JPS59138417A - Manufacture of polyester bottle with crystalline mouth neck part and jig therefor - Google Patents

Manufacture of polyester bottle with crystalline mouth neck part and jig therefor

Info

Publication number
JPS59138417A
JPS59138417A JP1277983A JP1277983A JPS59138417A JP S59138417 A JPS59138417 A JP S59138417A JP 1277983 A JP1277983 A JP 1277983A JP 1277983 A JP1277983 A JP 1277983A JP S59138417 A JPS59138417 A JP S59138417A
Authority
JP
Japan
Prior art keywords
bottle
mouth
neck
mouth neck
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277983A
Other languages
Japanese (ja)
Inventor
Taketo Baba
馬場 武人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP1277983A priority Critical patent/JPS59138417A/en
Publication of JPS59138417A publication Critical patent/JPS59138417A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0063After-treatment of articles without altering their shape; Apparatus therefor for changing crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0861Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using radio frequency

Abstract

PURPOSE:To increase heat resisting strength of the mouth neck part of a bottle by a method in which the mouth neck part-wall of a bottle made of thermoplastic polyester material, etc. is inserted into the gap between a pair of the electrodes equipped opposite, and is heated by high frquency induction heating, there by accelerating the crystallization of the mouth neck material in an instant and contriving to strengthen the mouth neck material. CONSTITUTION:The electrode portion into which mouth neck part 1 is inserted, is composed of a protruded electrode 3 with a protrusion 2 capable of inserting and draving out along the inner surface of the wall of the mouth neck part 1 of a bottle, the annular insulating member 4 fitted on the outer circumference of the protrusion 2 and the annular electrode 5 fitted on the outer circumference of the mouth neck part of the bottle. A gap is formed between the electrode 5 and 3. Into this gap the mouth neck part 1 made of thermoplastic polyester material is inserted. High frequency voltage with frequency about 1-100MHz is applied to the gap between the electrode 5 and 3, and the mouth neck part 1 is heated by high frequency induction heating, whereby the crystalization of the material of the mouth neck part 1 is accelerated in an instant and heat resisting strength is given to the mouth neck part 1 of the bottle.

Description

【発明の詳細な説明】 本発明は、ポリエチレンテレフタレート(以下1) E
 Tと呼ぶ)で代表される熱可賭性ポリエステルを素材
とした壜の口頚部の耐熱強度を著しく高めることを目的
とし、その様に強化された壜を高能率で製造するだめの
方法および用具に係るものである。
[Detailed description of the invention] The present invention relates to polyethylene terephthalate (hereinafter referred to as 1) E
The purpose of this invention is to significantly increase the heat resistance strength of the mouth and neck of a bottle made of thermoplastic polyester (referred to as T), and to produce such a strengthened bottle with high efficiency. This is related to.

本発明における増目頭部の耐熱性とは、壜内谷物例えば
飲食料品等な加熱状態で壜に充填する場合に、口頚部が
熱収縮してその口径が許容限度以上に減少したり、その
形状がくずれたりしない性質を意味する。
In the present invention, the heat resistance of the enlarged head means that when a bottle is filled with a heated product such as food or drink, the mouth and neck may shrink due to heat and the caliber may decrease beyond the allowable limit. It refers to the property of not losing its shape.

この様な耐熱性を増強するには、口頚部を加熱し次いで
冷却することにより、口頭部を構成する素材の結晶化を
増進させることが有効であると従来より認められており
、口頚部の結晶性を高めた壜は既に実用に供されている
。この結晶化を増進させる方法としては、従来、熱伝導
加熱法、輻射加熱法、熱風吹付は法等が知られており、
これらの方法が単独で、または組合せてオ0用されてい
るが、いずれの方法も結晶化に費される時間が2分以上
であり、壜の製造能率を考慮した場合に長過ぎる。また
、昇温時間の短縮で能率向上を図るために加熱条件を強
化すると、前記の如き加熱法では被加熱体の表面に肌荒
れ現象やブリスター(泡)が発生し、壜の優れた外観や
機能が低下し、商品価値が失われる。
In order to enhance such heat resistance, it has been previously recognized that it is effective to increase the crystallization of the material that makes up the mouth and neck by heating and then cooling the mouth and neck. Bottles with improved crystallinity are already in practical use. Conventionally known methods for promoting this crystallization include thermal conduction heating, radiation heating, and hot air blowing.
Although these methods have been used alone or in combination, each method requires more than 2 minutes of crystallization time, which is too long when bottle manufacturing efficiency is taken into account. Furthermore, if the heating conditions are strengthened in order to improve efficiency by shortening the heating time, the above-mentioned heating method will cause rough skin and blisters (bubbles) to occur on the surface of the object to be heated, resulting in a bottle with poor appearance and functionality. decreases and product value is lost.

本発明は、従来技術のこの様な問題点を解決しようと意
図し、鋭意研究がなされた結果生まれたもので、被加熱
体を短時間内に均一加熱するために如何なる方法が採用
し得るか本発明者が検討を重ねたところ、高周波誘電加
熱法を巧妙に利用することで達成し得ることを確認する
に至った。
The present invention was created as a result of intensive research with the intention of solving these problems of the prior art. After repeated studies, the inventors of the present invention have confirmed that this can be achieved by cleverly utilizing high-frequency dielectric heating.

従来、熱可塑性ポリエステルは高周波誘電加熱法によっ
てはあまり効果的に加熱されないといつ認識が強いため
か、この種の加熱法を利用した実用技術が少いので、本
発明は予想外のものと言い得る。
Conventionally, it has been widely recognized that thermoplastic polyester cannot be heated very effectively by high-frequency dielectric heating, and there have been few practical technologies using this type of heating method, so the present invention is unexpected. obtain.

