JPS59141408A - Production of high-purity carbon material - Google Patents

Production of high-purity carbon material

Info

Publication number
JPS59141408A
JPS59141408A JP58012455A JP1245583A JPS59141408A JP S59141408 A JPS59141408 A JP S59141408A JP 58012455 A JP58012455 A JP 58012455A JP 1245583 A JP1245583 A JP 1245583A JP S59141408 A JPS59141408 A JP S59141408A
Authority
JP
Japan
Prior art keywords
gas
carbon
pyrolytic carbon
production
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58012455A
Other languages
Japanese (ja)
Other versions
JPH0127970B2 (en
Inventor
Kunihiko Nishioka
西岡 邦彦
Shinsuke Nagata
永田 真資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58012455A priority Critical patent/JPS59141408A/en
Publication of JPS59141408A publication Critical patent/JPS59141408A/en
Publication of JPH0127970B2 publication Critical patent/JPH0127970B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The dry distillation gas which is obtained in the course of coke production is pyrolyzed by heating at elevated temperature to produce a high-purity carbon material composed of pyrolysis carbon from readily and inexpensively available sources. CONSTITUTION:The dry distillation gas produced in the process of coke production (usually containing about 30% of methane, about 55% of hydrogen, 7-8% of carbon monoxide and 2-4% of carbon dioxide) is used as a starting material to effect pryrolysis by heating the gas at elevated temperature range from 900 to 1,600 deg.C to give a high-purity carbon material composed of pyrolysis carbon. The pyrolysis carbon is highest in crystallinity among artificially produced carbon materials, has thermal and electrical anisotropy, being free from inorganic substance, thus being suitable for use as a material in the fields of electronics, nuclear energy and living body application.

Description

【発明の詳細な説明】 本発明はコークス製造過程で生成する乾留ガスを原料と
して高純度炭素材料を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-purity carbon material using carbonized gas produced in a coke production process as a raw material.

炭素材料は化学的に最も安定した基礎材料の一つであり
、近年の科学技術の発展に伴い、その耐熱性2例食性と
いった機能を利用した従来製品の用途の拡大と、さらに
、軽量で高強度、高弾性率を有する機能および熱的、電
気的異方性(炭素結晶の層に平行な方向および垂直方向
による熱伝導率、電気伝導率の違い)等の物理的特性を
利用して電子材料、原子力材料、生体用材料等に用途が
拡大している。このように需要の拡大と相俟って高純度
で低価格の炭素材料が要求されている。
Carbon materials are one of the most chemically stable basic materials, and with the development of science and technology in recent years, the use of conventional products that take advantage of their heat resistance and edibility properties has expanded, and they have also become lighter and more highly resistant. Electron Applications are expanding to materials, nuclear materials, biological materials, etc. As demand increases, high purity and low cost carbon materials are required.

熱分解炭素は人工的につくられる炭素材料のうちでは最
も結晶性に富み、かつ熱的、電気的異方性を有する点で
他の炭素材料と性質を異にしており、炭化水素系ガスの
熱分解によって製造されることから無機質のない高純度
炭素材料であることを特徴としている。
Pyrolytic carbon has the highest crystallinity among artificially created carbon materials, and differs from other carbon materials in that it has thermal and electrical anisotropy. Because it is produced by thermal decomposition, it is characterized by being a high-purity carbon material with no inorganic substances.

このような炭素材料を得るため、従来は、高価す炭化水
素ガス(メタン、プロノRン、ベンゼン等)の単独もし
くはこれらの混合ガスに、一般的には高価なH2ガスを
キャリヤーガスとして多配合したものを熱分解して製造
していた。
In order to obtain such carbon materials, conventionally, expensive hydrocarbon gas (methane, prono-R, benzene, etc.) alone or a mixture thereof is combined with expensive H2 gas as a carrier gas. It was manufactured by thermally decomposing the raw materials.

