JPS5913910A - Optical fiber gyro - Google Patents

Optical fiber gyro

Info

Publication number
JPS5913910A
JPS5913910A JP57123133A JP12313382A JPS5913910A JP S5913910 A JPS5913910 A JP S5913910A JP 57123133 A JP57123133 A JP 57123133A JP 12313382 A JP12313382 A JP 12313382A JP S5913910 A JPS5913910 A JP S5913910A
Authority
JP
Japan
Prior art keywords
variation
wavelength
optical fiber
photodetector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123133A
Other languages
Japanese (ja)
Inventor
Takeshi Usui
健 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57123133A priority Critical patent/JPS5913910A/en
Publication of JPS5913910A publication Critical patent/JPS5913910A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure a rotating angular speed precisely by canceling variation in the wavelength of a lght source by variation in the attenuation of an optical attenuator. CONSTITUTION:A photodetector 6 detects the intensity of incident light and a control circuit 7 compares its detection signal with a set reference voltage to control the oscillation frequency of an oscillator 8 so that they are equal to each other. For this purpose, variation in phase difference by sagnace effect is canceled by variation in phase difference resulting from that an acousto-optic modulator 3 shifts the light signal in frequency, finding the revolving angular speed from frequency variation from the oscillation frequency in a stationary state. In this case, if the light emission wavelength of the light source varies, the light signal outputted to the side of the photodetector 6 varies in intensity. On the other hand, the optical attenuator 5 which varies in attenuation with wavelength is installed in front of the photodetector 6 to compensate variation in light intensity with the light emission wavelength by variation of the optical attenuator, so even if wavelength variation occurs, the rotating angular speed is detected precisely.

Description

【発明の詳細な説明】 本発明はリング干渉計を利用して光学的に回転角速度の
検出を行なう光フアイバジャイロに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber gyro that optically detects rotational angular velocity using a ring interferometer.

長尺の光ファイバを光路とするリング干渉計は慣性空間
に対する回転計として作用し、純光学的なジャイロスコ
ープを構成できる。そして従来のローターなどの回転を
利用した機械的なジャイロスコープに比べると、回転部
分がなく、従ってその摩耗による誤差の発生がないなど
の特長があり、長寿命でかつ信頼性の高いものが得られ
ることからその実用化が望まれている。その検出原理は
サグナック(Sagnae )効果として知られていて
、光フアイバ中を逆方向に伝搬する二つの光の間に光フ
ァイバの回転運動速度に比例する伝搬時間の差が生じる
ととに基づいている。しかしサグナ、り効果によって生
じる伝搬時間の差ないしはそれに伴う位相差はごくわず
かであるので、かなシ長尺の光ファイバを用い、かつ位
相差を精度良く計ることが必要である。そしてそのよう
な倣弱な位相差から回転角速度を求める方法として、既
に各雅のものが提案されている。
A ring interferometer with a long optical fiber as its optical path acts as a rotation meter for inertial space, and can constitute a purely optical gyroscope. Compared to conventional mechanical gyroscopes that use rotation such as a rotor, there are no rotating parts, so there are no errors caused by wear, resulting in long life and high reliability. Therefore, its practical application is desired. The detection principle is known as the Sagnae effect, which is based on the fact that there is a difference in propagation time between two lights propagating in opposite directions in an optical fiber, which is proportional to the rotational speed of the optical fiber. There is. However, since the difference in propagation time caused by the Saguna effect or the accompanying phase difference is very small, it is necessary to use a long optical fiber and to measure the phase difference with high precision. As a method for determining the rotational angular velocity from such a weak phase difference, various methods have already been proposed.