本発明の特徴的な構成は、熱可塑性ポリエステルを素材
とした壜の製造に当り、成形中または予め成形された壜
の口頚部の内外にその壁内を挟んで1対の電極を対設し
、該電極へ高周波電圧を印加しして該口頚部のみを高周
波誘電加熱し、それにより口頚部が必要にして十分な耐
熱強度を持つに至るまでの結晶化の増進を瞬時に行う点
に存する。
A characteristic feature of the present invention is that when manufacturing a bottle made of thermoplastic polyester, a pair of electrodes is placed oppositely between the inside and outside of the mouth and neck of the bottle during molding or in advance. , by applying a high-frequency voltage to the electrode to perform high-frequency dielectric heating of only the mouth and neck, thereby instantaneously promoting crystallization until the mouth and neck have the necessary and sufficient heat resistance strength. .

また本発明の他の特徴的構成は、前記の製造法を実施す
るための用具において、壜の口頚部内面に沿って抜き差
し自在に挿入できる突状電極と、該突状電極の基部の外
周に沿って嵌装された絶縁部材と、壜の口頚部の外周に
沿って5− 嵌装された環状電極とを組合せて、増目頚部の壁内を挟
んで高周波電圧を印加し得るように成した点に存する。
Another characteristic configuration of the present invention is that, in the tool for carrying out the above-described manufacturing method, a protruding electrode that can be inserted and removed freely along the inner surface of the mouth and neck of the bottle; By combining an insulating member fitted along the outer periphery of the neck of the bottle and an annular electrode fitted along the outer periphery of the neck of the bottle, a high frequency voltage can be applied across the inside of the wall of the neck of the bottle. The point lies in the fact that

以下に本発明を更に具体的に説明する。The present invention will be explained in more detail below.

本発明は、最も好ましくは中空成形法によって壜を製造
するに当り、その成形前の予備成形物であるパリンン若
しくはプリフォーム、成形中の壜または成形後の壜、具
体的にはダイレクトプロー、エクストルージョンプロー
、インジェクションプローその他によって成形される壜
に対して特定の熱処理を行うものである。
Most preferably, the present invention relates to the production of bottles by blow molding, the preform or preform before molding, the bottle during molding, or the bottle after molding, specifically, direct blow molding, extrusion molding, etc. A specific heat treatment is applied to bottles formed by fusion blowing, injection blowing, etc.

また本発明は、PETで代表される熱可塑性ポリエステ
ルを素材として壜を上記Q如く製造するに当って素材の
誘電特性を利用し、壜の口頚部のみを10秒前後または
それ以下という極く短時間に誘電加熱するものである。
In addition, the present invention utilizes the dielectric properties of the material to manufacture a bottle made of thermoplastic polyester, such as PET, as a material as described in Q above, and makes it possible to manufacture only the mouth and neck of the bottle in an extremely short time of around 10 seconds or less. It uses dielectric heating over time.

本発明において素材として用い得る熱可塑性ポリエステ
ルとは、酸成分の80モル係以上、好ましくは90モル
係6− 以上がテレフタル酸であり、グリコール成分の80モル
係以上、好ましくは90モル係以上がエチレングリコー
ルであるポリエステルを意味する。他の酸成分として、
インフタル酸、フタル酸、ナフタレン1,4−又は2,
6−ジカルボン酸、ジフェニルエーテル4.4’ −ジ
カルボン酸、ジフェニルジカルボン酸類、ジフエノキシ
エタンジエタンジカルボン酸類、等の如き芳香族ジカル
ボン酸類、アジピン酸、セパチン酸、アゼライン酸、デ
カン1,10−ジカルボン酸の如き脂肪族ジカルボン酸
、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸
等を例示でき、これらを酸成分の、20モ菱采禍の割合
で含有することができる。
The thermoplastic polyester that can be used as a material in the present invention has an acid component of 80 or more molar proportions, preferably 90 molar proportions or more of terephthalic acid, and a glycol component of 80 or more molar proportions, preferably 90 or more molar proportions. Refers to polyester which is ethylene glycol. As other acid components,
Inphthalic acid, phthalic acid, naphthalene 1,4- or 2,
Aromatic dicarboxylic acids such as 6-dicarboxylic acid, diphenyl ether 4.4'-dicarboxylic acid, diphenyldicarboxylic acids, diphenoxyethanediethanedicarboxylic acids, etc., adipic acid, sepatic acid, azelaic acid, decane 1,10-dicarboxylic acid Examples include aliphatic dicarboxylic acids such as, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and these can be contained in a proportion of 20 moles of the acid component.

他のグリコール成分として、プロピレングリコール、ト
リメチレングリコール、テトラメチレングリコール、ジ
エチレングリコール、ポリエチレングリコール、ポリプ
ロピレングリコール、ポリテトラメチレングリコール、
ヘキサメチレングリコール、ドデカメチレングリコール
、ネオペンチルグリコール等の如き脂肪族グリコール類
、シクロヘキサンジメタツール等の脂環族グリコール、
2,2−ビス(4!−β−ヒドロキシエトキシフェニル
)プロパン、ソの他の芳香族ジオール類、等を例示でき
、これらをグリコール成分の20モル係未満の割合で含
有することができる。
Other glycol components include propylene glycol, trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol,
Aliphatic glycols such as hexamethylene glycol, dodecamethylene glycol, neopentyl glycol, etc., alicyclic glycols such as cyclohexane dimetatool,
Examples include 2,2-bis(4!-β-hydroxyethoxyphenyl)propane and other aromatic diols, which may be contained in a proportion of less than 20 molar percentages of the glycol component.