ところで、炭化水素ガスからの熱分解炭素の製造におい
て、その熱分解温度としては、基本的には炭化水素の分
解温度以上少くとも8oo℃以上であれば良いのである
が、一般的には2000〜2200℃の温度でつくられ
ている。工業規模での製造では1000℃あるいはそれ
よシ若干高い温度で製造する場合もある。しかし、この
程度の温度では、生成速度が遅くなる。他方、従来法に
おいてはH2ガスの混合は煤の発生を抑制するため85
〜95%も混合している。しかしながら、熱分解炭素の
製造は炭化水素ガスの濃度1組成および析出温度の制約
が極めて厳しい。これは、炭化水素ガスを単純に加熱す
るだけでは煤が発生し、良質の熱分解炭素が得られない
ためである。
By the way, in the production of pyrolytic carbon from hydrocarbon gas, the pyrolysis temperature should basically be at least 80°C or higher than the hydrocarbon decomposition temperature, but generally it is 2000 to 80°C. It is made at a temperature of 2200℃. On an industrial scale, production may be carried out at temperatures of 1000° C. or slightly higher. However, at this temperature, the production rate becomes slow. On the other hand, in the conventional method, H2 gas is mixed to suppress the generation of soot.
~95% is also mixed. However, the production of pyrolytic carbon is subject to extremely severe restrictions on the concentration, composition, and precipitation temperature of hydrocarbon gas. This is because simply heating hydrocarbon gas generates soot and makes it impossible to obtain high-quality pyrolyzed carbon.

本発明者らは、上記製造上の問題について、基礎実験を
重ねた結果、容易かつ安価に入手できるコークス製造時
に発生する乾留ガスを利用して上記化学的物理的特性に
すぐれた熱分解炭素材料が得られることを見い出した。
As a result of repeated basic experiments, the present inventors have solved the above manufacturing problem by using carbonized gas generated during coke production, which is easily and inexpensively available, to create a pyrolytic carbon material with excellent chemical and physical properties. was found to be obtained.

すなわち、コークスの製造過程で生成する乾留ガスを原
料ガスとし、該ガスを高温加熱によシ分解し、熱分解炭
素材料を得ることを1特徴とする高純度炭素材料の製造
方法である。
That is, the present invention is a method for producing a high-purity carbon material, which is characterized in that a carbonized gas produced in the process of producing coke is used as a raw material gas, and the gas is decomposed by high-temperature heating to obtain a pyrolytic carbon material.

さらに本発明に至った経過について詳述する。Furthermore, the progress that led to the present invention will be explained in detail.

まず熱分解炭素の製造上量も重要な炭化水素ガスの濃度
と組成について各種条件を変更して熱分解炭素の品質と
生成速度との関係を検討した。特に炭化水素ガス−とし
てメタンガスを用い、若干の炭酸ガス−酸化炭素ガス等
のガスを混合し、これを多量の水素ガスで希釈し、80
0℃以上に加熱された黒鉛基材と接触させ熱分解炭素を
析出させる実験を実施した。この結果従来法のメタンガ
スのみを水素ガスで希釈する方法では水素ガスを80係
以上含むように希釈しなければ、煤が発生し、良質の熱
分解炭素材料は得られないばかりか、このように水素ガ
スで多量に希釈したメタンガスでは析出速度も遅いこと
が判明した。熱分解炭素材料が高価な原因はこのように
高価な水素ガスを多量に使い、しかも生成速度が遅いた
めである。
First, we examined the relationship between the quality of pyrolytic carbon and the production rate by changing various conditions regarding the concentration and composition of hydrocarbon gas, which are important in the production of pyrolytic carbon. In particular, methane gas is used as the hydrocarbon gas, mixed with some carbon dioxide gas, carbon oxide gas, etc., and this is diluted with a large amount of hydrogen gas.
An experiment was conducted in which pyrolytic carbon was precipitated by bringing it into contact with a graphite substrate heated to 0° C. or higher. As a result, in the conventional method of diluting only methane gas with hydrogen gas, unless it is diluted to contain hydrogen gas of 80 parts or more, soot is generated and a high-quality pyrolytic carbon material cannot be obtained. It was found that the precipitation rate was also slow when methane gas was diluted with a large amount of hydrogen gas. The reason why pyrolytic carbon materials are expensive is that they use a large amount of expensive hydrogen gas and have a slow production rate.

これに対して、本発明者らの研究の結果、希釈水素ガス
が少くとも一酸化炭素を混合すれば良質の熱分解炭素が
生成し、生成速度も水素ガスを使用する場合と同等か若
干上回ることを確認した。
On the other hand, as a result of research by the present inventors, high-quality pyrolytic carbon can be produced if diluted hydrogen gas is mixed with at least carbon monoxide, and the production rate is the same or slightly faster than when hydrogen gas is used. It was confirmed.