第1図は、それらの中で直線性が良いなどの点で優れて
いると考えられる従来の方法の光フアイバジャイロの構
成を概念的に示したブロック図である。この構成で、光
源1の出力光は半透明鏡2で部分され、互いに異なる側
の端面から光ファイバ4に入射される。この二つの光は
光ファイバ4を伝搬したのち、再び半透明鏡2に入射し
て重ね合され、その位相差に応じた強度の光信号が光検
出器6側に出力される。その際、音響光学変調器3は光
信号の周波数を変調周波数分だけ変移を行なうもので、
これによシ光ファイバ4を逆方向に伝搬する二つの光の
波長をごくわずか変えることができ、この波長の差で生
じる位相差と、サグナック効果で生じる位相差とが打ち
消し合うように制御回路7で発掘器8の発振周波数を制
御することによシ発振周波数の変化から回転角速度を検
出することができる。
FIG. 1 is a block diagram conceptually showing the structure of a conventional optical fiber gyro, which is considered to be superior in terms of good linearity among them. With this configuration, the output light from the light source 1 is divided by the semi-transparent mirror 2 and input into the optical fiber 4 from end faces on different sides. After propagating through the optical fiber 4, these two lights enter the semi-transparent mirror 2 again and are superimposed, and an optical signal with an intensity corresponding to the phase difference is output to the photodetector 6 side. At this time, the acousto-optic modulator 3 shifts the frequency of the optical signal by the modulation frequency.
This allows the wavelengths of the two lights propagating in opposite directions through the optical fiber 4 to be changed very slightly, and the control circuit is configured so that the phase difference caused by this wavelength difference and the phase difference caused by the Sagnac effect cancel each other out. By controlling the oscillation frequency of the excavator 8 at step 7, the rotational angular velocity can be detected from the change in the oscillation frequency.

しかし、伝送方向により光の波長を変えることはファイ
バ長が実質的に異なることを意味しており、従って温度
などKよシ光源の発光波長が変化すると通常サグナック
効果分よりも大きな位相差が生じる為に、精度良く回転
角速度を検出することができなかった。なお波長の変移
を用いない他の方法でも、種々の理由で、大なり小なシ
伝送方向による実質的なファイバ長の差が存在し、前記
と同様に波長変化があると、かなりの誤差が生じる。ま
たその改善策として、光源の温度安定化を行なうことも
考えられるが、充分な安定化が難かしい上に温度以外の
原因による波長変化も存在する為に、必要な波長安定度
を得ることができなくて、どの方法でもまだ充分な検出
精度は得られていない。
However, changing the wavelength of light depending on the transmission direction means that the fiber length is substantially different. Therefore, if the emission wavelength of the light source changes due to temperature or other factors, a phase difference that is larger than the Sagnac effect will normally occur. Therefore, it was not possible to accurately detect the rotational angular velocity. Even with other methods that do not use wavelength shifts, there are substantial differences in fiber length depending on the direction of transmission due to various reasons, and as mentioned above, if there is a wavelength shift, a considerable error will occur. arise. Another possible remedy is to stabilize the temperature of the light source, but it is difficult to achieve sufficient stabilization and there are also wavelength changes due to causes other than temperature, making it difficult to obtain the necessary wavelength stability. No method has yet achieved sufficient detection accuracy.

そこで本発明の目的は前記のような欠点をなくし、光源
の波長変化があっても、その影響を打ち消すような補償
ができて、精度良く回転角速度を検出できる光フアイバ
ジャイロを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks, and to provide an optical fiber gyro that can compensate for the effects of changes in the wavelength of the light source and can accurately detect rotational angular velocity. .

本発明の光フアイバジャイロは、光源と、光検出器と、
コイル状になした光ファイバと、前記光源の出力光を部
分して前記光ファイバの両端から入射すると共に、前記
光ファイバの両端から出射される二つの光を重ね合せて
その位相差に応じた光信号を出力する光分岐合成回路と
を有し、さらに前記光分岐合成回路から前記光検出器に
入射される光信号にその波長に応じて決められた減衰を
与える光減衰器全具備した構成となっている。
The optical fiber gyro of the present invention includes a light source, a photodetector,
A coiled optical fiber, part of the output light of the light source enters from both ends of the optical fiber, and two lights emitted from both ends of the optical fiber are superimposed according to their phase difference. an optical branching/combining circuit that outputs an optical signal, and further comprising an optical attenuator that applies attenuation determined according to the wavelength of the optical signal input from the optical branching/combining circuit to the photodetector. It becomes.

この構成によれば、前述のように温度変化等によ)光源
の発光波長が変化すると、それにより位相差が生じて光
分岐合成回路から光検出器側に出力される光の強度が変
化するが、その変化全波長変化に伴う光減衰器の減衰音
の変化分で打ち消すように設定できて、波長変化があっ
ても安定に精度良く回転角速度を計ることが可能である
According to this configuration, as mentioned above, when the emission wavelength of the light source changes (due to temperature change, etc.), a phase difference occurs, and the intensity of the light output from the optical branching/combining circuit to the photodetector side changes. However, this change can be set to be canceled out by the change in the attenuated sound of the optical attenuator due to the change in the total wavelength, making it possible to measure the rotational angular velocity stably and accurately even if there is a change in wavelength.