また、p−ヒドロキシエトキシ安息香酸、p−オキシ安
息香酸、δ−オキシカプロン酸等のオキシ酸類をエチレ
ンテレフタレート成分以外に20モル係未満含庸するこ
とができる。
In addition to the ethylene terephthalate component, less than 20 molar amounts of oxyacids such as p-hydroxyethoxybenzoic acid, p-oxybenzoic acid, and δ-oxycaproic acid can be included.

前記ポリエステルには、トリメチロールプロパン、ペン
タエリスリトール、トリメリット酸、トリメシン酸の如
き多官能基成分を5気、好ましくは6気未満共重合させ
てもよい。また、着色剤、熱劣化又は酸化防止剤、紫外
線劣化防止剤、帯電防ih剤、抗醒剤、滑剤等の添加剤
を必要に応じて適量含■することができる。
The polyester may be copolymerized with polyfunctional components such as trimethylolpropane, pentaerythritol, trimellitic acid, and trimesic acid in an amount of less than 5 atoms, preferably less than 6 atoms. Further, additives such as colorants, heat deterioration or oxidation inhibitors, ultraviolet deterioration inhibitors, antistatic agents, anti-static agents, lubricants, and the like can be contained in appropriate amounts as required.

本発明の熱可塑性ポリエステルは、固有粘度が060〜
2.0、好ましくは0.70〜1.5の範囲の値をゼす
るものが使用される。
The thermoplastic polyester of the present invention has an intrinsic viscosity of 060 to
2.0, preferably in the range of 0.70 to 1.5.

またこの様なポリエステルは、溶融重合で製造され18
0〜250℃の温度下で減圧処理または不活性ガス雰囲
気で熱処理されたもの、または同相重合して低分子−二
重合物であるオリゴマーやアセトアルデヒドの含Mtを
低減させたものが好適である。
In addition, such polyester is produced by melt polymerization and is 18
Preferred are those that have been subjected to reduced pressure treatment or heat treatment in an inert gas atmosphere at a temperature of 0 to 250°C, or those that have been subjected to in-phase polymerization to reduce the Mt content of oligomers or acetaldehyde, which are low molecular polymers.

本発明の典型的実施例としては、この様な熱可塑性ポリ
エステルを予め射出成形法によって成形したM底バリン
ンを中空成形するに当って、流体圧によりパリノンを横
軸方向に吹き膨らませると同時に、容器内に突出する延
伸マンドレルをその軸方向に運動させて容器の底部を押
し、容器全体をその縦軸方向に伸張させ、全体として二
軸延伸され9− た容器を成形する如き方法、即ち熱可塑性ポリエステル
を素材とし、成形型内で二軸延伸ブロー成形して中空容
器を成形する方法がまず予備的段階として採用可能であ
る。
In a typical embodiment of the present invention, when blow-molding an M-bottom ballin made of such thermoplastic polyester by injection molding, at the same time blowing the parinon in the transverse direction using fluid pressure, A method such as moving a stretching mandrel protruding into the container in its axial direction to push against the bottom of the container and stretching the entire container in the direction of its longitudinal axis to form a biaxially stretched container as a whole; A method of forming a hollow container using plastic polyester as a material by biaxial stretch blow molding in a mold can be adopted as a preliminary step.

パリノンを成形するには、別途射出成形により有底パリ
ソンを成形するのが最も適当であるが、連続状にホット
パリノンを押出成形し、適宜に切断しつつ底部を形成す
るのでも構わない。この様な有底パリソンは、成形され
る容器の形状に合せて縦方向、横方向の延伸倍率、目付
重量、肉厚、全体形状等が適宜定められる。またパリノ
ンの成形型への供給方法は、パリノンの成形方式、コー
ルドパリンンかホットパリノンかの相違により種々考え
得るが、いずれにしても公知の方法を適宜採用可能であ
る。またパリノンは、二軸延伸が可能な様に予め加熱保
持されるが、その温度は素材により異り、(Tg+15
)〜(Tg+35)−Cの範囲にあることが好ましい。
In order to mold Parinon, it is most appropriate to form a bottomed parison by separate injection molding, but it is also possible to continuously extrude hot Parinon and cut it appropriately to form the bottom part. For such a bottomed parison, the stretching ratio in the longitudinal and lateral directions, the basis weight, the wall thickness, the overall shape, etc. are appropriately determined according to the shape of the container to be molded. Further, various methods of supplying Parinone to the mold can be considered depending on the molding method of Parinone and whether it is cold Parinone or hot Parinone, but in any case, any known method can be adopted as appropriate. Parinon is heated and maintained in advance to enable biaxial stretching, but the temperature varies depending on the material (Tg + 15
) to (Tg+35)-C.

=10− 成形型は、その素材については適宜選択可能であるが、
加熱または冷却して成形物との間で熱の授受を行う必要
があるときは、金属製であることが最適である。その様
な型は、その内部に熱媒体が循環されるか、電気加熱ヒ
ーターが設けられ、所要の温度に予め調温されている。
=10- The material of the mold can be selected as appropriate, but
When it is necessary to transfer heat to and from the molded product by heating or cooling, it is best to use metal. Such a mold has a heating medium circulating therein or is provided with an electric heater to pre-regulate the temperature to a desired temperature.

