier compensation effect is introduced at least at a portion of the second portion of the second semiconductor layer of the other stacked structure portion that is pinched off by the depletion layer. Semiconductor rectifier with 't% characteristics. 2. In claim 1, the other laminated structure portion is adjacent to the second portion of the second semiconductor layer and the other main street, and is connected to the second portion of the second semiconductor layer. A semiconductor rectifying device characterized by having a fourth semiconductor layer of the other conductivity type which has a lower impurity concentration and a thinner thickness than the pnn gold alloy formed third semiconductor layer between the layers. 3. Range of requirements for t¥i In item 1, the semiconductor is characterized in that the second portion of the second semiconductor layer of the other stacked structure portion is in rectifying contact with one of the main electrodes. Rectifier. 4. The semiconductor according to claim 1, wherein the second portion of the second semiconductor layer of the other laminated structure has an ohmic low resistance connection with one of the main electrodes. Rectifier. 5. In claim 4, the second portion of the second semiconductor layer of the other stacked structure is formed through a fifth semiconductor layer of one conductivity type which is also highly impurity-doped. Main 1JL&
A semiconductor rectifier characterized by a low resistance connection to one side of the rectifier. 6. Percentage Scope of Claims 1, 2, 3, 4,
Alternatively, in item 5, the semiconductor is characterized in that the means having a carrier compensation effect is an impurity containing a heavy metal F4 atom! @Flow device. 7. Claims 1, 2, 3, 4,
Alternatively, the semiconductor rectifier according to item 5, wherein the means for causing the carrier compensation effect is a lattice defect in the semiconductor.
JP1603283A 1983-02-04 1983-02-04 Semiconductor rectifying device Pending JPS59143370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1603283A JPS59143370A (en) 1983-02-04 1983-02-04 Semiconductor rectifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1603283A JPS59143370A (en) 1983-02-04 1983-02-04 Semiconductor rectifying device

Publications (1)

Publication Number Publication Date
JPS59143370A true JPS59143370A (en) 1984-08-16

Family

ID=11905228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1603283A Pending JPS59143370A (en) 1983-02-04 1983-02-04 Semiconductor rectifying device

Country Status (1)

Country Link
JP (1) JPS59143370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017976A (en) * 1988-12-02 1991-05-21 Kabushiki Kaisha Toshiba Semiconductor device having intermediate layer for pinching off conductive path during reverse bias application
EP0568269A2 (en) * 1992-04-28 1993-11-03 Mitsubishi Denki Kabushiki Kaisha Diode and method for manufacturing the same
JP2006295062A (en) * 2005-04-14 2006-10-26 Rohm Co Ltd Semiconductor device
US7932133B2 (en) 2004-06-14 2011-04-26 Tyco Electronics Corporation Circuit protection method using diode with improved energy impulse rating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017976A (en) * 1988-12-02 1991-05-21 Kabushiki Kaisha Toshiba Semiconductor device having intermediate layer for pinching off conductive path during reverse bias application
EP0568269A2 (en) * 1992-04-28 1993-11-03 Mitsubishi Denki Kabushiki Kaisha Diode and method for manufacturing the same
EP0568269A3 (en) * 1992-04-28 1995-04-19 Mitsubishi Electric Corp Diode and method for manufacturing the same.
US7932133B2 (en) 2004-06-14 2011-04-26 Tyco Electronics Corporation Circuit protection method using diode with improved energy impulse rating
JP2006295062A (en) * 2005-04-14 2006-10-26 Rohm Co Ltd Semiconductor device
WO2006112291A1 (en) * 2005-04-14 2006-10-26 Rohm Co., Ltd. Semiconductor device
US7535075B2 (en) 2005-04-14 2009-05-19 Rohm Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP2667477B2 (en) Schottky barrier diode
US6602769B2 (en) Low-voltage punch-through bi-directional transient-voltage suppression devices and methods of making the same
US6600204B2 (en) Low-voltage punch-through bi-directional transient-voltage suppression devices having surface breakdown protection and methods of making the same
US10651299B2 (en) Semiconductor device
US4607270A (en) Schottky barrier diode with guard ring
JPS61287266A (en) Semiconductor device
JP2005505913A5 (en)
JP2003318413A (en) High breakdown voltage silicon carbide diode and manufacturing method therefor
JPH07226521A (en) Semiconductor device for rectification
CN103208529B (en) Semiconductor diode and the method for forming semiconductor diode
US20210098579A1 (en) Schottky diode with high breakdown voltage and surge current capability using double p-type epitaxial layers
JPS5929469A (en) Semiconductor device
CN110197853A (en) A kind of junction barrier schottky diode
JP2002246609A (en) Semiconductor device
JPS59143370A (en) Semiconductor rectifying device
JP3468571B2 (en) Semiconductor device
JP2934606B2 (en) Semiconductor device
KR890004960B1 (en) Semiconductor device
CN116190420B (en) Fast recovery diode structure and preparation method thereof
CN112216746B (en) Silicon carbide semiconductor device
JP2581890B2 (en) Semiconductor device
CN115498012A (en) Semiconductor device including field stop region
JP2024057596A (en) Power diode element and its manufacturing method
CN112216746A (en) Silicon carbide semiconductor device
JPH06177404A (en) Semiconductor diode