次に図面を参照して本発明について詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第2図は本発明の第1の実施例の光フアイバジャイロの
構成全概念的に示すブロック図である。
FIG. 2 is a block diagram conceptually showing the entire structure of the optical fiber gyro according to the first embodiment of the present invention.

光源1は単一波長の半導体レーザで、その出力光101
は半透明鏡2で部分され、一方の成分102は音響光学
変調器3において発振器8の出力を用いてその変調周波
数分だけ周波数変移されたのち端面41から光ファイバ
4に入射する。もう一方の成分103はその壕ま他の端
面42から光ファイバ4に入射する。両端面41と42
から入射した二つの光は、コイル状になした光ファイバ
4の中を伝搬し、それぞれ反対側の端面42と41から
出射する。この二つの出射光104と105は、そのま
まないしは音響光学変調器3で周波数変移されたのち、
共に前出の半透明鏡2に入射し、そこで重ね合されてそ
の位相差に応じて光検出器6側と光源1側に出射される
。光検出器6では入射光の強度が検出され、次いで制御
回路7ではその検出信号と、ある位相差に対応して設定
された参照電圧とが比較され、それらが等しくなるよう
に発振器8の発振周波数が制御される。従ってこの構成
では、サグナック効果による位相差の変化を、音響光学
変調器3で光信号の周波数変移を行なうことによって生
じる位相差の変化で打ち消すことになるので、静止状態
の発振周波数からの周波数変化量から回転角速度を求め
ることになる。その際に、伝送方向により光ファイバ長
に実質的な差があるので、光源1の発光波長が変化する
と、位相差の変化が生じ光検出器6側に出力される光信
号の強度が変化することになる。しかし本実施例では光
検出器6の前に波長により減衰量が変化する光減衰器5
が置かれていて、発光波長の変化に伴う前記光強度の変
化を、光減衰器の変化で補償するようになっているので
、波長変化が生じた場合でもその影響を受けることなく
、精度良く回転角速度を検出できる。
The light source 1 is a single wavelength semiconductor laser, and its output light 101
is divided by the semi-transparent mirror 2, and one component 102 is frequency-shifted by the modulation frequency in the acousto-optic modulator 3 using the output of the oscillator 8, and then enters the optical fiber 4 from the end face 41. The other component 103 enters the optical fiber 4 from the trench or other end face 42. Both end faces 41 and 42
The two lights incident on the optical fiber 4 propagate through the coiled optical fiber 4 and exit from the opposite end faces 42 and 41, respectively. These two emitted lights 104 and 105 may be used as is or after being frequency shifted by the acousto-optic modulator 3,
Both light beams enter the aforementioned semi-transparent mirror 2, where they are superimposed and emitted to the photodetector 6 side and the light source 1 side according to their phase difference. The photodetector 6 detects the intensity of the incident light, and the control circuit 7 compares the detection signal with a reference voltage set corresponding to a certain phase difference, and controls the oscillation of the oscillator 8 so that they are equal. Frequency is controlled. Therefore, in this configuration, the change in phase difference due to the Sagnac effect is canceled out by the change in phase difference caused by frequency shifting of the optical signal in the acousto-optic modulator 3, so that the change in frequency from the oscillation frequency in the resting state is canceled out. The rotational angular velocity is determined from the amount. At this time, since there is a substantial difference in the optical fiber length depending on the transmission direction, when the emission wavelength of the light source 1 changes, the phase difference changes and the intensity of the optical signal output to the photodetector 6 side changes. It turns out. However, in this embodiment, an optical attenuator 5 whose attenuation amount changes depending on the wavelength is placed in front of the photodetector 6.
The optical attenuator compensates for the change in the light intensity due to the change in the emission wavelength by changing the optical attenuator, so even if the wavelength changes, it is not affected by the change and can be detected accurately. Rotational angular velocity can be detected.

