JPS59141404A - Production of liquid hydrogen - Google Patents

Production of liquid hydrogen

Info

Publication number
JPS59141404A
JPS59141404A JP58014663A JP1466383A JPS59141404A JP S59141404 A JPS59141404 A JP S59141404A JP 58014663 A JP58014663 A JP 58014663A JP 1466383 A JP1466383 A JP 1466383A JP S59141404 A JPS59141404 A JP S59141404A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
methanol
synthesis gas
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58014663A
Other languages
Japanese (ja)
Other versions
JPH0243681B2 (en
Inventor
Yoshio Miyairi
宮入 嘉夫
Kazumi Suzuki
鈴木 一巳
Satoru Uehara
上原 知
Katsumi Takemoto
竹本 克巳
Kazuo Arai
新居 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58014663A priority Critical patent/JPS59141404A/en
Publication of JPS59141404A publication Critical patent/JPS59141404A/en
Publication of JPH0243681B2 publication Critical patent/JPH0243681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Abstract

PURPOSE:Methanol is pyrolyzed to a crude synthesis gas containing hydrogen, the hydrogen is separated and purified from the crude gas in its gas state, then liquefied by the sub-zero process, thus enabling simple and economical production of liquid hydrogen. CONSTITUTION:The liquid methanol pressurized at about 30 atmospheric pressure 4 is gasified by heating at 300-500 deg.C, passed through the catalyst layer in the pyrolysis 1 where the methanol is converted into a crude synthesis gas mainly composed of hydrogen and carbon monoxide. Then, the gas is cooled down and fed to the separation and purification process 2. Gases other than hydrogen, such as carbon monoxide, methane, carbon dioxide are removed by the PSA process and the resultant off-gas 8 is used as a heat source for the pyrolysis. The purified gas 6 is fed to the liquefaction process 3 at about room temperature and about 30 atmospheric pressure in about 99.99mol% hydrogen purity and liquiefied by self-cooling where the pressure of the pure gas 6 is utilized to drive the expansion turbine for the compression power in liquefaction, or by indirect cooling using a cooling medium such as nitrogen or helium.

Description

【発明の詳細な説明】 本発明は、取扱いが容易で、しかも貯蔵性に優れたメタ
ノールを原料として液体水素を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing liquid hydrogen using methanol as a raw material, which is easy to handle and has excellent storage properties.

従来は、次のようなガスを原料として、液体水素製造用
の高純度水素ガスを製造していた。
Conventionally, high-purity hydrogen gas for liquid hydrogen production has been produced using the following gases as raw materials.

a8石油製油所等のオフガス 60食塩の電気分解装置(苛性ソーダ製造等)からのオ
フガス C0天然ガス、石油等の蒸留改質によって得られる合成
ガス。
a8 Synthesis gas obtained by distillation reforming of natural gas, petroleum, etc., off-gas CO from a salt electrolyzer (caustic soda production, etc.) at a petroleum refinery, etc.

d、天然ガス、石油等の部分酸化によって得られる合成
ガス これらのガスを原料とする液体水素製造用高純度水素ガ
ス製造の概略フローを説明する。
d. Synthetic gas obtained by partial oxidation of natural gas, petroleum, etc. A general flow of manufacturing high-purity hydrogen gas for liquid hydrogen production using these gases as raw materials will be explained.

上記aのオフガスは水素、−酸化炭素及び軽質炭化水素
を主な成分としてお勺、この組成は石油製油所等の設備
構成によシ雑多である。このオフガスから上記の高純度
水素ガスを製造するには、基本的には上記Cまたは上記
dの合成ガスからの製造プロセス(後述する)と同様の
プロセスによって製造されている。
The above off-gas (a) contains hydrogen, carbon oxide and light hydrocarbons as main components, and its composition varies depending on the equipment configuration of oil refineries and the like. The above-mentioned high-purity hydrogen gas is produced from this off-gas basically by a process similar to the above-mentioned C or d production process from synthesis gas (described later).

上記すのオフガスの水素純度は通常約99.8モルチ程
度なので、そのま\液体水素の製造に使用される。
Since the hydrogen purity of the above-mentioned off-gas is usually about 99.8 molt, it is used as it is for producing liquid hydrogen.

上記Cの合成ガスから上記の高純度水素ガスを製造する
プロセスは、Cの合成ガスの合成工程も含めて次の通シ
である。
The process for producing the above-mentioned high-purity hydrogen gas from the above-mentioned synthesis gas C, including the step of synthesizing the synthesis gas C, is as follows.