パリンンニ軸延伸ブローするには公知の方法がそのまま
利用し得る。即ち例えば、パリノンの口部に嵌挿された
ブローコアから加圧流体例えば高圧空気を吹込み、それ
と同時にまたは逐次タイミングでブローコア内に嵌挿さ
れた延伸マンドレルをその軸方向に運動させ、その先端
でパリンン底部を押しながらパリノンを縦軸方向に伸長
させる。この際の容器内圧は12〜20 kg/crt
?程度が適当で、容器は型内面にぞ接して二軸延伸成形
される。
Known methods can be used as they are for the uniaxial stretch blowing. That is, for example, a pressurized fluid such as high-pressure air is blown from a blow core fitted into the mouth of the parinon, and at the same time or at a sequential timing, a stretching mandrel fitted into the blow core is moved in its axial direction, and the tip of the drawing mandrel is moved in its axial direction. Stretch the Parinon in the vertical axis direction while pressing the bottom of the Parinon. The internal pressure of the container at this time is 12 to 20 kg/crt.
? If the degree is appropriate, the container is biaxially stretched in contact with the inner surface of the mold.

この様にして成形された壜は、その口頭部を誘電加熱用
の電極間に嵌挿される。即ち本発明に係る壜の製造用具
であるこの電極は、その実施例として図面に示される通
りである。
The mouth of the bottle thus formed is inserted between electrodes for dielectric heating. That is, this electrode, which is a bottle manufacturing tool according to the present invention, is as shown in the drawings as an example thereof.

該電極は、壜の口頭部(1)の壁内の内面に沿って抜き
差し自在に挿入し得る突部(2)をπする突状電極(3
)および該突部(2)の基部舒りの外周に沿って嵌装さ
れる環状絶縁部材(4)および突状電極(3)の先端付
近に嵌装される壜の口頭部(11の外周に沿って嵌装さ
れる環状電極(5)の6部材より構成される。
The electrode is a protruding electrode (3) with a protrusion (2) that can be freely inserted and removed along the inner surface of the wall of the mouth part (1) of the bottle.
) and the annular insulating member (4) fitted along the outer periphery of the base spout of the protrusion (2) and the outer periphery of the mouth part (11) of the bottle fitted near the tip of the protruding electrode (3). It is composed of six members: an annular electrode (5) fitted along the

前記突状電極(3)は、中空の筒状を成し場内圧力の調
整用通孔が形成されている場合と、中実の柱状を成す場
合のいずれの形態であっても良い。絶縁部材(4ルよ、
耐熱性と高周波絶縁性とを■さねばならないが、その程
度は、相互に関連性を■するので両者の兼ね合いで適宜
定め得る。例えば、高周波絶縁性が乏しい程、高い耐熱
性を要する。
The protruding electrode (3) may have either a hollow cylindrical shape with a through hole for adjusting the internal pressure formed therein, or a solid columnar shape. Insulating material (4 pieces,
Heat resistance and high-frequency insulation must be considered, but the degree of heat resistance and high-frequency insulation must be determined as appropriate based on the relationship between the two. For example, the poorer the high frequency insulation, the higher the heat resistance required.

環状電極(5)は、突状電極(3)の突部(2)と同心
的に配置され、両者間に種口頭部(1)が挿入される間
隙が形成される。一般にこの種の壜は、その口径部外周
に蓋を係止するための環状の突条や段部またはねじ山等
が形成されているため、その外周は凹凸状を成している
。従って環状電極(開まその内面を増目頭部外面の凹凸
に沿う様形成されるのがその形状変化を防止する上で好
ましいが、口頭部外面と環状電極間に不均一な間隙があ
っても大きな支障はない。環状電極(5)の内面に凹凸
を形成することによりアンダーカット部が生じる場合に
は、環状電極(5)が環の径方向に分割し得る複数の部
材から成る様に構成するのが好適である。
The annular electrode (5) is arranged concentrically with the protrusion (2) of the protruding electrode (3), and a gap is formed therebetween into which the seed head (1) is inserted. Generally, this type of bottle has an annular protrusion, a step, a screw thread, etc. formed on the outer periphery of its caliber portion for locking the lid, so that the outer periphery is uneven. Therefore, it is preferable to form the annular electrode so that its inner surface follows the irregularities on the outer surface of the eyelid head in order to prevent the shape from changing. There is no major problem.If an undercut is caused by forming unevenness on the inner surface of the annular electrode (5), the annular electrode (5) should be made up of a plurality of members that can be divided in the radial direction of the ring. It is preferable to configure.

環状絶縁部材(4轄、環状電極(5)が一定位置に常に
配置される様に該電極(5)の内面に接して僅かに嵌入
する位置決め突起(6)を有することが望ましい。
It is desirable that the annular insulating member (4 parts) has a positioning protrusion (6) that slightly fits in contact with the inner surface of the annular electrode (5) so that the annular electrode (5) is always placed in a fixed position.

この位置決め突起(6xま、電極(5)の全内周に沿う
如く形成されるのが好ましく、その場合には電極(5)
の端縁部に電流が集中するのを防止し得る。
It is preferable that this positioning protrusion (6x) is formed along the entire inner circumference of the electrode (5).
It is possible to prevent current from concentrating on the edge.

13− 両電極(3X5)の素材としては、ジュラルミンその他
アルミニウム合金、鉄、ステンレススチール等、導電性
の金属が適宜選択可能であり、絶縁部材(4)の素材と
しては、陶器、磁器、合成樹脂等の中から前述の条件に
合致するものを適宜に選択可能であるが、とりわけフッ
素樹脂は、誘電体力率tanδが0.0003以下と極
めて小さいため、高周波絶縁性と耐熱性をバランスよく
保有17ているので好適であり、またフッ素樹脂であれ
ば、熱で軟化した増目端部の粘着も防止1〜得るので、
この点からも好都合である。
13- As the material for both electrodes (3x5), conductive metals such as duralumin, aluminum alloy, iron, stainless steel, etc. can be selected as appropriate, and as the material for the insulating member (4), ceramics, porcelain, synthetic resin can be selected. It is possible to appropriately select a material that meets the above conditions from among the above, but in particular, fluororesin has a very small dielectric power factor tan δ of 0.0003 or less, so it has a good balance of high frequency insulation and heat resistance17 In addition, fluororesin prevents adhesion at the edges of the enlarged eyelids softened by heat.
It is convenient from this point of view as well.