次に本実施例の効果を明らかにする為に一数値例を示す
。回転角速度の所要検出精度を10−622777秒と
すると、この値は通常3 X 10””ラジアン程度の
位相差に相当する。08μmの光源を用い、逆方向に伝
搬する光の間に1μmの光路長差が存在する場合を考え
ると、前記精度を得る為には従来の方法で許容される波
長変化は約±3 X 10””とすると±3 X 10
””℃の温度安定度に相当し、単なる温度安定化だけで
は実現できない値である。
Next, a numerical example will be shown to clarify the effects of this embodiment. If the required detection accuracy of the rotational angular velocity is 10-622777 seconds, this value usually corresponds to a phase difference of about 3 x 10"" radians. Considering the case where a 0.8 μm light source is used and there is a 1 μm optical path length difference between the lights propagating in opposite directions, the wavelength change allowed by the conventional method is approximately ±3 × 10 to obtain the above accuracy. "" means ±3 x 10
This corresponds to a temperature stability of "" degrees Celsius, and is a value that cannot be achieved by mere temperature stabilization.

一方本発明によれば、波長変化に対する必要な補償係数
は4 X 10−” dn/X程度であり、補償により
容易に1/100以下の影響量に低減できる。従って波
長変化は±0.3人まで許容できて、10.3℃の温度
変化が許容できることになる。この程度の許容値であれ
ば比較的容易に温度安定化を行なうことができる。なお
必要々測定精度が10−4ラジアン/秒までで良ければ
、光源の温度安定化なしに本発明による補償だけでも達
成できる。
On the other hand, according to the present invention, the necessary compensation coefficient for wavelength change is about 4 x 10-" dn/X, and can be easily reduced to 1/100 or less by compensation. Therefore, the wavelength change is ±0.3 This means that a temperature change of 10.3°C can be tolerated even by humans.With this tolerance, temperature stabilization can be achieved relatively easily.The required measurement accuracy is 10-4 radian. /second, it can be achieved by just the compensation according to the present invention without temperature stabilization of the light source.

なお上記実施例では、位相差の検出に半透明鏡2で分け
られた光信号の一方を光検出器6で検出しているが、光
源1側に戻るもう一方の光信号を分岐して検出する構成
でも艮く、また音響光学変調器に関しては2個使用して
差をとる方法でも同様な特徴をもつ光フアイバジャイロ
を構成できる。
In the above embodiment, one of the optical signals separated by the semi-transparent mirror 2 is detected by the photodetector 6 to detect the phase difference, but the other optical signal returning to the light source 1 side is branched and detected. Alternatively, an optical fiber gyro having similar characteristics can be constructed by using two acousto-optic modulators and taking the difference.

第3図は本発明の第2の実施例の光フアイバジャイロの
構成を概念的に示すブロック図である。
FIG. 3 is a block diagram conceptually showing the configuration of an optical fiber gyro according to a second embodiment of the present invention.

この構成は第1の実施例と違って、光分岐合成回路から
出力される二つの光信号を両方共に使用するもので、一
方は光減衰器5を通ったのち光検出器6で検出され、も
う一方はそのまま第2の光検出器61で検出され、制御
口871はそれら二つの検出信号の強度の比が所定の値
となるように発振器8の発振周波数を制御するものであ
る。この構成によりても、前記と同様に、波長変化に対
する補償が可能で、安定に精度良く回転角速度を計るこ
とができる。
This configuration differs from the first embodiment in that both of the two optical signals output from the optical branching/combining circuit are used; one passes through an optical attenuator 5 and is detected by a photodetector 6; The other signal is detected as it is by the second photodetector 61, and the control port 871 controls the oscillation frequency of the oscillator 8 so that the ratio of the intensities of these two detection signals becomes a predetermined value. With this configuration as well, it is possible to compensate for wavelength changes and to measure the rotational angular velocity stably and accurately, as described above.

なお上記第2の実施例では光減衰器5を光検出器6側に
挿入しているが、もう一方の第2の光検出器61側に用
いても良く、また両方に用いる構成であっても良い。な
おそれらの場合には光減衰器5の必要な補償係数は符号
ないしは値が異なる。
Note that in the second embodiment, the optical attenuator 5 is inserted on the photodetector 6 side, but it may also be used on the other second photodetector 61 side, or it can be used for both. Also good. Note that in those cases, the necessary compensation coefficient of the optical attenuator 5 has a different sign or value.