脱硫装置で脱硫された原料(この場合、天然ガス)は過
熱蒸気と混合され、改質炉内に配置された触媒を充填し
た反応管内に供給され、圧カフ−30気圧下で、燃料の
燃焼によシ加熱(約900℃)されてCo  とH2を
主成分とする粗合成ガスに転換される。この粗合成ガス
は熱回収装置で水によシ熱回収されて後、CO変成工程
、脱炭酸工程を経て水素純度98モルチ程度の精製水素
ガスとなυ、残存するC!02. CH4゜COは低温
精製工程によυ除去されて、水素純度約?992モルチ
以上の精製ガスとなり、液化工程に送られる。
The raw material (in this case, natural gas) desulfurized in the desulfurizer is mixed with superheated steam and fed into a reaction tube filled with a catalyst placed in a reformer, where the fuel is combusted under a pressure cuff of -30 atmospheres. It is heated (approximately 900°C) and converted into crude synthesis gas containing Co2 and H2 as main components. This crude synthesis gas is heat recovered by water in a heat recovery device, and then undergoes a CO conversion process and a decarboxylation process to become purified hydrogen gas with a hydrogen purity of approximately 98 moltiυ, and the remaining C! 02. CH4゜CO is removed by a low-temperature purification process, resulting in hydrogen purity of approximately ? This becomes a purified gas of 992 molti or more and is sent to the liquefaction process.

上記dの合成ガスからの上記の高純度水素ガスを製造す
るプロセスは、dの合成ガスの合成工程も含めて次の通
シである。
The process for producing the above-mentioned high-purity hydrogen gas from the synthesis gas in d above, including the step of synthesizing the synthesis gas in d, is as follows.

原料(この場合、重質油)は水蒸気と混合され、例えば
空気の深冷分離等によって得られた酸素と共にバーナー
を経て反応炉内に噴射され、部分酸化反応によシCOと
H2を主成分とする粗合成ガスに転換される。この時の
反応温度は1、200〜1.500℃、圧力は20〜1
50気圧である。この粗合成ガスは熱回収装置で水によ
り熱回収された後、更に冷却・除塵装置において水で冷
却されてカーボンが除去されると同時にCO変成に必要
な水分が補給される。次いでCO変成工程に供給され、
ガス中のCOはCO2とH2に転換される。その後、ガ
スはH2S。
The raw material (in this case, heavy oil) is mixed with water vapor and injected into the reactor through a burner together with oxygen obtained by cryogenic separation of air, etc., and a partial oxidation reaction is performed to convert CO and H2 into main components. It is converted into crude synthesis gas. At this time, the reaction temperature was 1,200 to 1,500℃, and the pressure was 20 to 1
The pressure is 50 atm. After this crude synthesis gas is heat-recovered by water in a heat recovery device, it is further cooled by water in a cooling/dust removal device to remove carbon and at the same time, water necessary for CO conversion is replenished. It is then supplied to a CO transformation process,
The CO in the gas is converted to CO2 and H2. After that, the gas becomes H2S.

C02等の酸性ガスがアルカリ溶液等によって吸収除去
されて水素純度98モルチ程度の精製水素ガスとなシ、
残存するco、、、 OH4,Co は低温精製工程に
より除去されて水素純度的99.99モルチ以上の精製
ガスとなシ、液化工程に送られる。なお、上記のアルカ
リ溶液等によって除去されたH2S、 002等の酸性
ガスは、硫黄プラントにて82,002  等に転換さ
れる。
Acidic gas such as CO2 is absorbed and removed by alkaline solution etc. and becomes purified hydrogen gas with a hydrogen purity of about 98 mol.
The remaining co,..., OH4,Co is removed by a low-temperature refining process to produce a purified gas with a hydrogen purity of 99.99 mole or higher, which is then sent to a liquefaction process. Note that the acidic gases such as H2S and 002 removed by the above-mentioned alkaline solution etc. are converted to 82,002 etc. in a sulfur plant.

以上の従来法には次のような欠点がある。The above conventional method has the following drawbacks.

上記a、bのオフガスを原料とする方法の場合、(1)
石油製油所、苛性ツーダニ場等に高純度水素ガス製造設
備、液化設備を付設するため、設置場所に制限がある、
(2)オフガ2の発生量と液体水素製造量のパターンに
差異が生じ、オフガスを貯蔵して利用せざるを得ない場
合があるが、オフガスは貯蔵性に乏しく、取扱いが不便
である、等の欠点がある。
In the case of the above methods a and b, in which off-gas is used as a raw material, (1)
Because high-purity hydrogen gas production equipment and liquefaction equipment are attached to oil refineries, caustic plants, etc., there are restrictions on the installation locations.
(2) There may be a difference in the pattern of the amount of offgas 2 generated and the amount of liquid hydrogen produced, and it may be necessary to store and use offgas, but offgas has poor storage properties and is inconvenient to handle, etc. There are drawbacks.