さらに炭酸ガスを少量混合すると煤の発生が抑制される
ことが判明した。炭酸ガス混合による煤抑制の効果はメ
タンガスの熱分解時に発生する煤を炭酸ガスがC+CO
2→2COの反応により分解してしまうだめと考えられ
る。これらの実験結果をもとに本発明者らは、コークス
製造過程で生成する乾留ガスに着目した。すなわち乾留
ガスの組成はコークス炉の操業条件により若干具なるも
のの、一般にメタンガスを約30チ、水素ガスを約55
チ含有するほか、−酸化炭素7〜8%、炭酸ガス2〜4
%を含有するもので熱分解炭素製造用の原料ガスとして
理想的なガス組成を有していることが判明した。
Furthermore, it was found that mixing a small amount of carbon dioxide gas suppressed the generation of soot. The effect of soot suppression by mixing carbon dioxide gas is that carbon dioxide gas converts soot generated during thermal decomposition of methane gas into C+CO.
It is thought that this is due to decomposition due to the 2→2CO reaction. Based on these experimental results, the present inventors focused on carbonization gas generated during the coke manufacturing process. In other words, although the composition of the carbonized gas varies slightly depending on the operating conditions of the coke oven, it is generally about 30% methane gas and about 55% hydrogen gas.
In addition to containing -7 to 8% carbon oxide, 2 to 4% carbon dioxide
%, it was found to have an ideal gas composition as a raw material gas for pyrolytic carbon production.

コークス炉の炭化室壁には従来より熱分解炭素を含むカ
ーボン付着が認められ、操業上の問題として古くから取
り上げられていた。しかしその生成原因については原料
石炭の性状や乾留温度の影響の観点から検討されだにす
ぎず、乾留ガスの組成の面から検討は行なわれてはいな
い。従って積極的に乾留ガスから熱分解炭素を製造しよ
うとする発想はなかった。前述のようにコークスの製造
過程で生成する乾留ガスは高純度熱分解炭素製造用の原
料ガスとして理想的なガス組成を有していることより、
乾留ガスを原料として熱分解炭素を製造する実験を試み
た。、その結果、予想以上に煤を発生することなく良質
の熱分解炭素を効率的に製造できることが確認された。
Carbon adhesion, including pyrolytic carbon, has been observed on the walls of the coking chambers of coke ovens, and has long been considered an operational problem. However, the cause of its formation has only been investigated from the viewpoint of the properties of raw coal and the effects of carbonization temperature, and has not been investigated from the viewpoint of the composition of carbonization gas. Therefore, there was no idea of actively producing pyrolytic carbon from carbonized gas. As mentioned above, the carbonized gas produced in the coke manufacturing process has an ideal gas composition as a raw material gas for producing high-purity pyrolytic carbon.
We attempted an experiment to produce pyrolytic carbon using carbonized gas as a raw material. As a result, it was confirmed that high-quality pyrolytic carbon could be produced efficiently without generating more soot than expected.

すなわちこのような効果は、前記乾留ガスの組成上の有
利性に加え、乾留ガス中に含まれる微量の不純ガスが有
効な触媒作用をしていることにもとづくものと推定され
た。
That is, it is presumed that such an effect is based on the advantageous composition of the carbonized gas as well as the fact that a trace amount of impure gas contained in the carbonized gas acts as an effective catalyst.

一方、本発明における乾留ガスの熱分解温度としては、
コークス炉ガス(Cガス)の場合は、メタンが3八度と
通常の含有量より多いこともあって、単独では900℃
〜1600℃が望ましい。
On the other hand, the thermal decomposition temperature of the carbonized gas in the present invention is as follows:
In the case of coke oven gas (C gas), the methane content is 38 degrees Celsius, which is higher than normal, so if it is used alone, it will reach 900 degrees Celsius.
~1600°C is desirable.

900℃未満では、生成速度が遅く、また1600℃を
超えると煤の発生が多くなり好ましくない。
If it is less than 900°C, the production rate is slow, and if it exceeds 1,600°C, a lot of soot will be generated, which is not preferable.

ただし、Cガス+H2ガスのように、キャリアーガスを
付加すれば、2200℃程度の高温であっても煤を発生
させることなく加熱分解が可能である。
However, if a carrier gas is added, such as C gas + H2 gas, thermal decomposition can be performed without generating soot even at a high temperature of about 2200°C.

このように本発明によれば、乾留ガスから°良質の熱分
解炭素を製造するので、原料ガスコストは大巾に低減さ
れ、熱分解炭素を安価に製造できる。
As described above, according to the present invention, since high-quality pyrolytic carbon is produced from carbonized gas, the raw material gas cost is greatly reduced, and pyrolytic carbon can be produced at low cost.

さらに熱分解炭素製造用として使用した乾留ガスは、コ
ークス工場に配置された乾留ガス配管に戻すか燃料ガス
としても再利用できる。
Furthermore, the carbonization gas used to produce pyrolytic carbon can be returned to the carbonization gas piping located in the coke factory or can be reused as fuel gas.

以下実施例に基づいて本発明法を説明する。The method of the present invention will be explained below based on Examples.