第4図は本発明の第3の実施例の光フアイバジャイロで
、□前記の各実施例と違い周波数変移を行なわないで、
単に光ファイバ4から出射された二つの光104と10
5をそれぞれ第2と第3の半透明鏡22と23で分岐し
て、位相推移器9で所要の位相差をつけたのち第4の半
透明鏡24で重ね合せることによって、光検出器6の出
力から直接位相差に相当する信号を検出するものである
。この構成においても、光減衰器5によυ波長変化に対
する補償ができて、精度良く回転角速度を検出できる。
FIG. 4 shows an optical fiber gyro according to the third embodiment of the present invention, which differs from the previous embodiments in that it does not perform frequency shifting.
Two lights 104 and 10 simply emitted from the optical fiber 4
5 are branched by second and third semi-transparent mirrors 22 and 23, respectively, and after a required phase difference is provided by a phase shifter 9, they are superimposed by a fourth semi-transparent mirror 24, thereby forming a photodetector 6. A signal corresponding to the phase difference is directly detected from the output of the Even in this configuration, the optical attenuator 5 can compensate for changes in the υ wavelength, and the rotational angular velocity can be detected with high accuracy.

なお位相推移器9は例えばガラス板などを用いて、その
入射角を変えることによって得られる。
Note that the phase shifter 9 can be obtained by using, for example, a glass plate or the like and changing its angle of incidence.

また上記の各実施例以外の検出方法を用いる場合でも、
本発明のように所要の波長特性を持つ光減衰器を使うこ
とによって、波長変化に対する補償を行なうことができ
、安定に精度良く回転角速度を検出できる。
Furthermore, even when using a detection method other than the above embodiments,
By using an optical attenuator having the required wavelength characteristics as in the present invention, it is possible to compensate for wavelength changes, and the rotational angular velocity can be detected stably and accurately.

なお上記各実施例において、光源には半導体レーザの他
にガスレーザや発光ダイオードなど各種のものが使用で
き、また光検出器にはフォトダイオードや太陽電池など
が使用できる。−刀先信号の分岐と合成全行なう光分岐
合成回路には半透明鏡の他に各種の光方向性結合器など
が使用でき、発振器には電圧制御発揚器(VCO)等が
使用可能である。
In each of the embodiments described above, various types of light sources such as gas lasers and light emitting diodes can be used in addition to semiconductor lasers, and photodiodes and solar cells can be used as photodetectors. - In addition to a semi-transparent mirror, various types of optical directional couplers can be used in the optical branching and combining circuit that performs all the branching and combining of the tip signals, and a voltage-controlled oscillator (VCO) can be used as the oscillator. .

以上詳述したように、サグナック効果全利用する光フア
イバジャイロにおいて、本発明によれば波長変化によっ
て生じる光検出器への入力光の強度変化を、波長によっ
て減衰1の変わる光減衰器を使用してその変化分で補償
全行なうことによシ、波長変化の影響を打ち消すことが
でき、安定に精度良く回転角速度を検出できる光フアイ
バジャイロが得られる。なおこの光フアイバジャイロは
温度による発光波長の変化だけでなく、それ以外の原因
によって生じる発光波長の変化に対しても補償を行なう
ことができるという特長がある。
As detailed above, in an optical fiber gyro that fully utilizes the Sagnac effect, according to the present invention, an optical attenuator whose attenuation 1 changes depending on the wavelength is used to reduce the intensity change of the input light to the photodetector caused by the wavelength change. By fully compensating using the amount of change, the influence of wavelength change can be canceled out, and an optical fiber gyro that can stably and accurately detect rotational angular velocity can be obtained. This optical fiber gyro has the advantage of being able to compensate not only for changes in emission wavelength due to temperature, but also for changes in emission wavelength caused by other causes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法による光フアイバジャイロの構成音
、また第2図〜第4図はそれぞれ本発明の第1〜第3の
実施例の光フアイバジャイロの構成を概念的に示したブ
ロック図である。 1・・・光 源、     2.21〜24・・半透明
鏡、3・・・音響光学変調器、 4・・・光ファイバ、
5・・・光減衰器、   6,61・・光検出器、7.
71・・・制御回路、  8・・・発振器。 代理人弁理士内原  晋 第1 圀 第3図
FIG. 1 is a block diagram conceptually showing the configuration of an optical fiber gyro according to a conventional method, and FIGS. 2 to 4 are conceptual diagrams of the configuration of an optical fiber gyro according to first to third embodiments of the present invention, respectively. It is. 1... Light source, 2.21-24... Semi-transparent mirror, 3... Acousto-optic modulator, 4... Optical fiber,
5... Optical attenuator, 6, 61... Photodetector, 7.
71... Control circuit, 8... Oscillator. Representative Patent Attorney Susumu Uchihara No. 1 Kuni No. 3

Claims (1)