また、上記c、dの合成カスを原料とする方法の場合、
(1)装置材料面では高温耐熱特殊合金が必要であり、
またプロセスによっては純酸素製造設備が必要で装置面
でも犬がかシとなり、簡便な製造法とは言い難い、(2
)いずれも1000℃以上の高温プロセスであるため、
運転のスタートアップ、シャットダウンにかな9の時間
を要し、随時又は日単位でプラントの起動および停止を
行うことは難しい、(6)負荷変動に対する追従性、変
動幅も十分でない、等の欠点がある。
In addition, in the case of the method using synthetic waste as raw material in c and d above,
(1) In terms of equipment materials, a special alloy that is resistant to high temperatures is required;
Also, depending on the process, pure oxygen production equipment is required, which makes the equipment expensive, making it difficult to say that it is a simple production method (2
) Since both are high-temperature processes of 1000℃ or higher,
There are drawbacks such as the time it takes to start up and shut down operations, making it difficult to start and stop the plant at any time or on a daily basis, and (6) the ability to follow load fluctuations and the range of fluctuations is insufficient. .

本発明は以上の欠点を排除し、常温、常圧で液体である
メタノールを原料とし、簡便かつ経済的な液体水素製造
法を提供することを目的としてなされたものである。
The present invention has been made with the object of eliminating the above-mentioned drawbacks and providing a simple and economical method for producing liquid hydrogen using methanol, which is liquid at room temperature and pressure, as a raw material.

すなわち本発明は、 (1)  メタノールを原料とし、これを分解すること
により、水素を含む粗合成ガスを製造し、この粗合成ガ
スから水素をガス状態で分離、精製し、この精製ガスを
深冷液化工程で液化することを特徴とする液体水素の製
造法。
That is, the present invention provides the following features: (1) Methanol is used as a raw material, by decomposing it, crude synthesis gas containing hydrogen is produced, hydrogen is separated and purified in a gaseous state from this crude synthesis gas, and this purified gas is deep-fed. A method for producing liquid hydrogen characterized by liquefying it in a cold liquefaction process.

(2)  メタノールの分解は約50気圧以下の圧力、
約250〜500℃の温度条件下で接触的に行わせ、粗
合成ガスの分離精製では、少なくとも吸着剤を用いた吸
着工程を含んだ方法で水素純度的9999モルチ以上の
水素ガスを製造させ、本工程から副生ずる可燃性ガスは
分解反応の熱源として利用し、液化工程では、上記高純
度水素ガスの自圧を利用し膨張タービンを駆動せしめ、
これを液化工程の動力として用いることを特徴とする特
許請求の範囲の第1項に記載の方法。
(2) Methanol decomposition occurs at a pressure of approximately 50 atmospheres or less;
The process is carried out catalytically under a temperature condition of about 250 to 500°C, and in the separation and purification of crude synthesis gas, hydrogen gas with a hydrogen purity of 9999 molt or more is produced by a method that includes at least an adsorption step using an adsorbent, The combustible gas produced by this process is used as a heat source for the decomposition reaction, and in the liquefaction process, the self-pressure of the high-purity hydrogen gas is used to drive an expansion turbine.
The method according to claim 1, characterized in that this is used as the power for the liquefaction process.

(3)  メタノールの分解後の粗合成ガスを約10〜
30気圧まで昇圧する工程を含む特許請求の囲の第1項
又は第2項に記載の方法。
(3) Crude synthesis gas after decomposition of methanol is about 10~
A method according to claim 1 or 2, comprising the step of increasing the pressure to 30 atmospheres.

に関するものである。It is related to.

本発明のアイデアとして新しい点を列挙すれば次の通シ
である。
The new ideas of the present invention are as follows.

(1)液体水素原料としてメタノールを用いること。(1) Using methanol as a liquid hydrogen raw material.

(2)液体水素製造を目的として、下記メタノールの分
解反応を用いること。
(2) Use the following methanol decomposition reaction for the purpose of producing liquid hydrogen.

この反応温度は250〜500℃と低く、1000℃以
上の高温操作を伴わないため、装置面での特殊耐熱材料
が不要となυ、プラントの起動針よ、び停止を容易かつ
短時間に行うことができる。
This reaction temperature is low at 250-500℃, and does not involve high-temperature operations above 1000℃, so special heat-resistant materials are not required for the equipment, and the plant can be started and stopped easily and quickly. be able to.

また反応に必要な熱量は、400〜600℃程度の低温
熱源を用いることができる。
Moreover, for the amount of heat required for the reaction, a low-temperature heat source of about 400 to 600°C can be used.

生成するm−化炭素ガスは水素から分離し、これを本分
解反応熱の熱源として活用することにより、経済性の商
いプロセスを組み立てることができる。
By separating the generated m-carbon gas from hydrogen and utilizing it as a heat source for the heat of the main decomposition reaction, an economical process can be constructed.