この様な電極間に壜の口頚部を挿入して電極に高周波電
圧を印加すると、周知の如く、 W= 2 rr f c V2tanδW : 単位時
間に発生する熱量(watt)■ : 印加電圧(vo
lt ) f : 印加周波数(mega hartj )14− C:  εCO ε ; 誘電体の誘電率 co=  幾何学的静電容讐 tanδ : 誘′醒体力率 で示される誘電体損に基く熱が増目頭部自体より発生し
、素材が均一に加熱される。
When the neck of the bottle is inserted between such electrodes and a high frequency voltage is applied to the electrodes, as is well known, W = 2 rr f c V2 tan δW : Amount of heat generated per unit time (watt) ■ : Applied voltage (vo
lt) f: Applied frequency (megahartj) 14- C: εCO ε; Dielectric constant co=geometric capacitance tan δ: Increased heat based on dielectric loss indicated by dielectric power factor It is generated from the part itself, and the material is heated evenly.

加熱時間即ち通電時間は、印加電圧及び周波数によって
異るが、夫々が数100vで数10MHzである場合に
は、10秒前後の間に、素材のガラス転移点をTgで表
わすと、(Tg+20)〜(Tg+150)”Cの範囲
に昇温することができる。均一昇温を達成する目的で、
時間の許す場合には間欠的に通電するのも効果的である
The heating time, that is, the energization time varies depending on the applied voltage and frequency, but if the voltage is several 100 V and several 10 MHz, the glass transition point of the material, expressed as Tg, will reach (Tg + 20) within about 10 seconds. The temperature can be raised to a range of ~(Tg+150)"C. For the purpose of achieving uniform temperature rise,
If time permits, intermittent energization is also effective.

適当な電圧は1kV以下、好適には500v前後であり
、適当な周波数は1〜100MHz 、好適には13.
65MHz±6.78KHz、27.12MHz±16
2.78KHz、40.68MHz±20−34 KH
z等の周波数帯域である。電圧が高過ぎると扱いに危険
が伴うし、また絶縁破壊を生じるおそれがある。
A suitable voltage is 1 kV or less, preferably around 500 V, and a suitable frequency is 1 to 100 MHz, preferably 13.
65MHz±6.78KHz, 27.12MHz±16
2.78KHz, 40.68MHz±20-34KH
This is a frequency band such as z. If the voltage is too high, it is dangerous to handle and may cause dielectric breakdown.

前記ε、Co、tanδ等は素材に個有のものであり、
COは素材の被加熱部分の形状、体積等にも関係する。
The above ε, Co, tan δ, etc. are unique to the material,
CO is also related to the shape, volume, etc. of the heated portion of the material.

また加熱に際して消費される電力は被加熱部分の総体積
、昇温温度に比例し、また通電時間にも当然比例するが
、1−、e容程度のPET壜で口頚部の外径25m肉厚
3咽、高さ25随程度のものの場合に111/8ee前
後である。
In addition, the power consumed during heating is proportional to the total volume of the heated part, the temperature to be heated, and of course proportional to the time of energization. In the case of a tree with three throats and a height of around 25, it is around 111/8ee.

この様にして加熱処理が終了すると、素材の結晶化が急
速に進行するが、壜の用途等を考慮してその後の取扱い
を決めることができる。即ち電極間でそのままの状態で
、または電極間から取出して自然放冷下に徐冷、または
強制冷却のいずれでも良く、また口頚部の内径の寸法積
度を保持するために冷却用インサート治具を装着し、内
外より急冷するのが時間短縮面から効果的である。
When the heat treatment is completed in this manner, crystallization of the material progresses rapidly, but subsequent handling can be determined by taking into consideration the intended use of the bottle. In other words, it may be left as it is between the electrodes, or it may be taken out from between the electrodes and slowly cooled while being naturally cooled, or it may be forced to cool.In addition, a cooling insert jig may be used to maintain the dimensions of the inner diameter of the mouth and neck. It is effective from a time-saving perspective to attach a hood and rapidly cool it from the inside and outside.

次に本発明の他の実施態様としては、壜をブロー成形す
る前のプリフォームについて加熱する場合、即ち壜が、
再加熱軟化して二軸延伸中空成形する前の予備成形品で
ある場合を挙げ得る。
Next, as another embodiment of the present invention, when the preform is heated before blow molding the bottle, that is, the bottle is heated.
It may be a preformed product before being reheated and softened and subjected to biaxial stretching blow molding.

即ち、第2図に示す如く、本発明に係る突状電極(3)
をリップコア型、環状電極(5)をリップキャビティ型
とし、環状電極(5)をホットバリンン方式の二軸延伸
ブロー成形機内のリップキャビティ型固定板(7)に固
定する。誘電加熱は、環状電極(5)を了−ス側として
プリフォームの再加熱と同時に第2ステーシヨンで行う
(第1ステーシヨンはプリフォームの射出成形段階)。
That is, as shown in FIG. 2, the protruding electrode (3) according to the present invention
The annular electrode (5) is of a lip core type and the annular electrode (5) is of a lip cavity type, and the annular electrode (5) is fixed to a lip cavity type fixing plate (7) in a biaxial stretch blow molding machine of a hot ballin type. The dielectric heating is performed at the second station simultaneously with the reheating of the preform with the annular electrode (5) on the terminal side (the first station is at the injection molding stage of the preform).