【特許請求の範囲】[Claims] 光源と、光検出器と、コイル状になした光ファイバと、
前記光源の出力光を部分して前記光ファイバの両端から
入射すると共に、前記光ファイバの両端から出射される
二つの光を重ね合せてその位相差に応じた光信号を出力
する光分岐合成回路とを有し、さらに前記光分岐合成回
路から前記光検出器に入射される光信号にその波長に応
じて決められた減衰を与える光減衰器を具備することを
特徴とする光フアイバジャイロ。
A light source, a photodetector, a coiled optical fiber,
an optical branching and combining circuit that partially inputs the output light of the light source and inputs it from both ends of the optical fiber, superimposes the two lights emitted from both ends of the optical fiber, and outputs an optical signal according to the phase difference thereof; An optical fiber gyro, further comprising an optical attenuator that applies attenuation determined according to the wavelength of an optical signal input from the optical branching/combining circuit to the photodetector.
JP57123133A 1982-07-15 1982-07-15 Optical fiber gyro Pending JPS5913910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123133A JPS5913910A (en) 1982-07-15 1982-07-15 Optical fiber gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123133A JPS5913910A (en) 1982-07-15 1982-07-15 Optical fiber gyro

Publications (1)

Publication Number Publication Date
JPS5913910A true JPS5913910A (en) 1984-01-24

Family

ID=14852998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123133A Pending JPS5913910A (en) 1982-07-15 1982-07-15 Optical fiber gyro

Country Status (1)

Country Link
JP (1) JPS5913910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134209A (en) * 1990-09-27 1992-05-08 Japan Aviation Electron Ind Ltd Light interference angular velocity meter
US20120113432A1 (en) * 2010-11-10 2012-05-10 Honeywell International Inc. Constant optical power sensor using a light source current servo combined with digital demodulation intensity suppression for radiation and vibration insensitivity in a fiber optic gyroscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134209A (en) * 1990-09-27 1992-05-08 Japan Aviation Electron Ind Ltd Light interference angular velocity meter
US20120113432A1 (en) * 2010-11-10 2012-05-10 Honeywell International Inc. Constant optical power sensor using a light source current servo combined with digital demodulation intensity suppression for radiation and vibration insensitivity in a fiber optic gyroscope
US8213018B2 (en) * 2010-11-10 2012-07-03 Honeywell International Inc. Constant optical power sensor using a light source current servo combined with digital demodulation intensity suppression for radiation and vibration insensitivity in a fiber optic gyroscope

Similar Documents

Publication Publication Date Title
EP2333482B1 (en) Light-phase-noise error reducer
US7535576B2 (en) Integrated optical rotation sensor and method for sensing rotation rate
US7362443B2 (en) Optical gyro with free space resonator and method for sensing inertial rotation rate
EP0646767B1 (en) Interferometric distance measuring apparatus
JP5208406B2 (en) System and method for stabilizing a light source in a resonator gyro
JP5670029B2 (en) High reliability low loss hollow core fiber resonator
KR900008266B1 (en) Solid state interferometor
JP2532035B2 (en) Fiber optic Sagnac interferometer for measuring rotational speed
US9803981B2 (en) Optical passive resonator gyro with three beams
US5398111A (en) Optically-locked fiber-optic resonant gyro
JP5681455B2 (en) System and method for reducing laser phase noise in a resonator fiber optic gyroscope
Sanders et al. Development of compact resonator fiber optic gyroscopes
US20210240050A1 (en) Integrated Modulator Structure for In-situ Power Balancing in Photonic Fiber Optic Gyroscopes
US4382681A (en) Measurement of rotation rate using Sagnac effect
CN112113556B (en) High-sensitivity resonant micro-optical gyroscope based on self-injection frequency locking and detection method thereof
JP2001066142A (en) Resonance-type optical gyro
CN116026306B (en) Gyroscope based on low-coherence light source and angular velocity measurement method thereof
Wang et al. Suppression of backscattering-induced noise in a resonator optic gyro by the dual-frequency modulation method
JPS5913910A (en) Optical fiber gyro
JP2838592B2 (en) Determination of optical signal transit delay time in optical interferometer
JP4306843B2 (en) Resonance point tracking system and ring resonance type optical fiber gyro using this system
JPS6135486B2 (en)
JPS63150615A (en) Optical resonator
JPS58190772A (en) Detector for angular velocity of rotation
JPH0721415B2 (en) Rotational angular velocity detector