■(2に富む合成ガスを得る方法の−っであるメタノー
ルの水蒸気改質(aH3oH,+ H2O−→co、、
 + 3H2)では、補給水または水蒸気ひいては水蒸
気発生装置が必要であるのに対し、本分解反応では不要
である。
(Steam reforming of methanol (aH3oH, + H2O-→co,
+3H2) requires make-up water or steam and therefore a steam generator, whereas this is not necessary for the main decomposition reaction.

(6)常温、常圧で液体のメタノールを原料としている
ので、原料貯蔵が容易である。
(6) Since methanol, which is liquid at room temperature and pressure, is used as a raw material, raw material storage is easy.

(4)  メタノール分解と粗合成ガスよシ吸着剤を用
いての水素ガスの分離・精製と膨張タービンを組み込ん
だ水素ガスの深冷液化を組み合わせたメタノールからの
液体水素製造法であること。
(4) A method for producing liquid hydrogen from methanol that combines methanol decomposition, crude synthesis gas, separation and purification of hydrogen gas using an adsorbent, and cryogenic liquefaction of hydrogen gas using an expansion turbine.

以上の(1)〜(4)から、本発明は次のような利点を
有するものであることが判る。
From the above (1) to (4), it can be seen that the present invention has the following advantages.

(1)本発明方法を実施するプラントの設置場所は特に
制約を受けないので、離島等の僻地や非工業地帯でも容
易に実施することができる。
(1) Since there are no particular restrictions on the installation location of a plant that implements the method of the present invention, the method can be easily implemented even in remote areas such as remote islands and non-industrial areas.

(2)操作温度が低いため、簡単かつ安価な熱供給方式
、および簡単かつ安価な反応装置を使用することができ
る。
(2) Since the operating temperature is low, a simple and inexpensive heat supply system and a simple and inexpensive reaction apparatus can be used.

(3)  プラントの起動および停止が容易に行えるの
で、液体水素の需要に応じて日単位、週単位の間歇運動
ができる。
(3) Since the plant can be easily started and stopped, intermittent operation can be performed on a daily or weekly basis depending on the demand for liquid hydrogen.

(4)  プロセス用の水および水蒸気は不要のため、
特に真水が入手し難い地域で有効なプロセスである。7 本発明方法は、一般的な液体水素製造の他に、燃料電池
用水素、油脂および食品工業向は水添用水素、金属精錬
や半導体工業向は還元用水素等の製造にも適用すること
ができる。
(4) No water or steam is required for the process;
This process is particularly effective in areas where fresh water is difficult to obtain. 7. The method of the present invention can be applied not only to the general production of liquid hydrogen, but also to the production of hydrogen for fuel cells, hydrogen for hydrogenation for the oil and fat and food industries, and hydrogen for reduction for the metal refining and semiconductor industries. I can do it.

以下、添付図面等を参照して本発明方法を詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings and the like.

第1図は本発明方法の基本フローを示す図である。FIG. 1 is a diagram showing the basic flow of the method of the present invention.

第1図において、約60気圧に加圧された液体メタノー
ル4は300〜500’Cまで加熱されてガス状となシ
、分解工程1で触媒層を通過させることによシ、主とし
てN2.Co  からなる粗合成ガス、5に転換される
。上記の触媒としては、N1o(60〜80 wt% 
) −C!uo(20〜40 wt%)、該NiO−O
uOの90〜9.5wt%をr −At203の5〜1
0 wt%に担持さぜたもの、NiO−CuO−ZnO
(NiO,CuO,ZnOを等量で含むもの)、該Ni
O−OuO−ZhOの90〜95wt%をγ−At20
3の5〜10wt%に担持させたもの、NiO−CuO
−0r203 (NiO,OuO,C!r203を等量
で含むもの)、該NiO−OuO−0r203の90〜
95wt%をγ−At203の5〜10 wt%に担持
させたもの等が使用される。
In FIG. 1, liquid methanol 4 pressurized to about 60 atmospheres is heated to 300-500'C and becomes gaseous, and in the decomposition step 1, it is passed through a catalyst layer to produce mainly N2. The crude synthesis gas, consisting of Co, is converted to 5. As the above catalyst, N1o (60 to 80 wt%
) -C! uo (20-40 wt%), the NiO-O
90-9.5 wt% of uO and 5-1 of r-At203
NiO-CuO-ZnO supported at 0 wt%
(containing equal amounts of NiO, CuO, and ZnO), the Ni
90 to 95 wt% of O-OuO-ZhO is γ-At20
3 supported at 5 to 10 wt%, NiO-CuO
-0r203 (containing equal amounts of NiO, OuO, C!r203), 90~ of the NiO-OuO-0r203
A material in which 95 wt% is supported on 5 to 10 wt% of γ-At203 is used.

分解工程1での主な反応は次式で表される。The main reaction in decomposition step 1 is represented by the following formula.