〔実施例〕〔Example〕

コークス炉で生成される乾留ガス組成(wt%)を第1
表に示す。
The carbonization gas composition (wt%) produced in the coke oven is
Shown in the table.

第   1   表 上記組成のガスを電気溶量15 kWの縦型管状炉に設
置された内径75叫φ、の熱分解反応管に下部よシ導入
し、熱分解反応管内に吊り下げだ平滑な面に仕上げられ
た直方体の黒鉛基材に、接触させるようにして、熱分解
炭素を析出させた。なお黒鉛基材の表面温度は1100
,1300.15001:の3水準に加熱しながら、ガ
ス流量1017分の条件て塵分解を行なった。さらに、
比較として、メタンガスと水素ガスとの二種混合ガスを
用いて上記条件と同じ実験を行った。これらの結果を第
2表に示す。
Table 1 A gas having the above composition was introduced from the bottom into a pyrolysis reaction tube with an inner diameter of 75 mm installed in a vertical tube furnace with an electric capacity of 15 kW, and was suspended inside the pyrolysis reaction tube. Pyrolytic carbon was deposited in contact with a rectangular parallelepiped graphite substrate that had been finished in the following manner. The surface temperature of the graphite base material is 1100
, 1300.15001: Dust decomposition was performed under the conditions of a gas flow rate of 1017 minutes while heating at three levels: 1300.15001. moreover,
For comparison, an experiment was conducted under the same conditions as above using a mixed gas of methane gas and hydrogen gas. These results are shown in Table 2.

第   2   表 本発明方法による乾留ガスを用いた実験では扁3のよう
に熱分解温度が高いときに若干の煤の発生をみたがA 
I 、2.3とも煤の発生はほとんどみられず黒鉛基材
表面に良好な熱分解炭素の析出が得られた。なお比較例
として第1表に示した乾留ガス中のメタンガス濃度に近
似させて、メタンガス30係と水素ガス70%の混合ガ
スを用いた実験A4,5では、第2表に示すように11
00℃。
Table 2 In experiments using carbonized gas according to the method of the present invention, a small amount of soot was observed when the thermal decomposition temperature was high, as in case 3.
In both I and 2.3, almost no soot was generated, and good pyrolytic carbon was deposited on the graphite substrate surface. As a comparative example, in experiments A4 and 5 using a mixed gas of 30% methane gas and 70% hydrogen gas, approximating the methane gas concentration in the carbonized gas shown in Table 1, the concentration was 11% as shown in Table 2.
00℃.

1300℃とも煤の発生が多く、異方性組織を有する熱
分解炭素の析出は少いものであった。メタンガス濃度を
下げメタンガス10%と水素ガス90%の混合ガスを用
い1300℃で同様の実験を実施した結果、煤の発生の
ない良好な熱分解炭素を得ることができた。しかしなが
ら、1300℃の同じ温度で乾留ガスから得られる熱分
解炭素の析出速度は、メタンガス濃度が高く触媒作用を
有すると推定される乾留ガスの方が大きく有利であるこ
とが明らかである。
At 1300°C, a lot of soot was generated, and there was little precipitation of pyrolytic carbon having an anisotropic structure. As a result of conducting a similar experiment at 1300° C. using a mixed gas of 10% methane gas and 90% hydrogen gas by lowering the methane gas concentration, it was possible to obtain good pyrolyzed carbon without generating soot. However, it is clear that the precipitation rate of pyrolytic carbon obtained from carbonized gas at the same temperature of 1300° C. is greatly advantageous for carbonized gas, which has a high methane gas concentration and is presumed to have a catalytic effect.

これらの実験で得られた熱分解炭素の品質を同一条件で
比較するため、3000℃で再加熱処理し、黒鉛化した
ものについて結晶性、密度について品質比較を行った。
In order to compare the quality of the pyrolytic carbon obtained in these experiments under the same conditions, the quality of the pyrolyzed carbon that was reheated at 3000° C. and graphitized was compared in terms of crystallinity and density.

結晶性についてり。は黒鉛化結晶の層の積み重なシの厚
さ、Laは黒鉛化結晶の網平面の直径で、^で示す。本
発明法で得られた蔦1゜2.3およびA 6の熱分解炭
素の熱処理黒鉛化物は結晶性密度とも同等で、何ら遜色
のないものであシ、ガスからの析出炭素であるためこれ
らの熱分解炭素には全く不純物が含まれていないもので
あった。
Regarding crystallinity. is the thickness of the stacked layers of graphitized crystals, La is the diameter of the network plane of the graphitized crystals, and is denoted by ^. The heat-treated graphitized products of pyrolytic carbon of Tsuta 1°2.3 and A6 obtained by the method of the present invention have the same crystalline density and are not inferior in any way. The pyrolyzed carbon contained no impurities.