従ってプリフォームは、この段階で口頚部の結晶化増進
と主体部の再加熱が為され、次いで第6ステーシヨンへ
移され、延伸ブローが行われる。第6図は突状電極(3
)が除去され、その代りにブローコアユニット(8)が
設定された状態を示しており、その先端部により口頚1
7一 部内径の変化を防止している。
Therefore, at this stage, the preform undergoes enhanced crystallization of the neck and neck portions and reheating of the main body portion, and is then transferred to the sixth station where stretch blowing is performed. Figure 6 shows the protruding electrode (3
) has been removed and a blow core unit (8) has been installed in its place.
7. Partially prevents changes in inner diameter.

この様にすれば、壜の製造に当り口頚部の強化処理に要
する時間を別個に付加する必要がないので、壜の製造を
更に高能率化することができる。
In this way, it is not necessary to separately add the time required for strengthening the mouth and neck during bottle manufacturing, so that the bottle manufacturing can be made even more efficient.

本発明の実施に当り、誘電加熱ステーションの周囲を電
磁遮蔽するのが望ましいのはもとよりで、それにより周
囲における電波障害のおそれをなくすることができる。
In practicing the present invention, it is of course desirable to provide electromagnetic shielding around the dielectric heating station, thereby eliminating the possibility of radio wave interference in the surrounding area.

本発明な実施する上で高周波電源、その他の必要設備に
対する投資額およびエネルギーコストは、他の加熱方式
に比して特に大きなものではないにも拘らず、本発明に
よって得られる製造能率の向上は著しいので、本発明の
工業上の貢献は顕著である。
Although the investment amount and energy cost for a high-frequency power source and other necessary equipment to implement the present invention are not particularly large compared to other heating methods, the improvement in manufacturing efficiency obtained by the present invention is Therefore, the industrial contribution of the present invention is significant.

以下に実施例を示し、本発明を更に具体的に述べる。The present invention will be described in more detail with reference to Examples below.

実施例1゜ 代表的な熱可塑性ポリエステルであるPET(日本ユニ
1B− ペット社製商品名ユニベット107DB、IV=0.7
3)を使用して、口頚部外径28wのM底パリンンを射
出成形機で成形する。得られた成形物、即ちコールドバ
リンンは、延伸ブロー用の1次成形物としてプリフォー
ムと呼ばれる。
Example 1 PET, a typical thermoplastic polyester (Nippon Uni 1B-PET Co., Ltd., trade name Unibet 107DB, IV=0.7
3) is used to mold an M-bottom palin with an outer diameter of 28w at the mouth and neck using an injection molding machine. The obtained molded product, ie, cold ballin, is called a preform as a primary molded product for stretch blowing.

このプリフォームの口頚部を第1図に示される電極間に
挿入し、次いで高周波電圧を印加する。
The mouth and neck of this preform are inserted between the electrodes shown in FIG. 1, and then a high frequency voltage is applied.

印加電圧 :  500V 印加周波数 :  4[]、4(SMH20頚部平均外
径 :  26ttrm 同 平均肉厚 :6wrrR 同長さ =251+01+ 電極材料 : アルミ合金 絶縁材料 二 四フッ化エチレン樹脂 この場合、高周波発生装置の出力は1.5 ktあった
が、樹脂の到達温度および結晶化度は第1表に記す如く
通電時間によって相違する。尚通電加熱後、口頚部内径
の寸法種度を保持するための冷却用インサート治具を装
着して放冷し結晶化させた。
Applied voltage: 500V Applied frequency: 4[ ], 4 (SMH20 neck average outer diameter: 26ttrm Same average wall thickness: 6wrrR Same length = 251+01+ Electrode material: Aluminum alloy insulation material 2 Tetrafluoroethylene resin In this case, high frequency generator The output was 1.5 kt, but the temperature reached and the degree of crystallinity of the resin differ depending on the energization time as shown in Table 1.After energization and heating, cooling was performed to maintain the dimensional uniformity of the inner diameter of the mouth and neck. An insert jig was attached and allowed to cool to crystallize.

第  1  表 *ドロー発生   木*93℃の熱水に浸漬実施例2゜ ホットパリンン方式で成形された通常の2軸延伸プロー
壜(使用樹脂、カネボウ合繊社製商品名ベルペツ)EF
G−7、口頚部内径21.5ms+0.同外径25.0
、ねじ山外径27、4、容量1看)について、実施例1
と同じ加熱方法と用具によって熱処理した。8秒通電後
自然放冷したところ、得られた壜の口頚部は、密度が1
.375.9/cm−結晶化度が32%で、その熱安定
性は第2表の通りであった。尚、参考として初期即ち加
熱処理時の収縮量と収縮率を併記する。
Table 1 * Draw occurrence Wood * Immersion in hot water at 93°C Example 2 Normal biaxially stretched blow bottle molded by the hot palin method (resin used: Kanebo Gosen Co., Ltd., trade name: Belpetsu EF)
G-7, mouth and neck inner diameter 21.5ms+0. Same outer diameter 25.0
, thread outer diameter 27.4, capacity 1), Example 1
Heat treatment was performed using the same heating method and equipment as. When the bottle was energized for 8 seconds and allowed to cool naturally, the density of the neck and neck of the bottle was 1.
.. 375.9/cm - crystallinity was 32%, and its thermal stability was as shown in Table 2. For reference, the amount of shrinkage and shrinkage rate at the initial stage, ie, during heat treatment, are also listed.

収縮率(4)は96℃の熱水充填時、収縮率(Blは8
5℃熱水充填時の値を示す。
Shrinkage rate (4) is when filled with hot water at 96℃ (Bl is 8
Shows the value when filled with 5℃ hot water.