次いで、粗合成ガス5は冷却され、分離・精製工程2に
供給される。、 分離・精製工程2は、水素以外の不純物であるO O+
 CH4) 002などの除去を目的としておp1除去
法は種々あるが、液体水素製造を目的としている場合は
、−PSA (圧力スイング吸着)法で全不純物を除去
することが特に経済性の点から好ましい。なお、PSA
法の吸着剤としては、合成ゼオライト等が使用される。
The crude synthesis gas 5 is then cooled and supplied to the separation/purification step 2. In the separation/purification step 2, impurities other than hydrogen O O+
There are various p1 removal methods for the purpose of removing CH4) 002, etc., but when the purpose is to produce liquid hydrogen, it is especially economical to remove all impurities using the -PSA (pressure swing adsorption) method. preferable. In addition, P.S.A.
Synthetic zeolite or the like is used as the adsorbent in this method.

分離・精製工程2から放出されるオフカス8はco2.
OH4,Co、)(2等を含んでおシ、燃料としての価
値を有するので、分解工程1の熱源として利用される。
The off-gas 8 released from the separation/purification step 2 is CO2.
Since it contains OH4, Co, ) (2, etc.) and has value as a fuel, it is used as a heat source in the decomposition step 1.

分離・精製工程2からの精製ガス6は略常温、約30気
圧以下、水素純度的9999モルチ以上で、液化工程3
に供給される。
The purified gas 6 from the separation/purification step 2 is at approximately room temperature, about 30 atmospheres or less, and has a hydrogen purity of 9999 molt or more, and is then transferred to the liquefaction step 3.
supplied to

精製ガス6の水素純度を約9999モルチ以上にするこ
とにより、液化工程3での低温精製は基本的に不要とな
る。
By setting the hydrogen purity of the purified gas 6 to about 9999 molti or higher, low-temperature purification in the liquefaction step 3 is basically unnecessary.

なお、メタノールの分解は、約10気圧以下常圧で運転
される場合もあり゛、このときは、PSA法によるガス
分離・精製が可能な約10気圧以上の圧力まで精製ガス
6を昇圧させる必要がある。
Note that methanol decomposition may be operated at normal pressures of about 10 atmospheres or less. In this case, it is necessary to increase the pressure of purified gas 6 to a pressure of about 10 atmospheres or more, which allows gas separation and purification by the PSA method. There is.

液化工程3では、精製ガス6の自圧を利用して膨張ター
ビンを駆動させ、これを液化用圧縮動力として活用する
ことによシ、自己冷却(液体水素と同温度レベルにある
水素ガスと熱交換させる)を行うか、窒素、ヘリウム等
の冷媒を用いて間接的に冷却を行うか、又はこれらの組
合せの形で冷却することにより、液体水素7を製造する
In the liquefaction process 3, the self-pressure of the purified gas 6 is used to drive an expansion turbine, and this is used as compression power for liquefaction. The liquid hydrogen 7 is produced by cooling the hydrogen gas (exchanging the hydrogen) or by cooling indirectly using a refrigerant such as nitrogen or helium, or by a combination thereof.

以上詳述した本発明方法によれば、次の効果を奏するこ
とができる。
According to the method of the present invention described in detail above, the following effects can be achieved.

(1)  約500℃以下の温度操作しかなく、装置面
、材料面、運転面で簡素化ができ、プラントの起動およ
び停止が容易であシ、液体水素需要に適合した柔軟性の
ある運転が可能となる。
(1) Temperature control is limited to approximately 500°C or less, which simplifies equipment, material, and operation aspects. Plant start-up and shutdown are easy, and flexible operation is possible to meet the demand for liquid hydrogen. It becomes possible.

(2)分離・精製工程2からのオフガス8が分解工程1
の熱源として、活用でき、合成ガスの自圧(約10〜3
0気圧)は、液化工程3の動力軽減に活用でき、効率的
かつ経済的なプロセスである。
(2) Off gas 8 from separation/purification process 2 is transferred to decomposition process 1
It can be used as a heat source for synthesis gas at its own pressure (approximately 10 to 3
(0 atm) can be used to reduce the power of the liquefaction process 3, making it an efficient and economical process.

(3)アルコール改質により合成ガスを製造する方法に
較べると、プロセス水や水蒸気は不要でちゃ、基本的に
は取扱い容易なメタノールさえあればプラントの立地が
可能であり、非工業地域、離島等の僻地用のオンサイト
(現地製造)プラント上特に有用であ、る。
(3) Compared to the method of producing synthesis gas by alcohol reformation, there is no need for process water or steam, and basically all that is needed is methanol, which is easy to handle, and the plant can be located in a non-industrial area or on a remote island. This is particularly useful for on-site (local manufacturing) plants for remote areas such as

第2図は、本発明方法の具体的な実施態様例を示す図で
ある。
FIG. 2 is a diagram showing a specific embodiment of the method of the present invention.