以上のように、本発明によれば、従来のようにメタ7、
fロパン、ベンゼン等の炭化水素ガスに水素ガスを希釈
ガス、キャリアーガスとして使用して、製造する方法に
対し、コークス製造過程で生成する乾留ガスをそのまま
原料ガスとして熱分解するので、安価かつ高純度で、物
理化学的特性にすぐれた熱分解炭素材料を提供すること
ができる。
As described above, according to the present invention, Meta 7,
Compared to the manufacturing method that uses hydrogen gas as a diluent gas and carrier gas for hydrocarbon gases such as f-ropane and benzene, it is cheaper and more expensive because the carbonized gas produced in the coke manufacturing process is thermally decomposed as it is as a raw material gas. A pyrolytic carbon material with high purity and excellent physicochemical properties can be provided.

Claims (1)

【特許請求の範囲】[Claims] (1)  コークスの製造過程で生成する乾留ガスを原
料ガスとし、該ガスを高温加熱により分解し、熱分解炭
素を得ることを特徴とする高純度炭素材料の製造方法。
(1) A method for producing a high-purity carbon material, which comprises using carbonized gas produced in the coke production process as a raw material gas, and decomposing the gas by high-temperature heating to obtain pyrolyzed carbon.
JP58012455A 1983-01-28 1983-01-28 Production of high-purity carbon material Granted JPS59141408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012455A JPS59141408A (en) 1983-01-28 1983-01-28 Production of high-purity carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012455A JPS59141408A (en) 1983-01-28 1983-01-28 Production of high-purity carbon material

Publications (2)

Publication Number Publication Date
JPS59141408A true JPS59141408A (en) 1984-08-14
JPH0127970B2 JPH0127970B2 (en) 1989-05-31

Family

ID=11805811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012455A Granted JPS59141408A (en) 1983-01-28 1983-01-28 Production of high-purity carbon material

Country Status (1)

Country Link
JP (1) JPS59141408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004799A (en) * 2002-07-05 2004-01-16 한국과학기술연구원 coproduction of hydrogen and carbon black by thermal decomposition of methane
CN110061199A (en) * 2018-01-19 2019-07-26 湖南晋烨高科股份有限公司 A kind of composite negative pole material of metal-carbon and its preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004799A (en) * 2002-07-05 2004-01-16 한국과학기술연구원 coproduction of hydrogen and carbon black by thermal decomposition of methane
CN110061199A (en) * 2018-01-19 2019-07-26 湖南晋烨高科股份有限公司 A kind of composite negative pole material of metal-carbon and its preparation method and application

Also Published As

Publication number Publication date
JPH0127970B2 (en) 1989-05-31

Similar Documents

Publication Publication Date Title
Furdin Exfoliation process and elaboration of new carbonaceous materials
US4500504A (en) Process for preparing silicon carbide whiskers
US8034321B2 (en) Hydrogen production
RU2163247C2 (en) Heat treatment of carbon materials
US20040253168A1 (en) System and method for hydrocarbon processing
Walker Carbon—an old but new material
KR20130040874A (en) Methods of preparing carbonaceous material
JPS58194712A (en) Regeneration of oxygen from carbon oxide exhaust gas
Marsh et al. Interactions of carbons, cokes, and graphites with potassium and sodium
Chen et al. In situ monitoring the role of working metal catalyst nanoparticles for ultrahigh purity single‐walled carbon nanotubes
Khokhlova et al. Carbonization of coal pitch with graphite additives
US4839150A (en) Production of silicon carbide
JPS59141408A (en) Production of high-purity carbon material
US8444948B2 (en) Graphite nano-carbon fiber and method of producing the same
JPS63159496A (en) Method and apparatus for treating raw gas
JPS5950011A (en) Three-component interlaminar graphite compound consisting of graphite, alkali metallic fluoride and fluorine, its manufacture, and electrically conductive material made of it
US3859373A (en) Manufacture of hydrogen
US1819166A (en) Method and apparatus for producing activated charcoal
JP3400498B2 (en) Method for producing carbon black
CN110407206A (en) A kind of method of modifying of titanium modification expanded graphite
BOEHM HARRY MARSH, NEIL MURDIE,* IAN AS EDWARDS
Bondarenko et al. Big multi-walled carbon nanotubes synthesis using a reduced iron as a catalyst
JPS623767B2 (en)
JPS59156904A (en) Manufacture of high purity carbonaceous material
US913324A (en) Manufacture of silicon carbid.