第  2  表 実施例6゜ ホットハリンン方式で形成され、清酒用としてエメラル
ドグリーンに着色成形された壜(使用樹脂、前記ベルベ
ラ)EFG−7、着色顔料としてシアニンブルー002
%、紫外線吸収剤0.05 %、分散剤適量等含肩、口
頚部内径21− 22.50關同外径26.20、ねじ山外径2Z50、
容量900m)について実施例1と同じ加熱用具を用い
、通電条件を変えて加熱した。7 その条件としては、周波数を20MHzとし、出力1.
2nで通電時間を8秒とし、他は同様である。
Table 2 Example 6: Bottle formed by hot-harining method and colored and molded in emerald green for sake (resin used: Berbera) EFG-7, cyanine blue 002 as coloring pigment.
%, ultraviolet absorber 0.05%, appropriate amount of dispersant, etc., mouth and neck inner diameter 21-22.50, same outer diameter 26.20, thread outer diameter 2Z50,
The same heating tool as in Example 1 was used to heat the sample (capacity: 900 m) by changing the energization conditions. 7 The conditions are that the frequency is 20MHz and the output is 1.
2n, the current application time was 8 seconds, and the other conditions were the same.

その結果を実施例2と同様に示すと第6表の通りである
The results are shown in Table 6 in the same manner as in Example 2.

尚、口頭部の密度は1,371/i、結晶化度は31係
である。
The density of the oral part is 1,371/i, and the crystallinity is 31/i.

第  3  表 実施例4゜ 第2図および第3図に示される如き方式に従って、プリ
フォームの口頚部に対する本発明の熱処理をプリフォー
ム22− の再加熱と同時に行った。
Table 3 Example 4 According to the method shown in FIGS. 2 and 3, the heat treatment of the present invention on the mouth and neck of the preform was carried out simultaneously with the reheating of the preform 22-.

この時の印加電圧500■、印加周波数43MHz、出
力1.35 nである。
At this time, the applied voltage was 500 mm, the applied frequency was 43 MHz, and the output was 1.35 n.

通電は、先ず5秒、次いで2秒休止した後8秒通電する
如く断続的に行った。
The current was applied intermittently, first for 5 seconds, then after a 2-second pause, the current was applied for 8 seconds.

加熱終了後、プロー成形された種本体部分と共に、場内
に噴射された液化炭酸ガスの飛沫によって、口頚部を急
冷した。この口頚部の密度は1.375 :i/CIr
L”であり、得られた壜に85℃の熱水を充填した際、
口頭部の熱収縮率は外径において0.62%、内径にお
いて0.86 %であった。
After heating, the mouth and neck were rapidly cooled together with the blow-molded seed body by spraying liquefied carbon dioxide into the area. The density of this mouth and neck area is 1.375:i/CIr
L", and when the resulting bottle was filled with 85℃ hot water,
The heat shrinkage rate of the mouth part was 0.62% in the outer diameter and 0.86% in the inner diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は、壜の製
造用具たる高周波電極付近の縦断面図、第2図は、2軸
延の符号は以下の通りである。 (1)・・・壜の口頚部       (2)・・・突
部(3)・・・突状電極      (a (4(・・
・絶縁部材(5)・・・環状電極        (6
)・・・位置決め突起(力・・・リップキャビティ型置
ポ仮  (8)・・・フ゛ローコアユニット(9)・・
・延伸ロッド       U(2)・・・液化炭酸ガ
ス噴射口代理人 弁理士  高 橋 勝 利 第z図
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view of the vicinity of a high-frequency electrode, which is a bottle manufacturing tool, and FIG. 2 shows biaxial extensions with the following symbols. (1)... Mouth and neck of the bottle (2)...Protrusion (3)...Protruding electrode (a (4(...)
・Insulating member (5)...Annular electrode (6
)...Positioning protrusion (force...Lip cavity mold placement (8)...Follow core unit (9)...
・Extension rod U (2)...Liquefied carbon dioxide injection port Representative Patent attorney Katsutoshi Takahashi Figure z

Claims (1)