第2図において、メタン、−ル14は、分解反応器13
4から出てくる粗合成ガス15(約350℃)及び分解
反応の熱供給用の熱源として使われた燃焼ガス114に
よって熱交換器131.132,131を介して、順次
間接加熱され、分解反応器164に供給される。
In FIG. 2, methane, 14
The crude synthesis gas 15 (approximately 350°C) coming out of 4 and the combustion gas 114 used as a heat source for the decomposition reaction are sequentially indirectly heated through heat exchangers 131, 132, and 131, and the decomposition reaction is started. 164.

分解反応器イ34において、約350℃、約09気圧の
条件下でメタノールは分解され、水素と一酸化炭素を主
成分とする粗合成ノjス15に転換される。この反応に
必要な熱は約500℃の燃焼ガス114によって間接的
に供給される。この燃焼ガス114は熱風発生炉135
で燃料12とPSA装置169からのオフカス18が空
気113によって燃焼発生したものである。
In the decomposition reactor 34, methanol is decomposed under conditions of approximately 350° C. and approximately 0.9 atm, and converted to crude synthetic nozzle 15 containing hydrogen and carbon monoxide as main components. The heat required for this reaction is provided indirectly by combustion gas 114 at approximately 500°C. This combustion gas 114 is transferred to a hot air generating furnace 135.
The fuel 12 and the off-gas 18 from the PSA device 169 are combusted by the air 113.

この分解反応器134は、シェルアンドチューブ型熱交
換器で、管内にはNiO−OuO−0r203(NiO
、C!uo 、 Cr2O3を等量で含むもの)触媒が
充填されておυ、この中にメタノールガスを供給する。
This decomposition reactor 134 is a shell and tube type heat exchanger, and inside the tube is NiO-OuO-0r203 (NiO
, C! uo, one containing equal amounts of Cr2O3) is filled with a catalyst, into which methanol gas is supplied.

分解反応器154の加熱方法としては、燃焼ガス114
の代わりに熱安定性の高い熱媒体油、溶融塩などの熱媒
体を用いて反応熱を与えることもできる。
As a heating method for the decomposition reactor 154, combustion gas 114 is heated.
Instead, heat of reaction can also be provided using a heat carrier with high thermal stability such as heat carrier oil or molten salt.

粗合成ガス15は熱交換器166で冷却され、圧縮機1
67に入る。ここで約0.8気圧の粗合成ガス15は約
15気圧まで昇圧され、その結果昇温した粗合成ガスは
熱交換器168で冷却され、PSA装置169に供給さ
れ、ここで水素純度は約9999モルチ以上に分離・精
製される。
The crude synthesis gas 15 is cooled in a heat exchanger 166 and then transferred to a compressor 1.
Enter 67. Here, the crude synthesis gas 15 at about 0.8 atm is pressurized to about 15 atm, and the resulting heated crude synthesis gas is cooled in a heat exchanger 168 and supplied to a PSA device 169, where the hydrogen purity is about Separated and purified to 9999 molti or more.

この精製ガス16中にCo 、 OH4,Co2  等
の不純物が約001モルチ以上含まれていると、これが
液化工程で凍結し、装置に付着し、閉塞等のトラブルの
原因となるので、PSA装置169等による不純物の除
去を行わない場合は、低温精製が必要となるが、PSA
装置を採用することによりこれを不要としている。っ PSA装置139の一例の概略を第6図に示す。
If this purified gas 16 contains impurities such as Co, OH4, Co2, etc. of approximately 0.01 molt or more, this will freeze during the liquefaction process and adhere to the equipment, causing trouble such as blockage. If impurities are not removed by
By adopting this device, this becomes unnecessary. An example of the PSA device 139 is schematically shown in FIG.

第6図では吸着剤が充填された4個の吸着塔156が使
用されている。
In FIG. 6, four adsorption towers 156 filled with adsorbent are used.

第6図において、略常温、約15気圧、水素純度約67
モルチの粗合成ガス151が吸着塔156を通過する間
に、水素以外の成分は吸着剤に吸着される。吸着剤が不
純分で飽第11される前に合成ガス151の供給を止め
て減圧し、更に精製ガヌ16の一部を流し込み吸着剤に
吸着されている不純物を除去し吸着剤を再生する。
In Figure 6, the temperature is approximately room temperature, approximately 15 atm, and the hydrogen purity is approximately 67.
While the malti crude synthesis gas 151 passes through the adsorption tower 156, components other than hydrogen are adsorbed by the adsorbent. Before the adsorbent becomes saturated with impurities, the supply of the synthesis gas 151 is stopped and the pressure is reduced, and then a part of the purified gas 16 is poured in to remove impurities adsorbed on the adsorbent and regenerate the adsorbent. .

この再生に要した精製ガス16はオフガヌ18として、
オフガスタンク158に貯蔵され、分解用熱源の燃料と
して利用される。
The purified gas 16 required for this regeneration is converted into offganu 18.
It is stored in an off-gas tank 158 and used as a fuel for a heat source for decomposition.

なお、第6図は、6塔が合成ガス151を精製中で、1
塔は精製ガス1Bの一部を用いて吸着剤を再生中である
状態を示している。この様にして、各基を吸着、減圧、
再生の操作を順次ザイクリックに行うことによシ、水素
純度約99、99モルチ以上の精製ガス16が得られる
In addition, FIG. 6 shows that 6 towers are refining synthesis gas 151 and 1
The column is shown in a state in which the adsorbent is being regenerated using a portion of purified gas 1B. In this way, each group is adsorbed, depressurized,
By sequentially carrying out the regeneration operations cyclically, a purified gas 16 having a hydrogen purity of about 99.99 molt or more can be obtained.

この場合の水素の回収率は約75チである。The hydrogen recovery rate in this case is about 75 cm.

以上のPSA装置169を出た精製ガス16は約40℃
、約14気圧の状態で液化工程に入る。
The purified gas 16 exiting the above PSA device 169 is approximately 40°C.
, the liquefaction process begins at approximately 14 atmospheres.

液化工程では、まず膨張タービン140に入り、ここで
略常圧近くまで減圧され、コールドボックス143,1
44に入り、深冷ヘリウムと間接的に熱交換され、約2
0°にの液体水素となシ、液体水素タンク146に貯蔵
され、製品液体水素17として随時使用される。
In the liquefaction process, it first enters the expansion turbine 140, where the pressure is reduced to approximately normal pressure, and the cold boxes 143, 1
44 and undergoes indirect heat exchange with deep-chilled helium, approximately 2
The liquid hydrogen at 0° is stored in a liquid hydrogen tank 146 and used as a product liquid hydrogen 17 at any time.

上記の冷媒であるヘリウム115は膨張タービン142
の出口で約1.2気圧、約15°にと々す、コールドボ
ックス(アルミ製プレート熱交換器)144で水素を間
接的に全景液化させた後、二つの流れに分岐され、一方
のヘリウムはコールドボックス(熱交換器)143で水
素カスを予冷し、他方のヘリウムはコールドボックス(
熱交換器)145で圧縮機141からの約300°に1
約15気圧のヘリウムガスを予冷する。これら分岐され
たヘリウムガスは再び合流し、圧縮機141に送られる
。このようにヘリウムは完全クローズドサイクルを形成
する。
Helium 115, which is the refrigerant mentioned above, is used in the expansion turbine 142.
After the hydrogen is indirectly liquefied in a cold box (aluminum plate heat exchanger) 144 at a pressure of about 1.2 atm and a temperature of about 15 degrees at the outlet of the The hydrogen gas is precooled in a cold box (heat exchanger) 143, and the other helium is in a cold box (heat exchanger) 143.
heat exchanger) 145 at approximately 300° from the compressor 141
Pre-cool helium gas at about 15 atmospheres. These branched helium gases are combined again and sent to the compressor 141. Helium thus forms a completely closed cycle.

なお、膨張タービン140,142は液化工程の圧縮機
141の動力として回収され、不足動力は電動機148
によって補われる。
Note that the expansion turbines 140 and 142 are recovered as power for the compressor 141 in the liquefaction process, and the insufficient power is recovered by the electric motor 148.
supplemented by

以上の主要ラインにおける物流の概要を第1表に示す。Table 1 shows an overview of the logistics in the main lines mentioned above.