【特許請求の範囲】 1 熱可塑性ポリエステルを素材とした壜の製造に当り
、成形中または成形後の壜の口頚部壁を挟んで1対の電
極を対設し、該電極へ高周波電圧を印加して該口頭部を
高周波誘電加熱し、口頚部素材の結晶化を瞬時に増進さ
せて口頭部に耐熱強度を付与することを特徴とf−るロ
頚部結晶化ポリエステル壜の製造法。 2、高周波電圧の周波数が1〜100MHzである特許
請求の範囲の第1項記載の製造法。 3、予め成形して得られた壜を電磁遮蔽された領域内に
搬入し、該領域内で高周波誘電加熱する特許請求の範囲
第1または2項記載の製造法。 4 予め成形された壜が、再加熱軟化して2軸延伸中空
成形する前のプリフォームである特許請求の範囲第1.
2または3項記載の製造法。 5、壜の口頚部壁の内面に沿って抜き差し自在に挿入で
き、筒または柱状を成丁突部が形成された突状電極と、
該突部の基部寄りの外周に沿って嵌装される、耐熱性と
高周波絶縁性を臂する環状絶縁部材と、突状電極の先端
付近に嵌装される壜の口頚部の外周に沿って嵌装される
環状電極とより成る、高周波電圧を印加して口頚部の結
晶を増進させた熱可塑性ポリエステル壜を製造するため
の用具。 6 環状電極が、壜の口頚部外面に存する凹凸に沿った
アンダーカット部を有し、環の径方向に分割し得る複数
の部材により構成された特許請求の範囲第5項記載の製
造用具。 Z 環状絶縁部材が、環状電極の内面に接して嵌入する
位置決め突起を■する特許請求の範囲第5または6項記
載の製造用具。 8.環状絶縁部材を構成する素材がフッ素樹脂である特
許請求の範囲第5.6または7項記載の製造用具。
[Claims of Claims] 1. When manufacturing a bottle made of thermoplastic polyester, a pair of electrodes is provided across the mouth and neck wall of the bottle during or after molding, and a high frequency voltage is applied to the electrodes. A method for producing a neck crystallized polyester bottle, characterized in that the mouth part is heated by high frequency dielectric to instantaneously promote crystallization of the mouth part material and impart heat-resistant strength to the mouth part. 2. The manufacturing method according to claim 1, wherein the frequency of the high-frequency voltage is 1 to 100 MHz. 3. The manufacturing method according to claim 1 or 2, wherein the bottle obtained by pre-molding is carried into an electromagnetically shielded area and subjected to high-frequency dielectric heating within the area. 4. Claim 1, wherein the preformed bottle is a preform before being reheated and softened and subjected to biaxial stretching blow molding.
The manufacturing method according to item 2 or 3. 5. A protruding electrode that can be freely inserted and removed along the inner surface of the neck wall of the bottle and has a cylindrical or columnar protrusion formed thereon;
An annular insulating member having heat resistance and high frequency insulation properties is fitted along the outer periphery near the base of the protrusion, and an annular insulating member is fitted along the outer periphery of the mouth and neck of the bottle near the tip of the protruding electrode. A tool for producing a thermoplastic polyester bottle to which a high frequency voltage is applied to promote crystallization in the mouth and neck area, the tool comprising a ring-shaped electrode fitted therein. 6. The manufacturing tool according to claim 5, wherein the annular electrode has an undercut portion that follows the unevenness existing on the outer surface of the mouth and neck of the bottle, and is constituted by a plurality of members that can be divided in the radial direction of the ring. Z. The manufacturing tool according to claim 5 or 6, wherein the annular insulating member has a positioning protrusion that is fitted into contact with the inner surface of the annular electrode. 8. The manufacturing tool according to claim 5.6 or 7, wherein the material constituting the annular insulating member is a fluororesin.
JP1277983A 1983-01-31 1983-01-31 Manufacture of polyester bottle with crystalline mouth neck part and jig therefor Pending JPS59138417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277983A JPS59138417A (en) 1983-01-31 1983-01-31 Manufacture of polyester bottle with crystalline mouth neck part and jig therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277983A JPS59138417A (en) 1983-01-31 1983-01-31 Manufacture of polyester bottle with crystalline mouth neck part and jig therefor

Publications (1)

Publication Number Publication Date
JPS59138417A true JPS59138417A (en) 1984-08-08

Family

ID=11814887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277983A Pending JPS59138417A (en) 1983-01-31 1983-01-31 Manufacture of polyester bottle with crystalline mouth neck part and jig therefor

Country Status (1)

Country Link
JP (1) JPS59138417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933135A (en) * 1987-11-27 1990-06-12 Krupp Corpoplast Maschinebaur GmbH Method of making a blow-moulded container from a thermoplastic polyester, in particular pet
US7156647B2 (en) * 2001-03-16 2007-01-02 S.I.P.A. Societa Industrializzazione Progettazion Automazione S.p.A. Device for cooling and thermal conditioning of a tubular object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933135A (en) * 1987-11-27 1990-06-12 Krupp Corpoplast Maschinebaur GmbH Method of making a blow-moulded container from a thermoplastic polyester, in particular pet
US7156647B2 (en) * 2001-03-16 2007-01-02 S.I.P.A. Societa Industrializzazione Progettazion Automazione S.p.A. Device for cooling and thermal conditioning of a tubular object

Similar Documents

Publication Publication Date Title
US6090334A (en) Heat-resistance pressure-resistance and self standing container and method of producing thereof
US4550007A (en) Process for production of a plastic bottle
EP0066982B1 (en) Method of strengthening the neck portion of a bottle-shaped container of biaxially-oriented polyethylene terephthalate resin
EP1779994B1 (en) Method of producing thermoplastic resin hollow molded product
AU2007256851A1 (en) Plastic multi-piece containers and methods and systems of making same
US5660905A (en) Preform and process and apparatus for annealing biaxially oriented hollow shaped thermoplastic articles
EP0669255B1 (en) Heat and pressure resistant container
JP3350192B2 (en) Pressure-resistant self-standing container and method of manufacturing the same
JPS59138417A (en) Manufacture of polyester bottle with crystalline mouth neck part and jig therefor
JPS5993330A (en) Molding method of thermoplastic polyester heat resisting container and blow unit
EP0089201A2 (en) Reheating of preforms with radio frequency energy
EP1468810B1 (en) Biaxial orientation blow molding process
JPH0462028A (en) Manufacture of high-stretch-blow-molded container
GB2212435A (en) Blow moulded container
JPH02128826A (en) Pressure-resistant thin synthetic resin container and method of molding the same
JPH07132935A (en) Plastic blow-molded can
JPS62238730A (en) Manufacture of thermally fixed oriented container
JPH0724865A (en) Method and mold for producing bottle mouth plug part for molding polyester insert
JP3740968B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JPH07132923A (en) Biaxially oriented blow-molded heat-resistant bottle and manufacture thereror
JPH0615643A (en) Manufacture of premolded body
JPS63207629A (en) Method and device for thickness control in circumferential direction of bottle
JPH07132922A (en) Biaxially oriented blow-molded heat-resistant bottle and manufacture therefor
JP3449634B2 (en) Heat-resistant biaxially stretch blow-molded bottle and method for producing the same
JPH07257537A (en) Heat and pressure resistant vessel and production method