1717

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の基本フローを示す図、第2図は本
発明方法の一実施態様例を示す図、第3図は第2図で使
用されるPSA装置159の一具体例を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is a diagram showing the basic flow of the method of the present invention, FIG. 2 is a diagram showing an embodiment of the method of the present invention, and FIG. 3 is a diagram showing a specific example of the PSA device 159 used in FIG. It is a diagram. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】 (1)  メタノールを原料とし、これを分解すること
により、水素を含む粗合成ガスを製造し、この粗合成ガ
スから水素をガス状態で分離、精製し、この精製ガスを
深冷液化工程で液化することを特徴とする液体水素の製
造法。 (2)  メタノールの分解は約60気圧以下の圧力、
約250〜500℃の温度条件下で接触的に行わせ、粗
合成ガスの分離精製では、少なくとも吸着剤を用いた吸
着工程を含んだ方法で水素純度的99.99モルチ以上
の水素ガスを製造させ、本工程から副生ずる可燃性ガス
は分解反応の熱源として利用し、液化工程では、上記高
純度水素ガスの自圧を利用し膨張タービンを駆動せしめ
、これを液化工程の動力として用いることを特徴とする
特許請求の範囲の第1項に記載の方法。 (6)  メタノールの分解後の粗合成ガスを約10〜
30気圧まで昇圧する工程を含む特許請求の囲の第1項
又は第2項に記載の方法。
[Claims] (1) Methanol is used as a raw material, and by decomposing it, crude synthesis gas containing hydrogen is produced, hydrogen is separated and purified in a gaseous state from this crude synthesis gas, and this purified gas is purified. A method for producing liquid hydrogen characterized by liquefying it in a cryogenic liquefaction process. (2) Methanol decomposition takes place at a pressure of approximately 60 atmospheres or less;
The separation and purification of crude synthesis gas is carried out catalytically under a temperature condition of about 250 to 500°C, and hydrogen gas with a hydrogen purity of 99.99 molti or higher is produced by a method that includes at least an adsorption step using an adsorbent. The combustible gas by-produced from this process is used as a heat source for the decomposition reaction, and in the liquefaction process, the self-pressure of the high-purity hydrogen gas is used to drive an expansion turbine, which is used as the power for the liquefaction process. A method as claimed in claim 1. (6) Crude synthesis gas after decomposition of methanol is about 10~
A method according to claim 1 or 2, comprising the step of increasing the pressure to 30 atmospheres.
JP58014663A 1983-02-02 1983-02-02 Production of liquid hydrogen Granted JPS59141404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014663A JPS59141404A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014663A JPS59141404A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Publications (2)

Publication Number Publication Date
JPS59141404A true JPS59141404A (en) 1984-08-14
JPH0243681B2 JPH0243681B2 (en) 1990-10-01

Family

ID=11867449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014663A Granted JPS59141404A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Country Status (1)

Country Link
JP (1) JPS59141404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
CN103429979A (en) * 2010-11-17 2013-12-04 普莱克斯技术有限公司 System and method for purification of silane using liquid nitrogen in a polysilicon production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953192A (en) * 1972-09-25 1974-05-23
JPS547629A (en) * 1977-06-18 1979-01-20 Fuoanee Intern Inc Radiation transmission apparatus for flame detection
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953192A (en) * 1972-09-25 1974-05-23
JPS547629A (en) * 1977-06-18 1979-01-20 Fuoanee Intern Inc Radiation transmission apparatus for flame detection
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232607A (en) * 2005-02-24 2006-09-07 Japan Energy Corp Hydrogen production method
CN103429979A (en) * 2010-11-17 2013-12-04 普莱克斯技术有限公司 System and method for purification of silane using liquid nitrogen in a polysilicon production process
CN103429979B (en) * 2010-11-17 2015-10-21 普莱克斯技术有限公司 For using the system and method for liquid nitrogen purification silane in polysilicon production process

Also Published As

Publication number Publication date
JPH0243681B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
US5865023A (en) Gasification combined cycle power generation process with heat-integrated chemical production
US4733528A (en) Energy recovery
US4409196A (en) Synthesis gas for ammonia production
RU2343109C2 (en) Method for producing hydrogen-rich flow, method for electric current generation, method of hydrofining, device for hydrogen-rich flow creation
RU2479484C2 (en) Method of producing synthesis gas for ammonia synthesis
EP0580910A1 (en) Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
US7718159B2 (en) Process for co-production of electricity and hydrogen-rich gas steam reforming of a hydrocarbon fraction with input of calories by combustion with hydrogen in situ
NO158616B (en) PROCEDURE FOR THE MANUFACTURE OF AMMONIAK.
AU5765499A (en) Process for preparing a H2-rich gas and a CO2-rich gas at high pressure
WO2009109737A2 (en) Improved method for the capture and disposal of carbon dioxide in an energy conversion process
BR112012032800B1 (en) methanol and ammonia co-production
EP0262894A2 (en) For the co-production of carbon dioxide and hydrogen
NO156603B (en) PROCEDURE FOR PREPARING A GAS FLOW FOR AMMONIA SYNTHESIS.
JP2003165707A (en) Method and apparatus for manufacturing hydrogen
CA1050052A (en) Method of transporting heat energy
JPH10273301A (en) Hydrogen manufacturing equipment
EP0207620A2 (en) Energy recovery
JP3923766B2 (en) Hydrogen production equipment
NO159442B (en) PROCEDURE FOR THE PREPARATION OF METHANOL OUT OF A COMPLEMENTARY GAS FLOW CONSISTING OF A HYDROGEN AND CARBON MONOXIDE MIXTURE.
JPS59141404A (en) Production of liquid hydrogen
AU2021286875B2 (en) Method for the production of hydrogen
JPS59141405A (en) Production of liquid hydrogen
WO1996019642A1 (en) Igcc/refinery utilities unit
JPH05287284A (en) Process for reforming liquefied natural gas