JPS59138399A - Electromagnetic wave absorber and method of producing same - Google Patents

Electromagnetic wave absorber and method of producing same

Info

Publication number
JPS59138399A
JPS59138399A JP1322483A JP1322483A JPS59138399A JP S59138399 A JPS59138399 A JP S59138399A JP 1322483 A JP1322483 A JP 1322483A JP 1322483 A JP1322483 A JP 1322483A JP S59138399 A JPS59138399 A JP S59138399A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorber
weight
parts
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1322483A
Other languages
Japanese (ja)
Other versions
JPH025032B2 (en
Inventor
和之 丸山
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP1322483A priority Critical patent/JPS59138399A/en
Publication of JPS59138399A publication Critical patent/JPS59138399A/en
Publication of JPH025032B2 publication Critical patent/JPH025032B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はセラミックス製電磁波吸収体とその製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic electromagnetic wave absorber and a method for manufacturing the same.

近年、通信技術、輸送機関、各種電気機器等の進歩に伴
い、これらから発生する電磁波雑音が周囲に及ぼす障害
が急増している。特に大気中を流れる電磁波の量がおび
ただしい地域では、屋内で通信機器を利用する場合、ア
ンテナを介して受信される所要電磁波のみならず、不−
要な雑音が直接機器に入信することによって通信が妨害
されることが少なくない。この様な不要雑音を適当な建
材に吸収させ、所要電磁波のみを受信することは通信機
器利用者の望むところである。
2. Description of the Related Art In recent years, with advances in communication technology, transportation, various electrical devices, etc., the electromagnetic noise generated by these devices is causing a rapid increase in the number of disturbances caused to the surroundings. Particularly in areas where there is a large amount of electromagnetic waves flowing through the atmosphere, when using communication equipment indoors, not only the required electromagnetic waves received via the antenna, but also the unnecessary
Communication is often disrupted by unwanted noise directly entering the equipment. It is the desire of communication equipment users to absorb such unnecessary noise into appropriate building materials and receive only the necessary electromagnetic waves.

電磁波吸収材としては、従来からプラスチックゴム専有
ta lfA料に金属を混入した物やフェライト焼結体
が知られているが、前者は耐熱性及び耐火性に乏しいた
めに、また後者は重量が重すぎるためにいずれも建材に
は適さなかった。
As electromagnetic wave absorbing materials, materials made by mixing metal into talfA material, which is a proprietary material for plastic rubber, and ferrite sintered bodies have been known, but the former has poor heat resistance and fire resistance, and the latter is heavy in weight. Because of their excessive size, they were not suitable as building materials.

本発明は、上述の不要雑音を遮断し得る、建材として利
用可能な電磁波吸収体を提供するものである。
The present invention provides an electromagnetic wave absorber that can block the above-mentioned unnecessary noise and can be used as a building material.

本発明の要旨とするところは、ケイ灰石100重量部と
マグネタイト50〜300重量部とが均質に分散しあっ
た電磁波吸収体に存する。
The gist of the present invention resides in an electromagnetic wave absorber in which 100 parts by weight of wollastonite and 50 to 300 parts by weight of magnetite are homogeneously dispersed.

また前記特定発明と関連する同様に本発明の要旨とする
ところは、ケイ灰石とマグネタイトを混合し成形後、焼
成することを特徴とする電磁波吸収体の製造法、鉄、シ
リカ及びカルシアを混合し、ゾノトライト又はトバモラ
イトが生成する条件で水熱処理を施し、成形後焼成する
ことを特徴とする電磁波吸収体の製造法及び鉄、シリカ
及びカルシアを混合し成形後ゾノトライト又はトバモラ
イトが生成する条件で水熱処理を施し、次いで焼成する
ことを特徴とする電磁波吸収体の製造法に存する。
In addition, the gist of the present invention, which is related to the above-mentioned specific invention, is a method for producing an electromagnetic wave absorber characterized by mixing wollastonite and magnetite, molding, and firing, and mixing iron, silica, and calcia. A method for producing an electromagnetic wave absorber, characterized in that hydrothermal treatment is performed under conditions that produce xonotrite or tobermorite, followed by firing after molding, and a method for producing an electromagnetic wave absorber characterized in that iron, silica, and calcia are mixed and water is treated under conditions that produce xonotrite or tobermorite after molding. The present invention relates to a method for producing an electromagnetic wave absorber, which comprises performing heat treatment and then firing.

以下実施例及び比較例によりこの発明を具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 市販ケイ灰石100重量部とマグネタイト100重量部
を混合し粒径10μm以下に摩砕、混合粉末を金型に充
填して圧力1ton/cniで加圧成形した後、大気中
温度900℃、保持時間60分の条件で焼成することに
よって、大きさ100×1’00X10(龍)の試料1
を作成した。得られた試料と第1図又は第2図に示す測
定装置を用いて次の要領で電磁波吸収効果を評価した。
Example 1 100 parts by weight of commercially available wollastonite and 100 parts by weight of magnetite were mixed, ground to a particle size of 10 μm or less, the mixed powder was filled into a mold and pressure-molded at a pressure of 1 ton/cni, and then heated at a temperature of 900 in air. Sample 1 of size 100 x 1'00 x 10 (dragon)
It was created. Using the obtained sample and the measuring device shown in FIG. 1 or 2, the electromagnetic wave absorption effect was evaluated in the following manner.

第1図は測定装置の配置を示す平面図で、第2図は同じ
く正面図である。1は本実施例で作成した試料、2はア
ルミニウム製の反射板、3は反射電磁波を受信するため
のアンテナ、4は火花発振器、5は反射板に反射しない
でアンテナに入信する電磁波を遮断する遮断板、6は増
幅機及び記録計、7は反射板2と火花発振機4と遮断板
5とを設置する台をそれぞれ示す。測定の際には、上記
試料1を反射板2の火花発振機と向い合う面に重ね合わ
せた後、火花発振機4から発振され次いで上記試料によ
って反射した電磁波をアンテナ3で受信するごとによっ
て、火花発振機から発振された電磁波の減衰量を測定し
た。測定結果を第3図に示す。
FIG. 1 is a plan view showing the arrangement of the measuring device, and FIG. 2 is a front view. 1 is a sample prepared in this example, 2 is an aluminum reflector, 3 is an antenna for receiving reflected electromagnetic waves, 4 is a spark oscillator, and 5 is for blocking electromagnetic waves entering the antenna without being reflected by the reflector. A blocking plate 6, an amplifier and a recorder, and 7 a stand on which the reflecting plate 2, the spark oscillator 4, and the blocking plate 5 are installed, respectively. During measurement, after placing the sample 1 on the surface of the reflector 2 facing the spark oscillator, each time the antenna 3 receives the electromagnetic waves oscillated from the spark oscillator 4 and then reflected by the sample, We measured the amount of attenuation of the electromagnetic waves oscillated by the spark oscillator. The measurement results are shown in Figure 3.

実施例2 生石灰とクリストバライトをCa / S i原子比が
1.2となるように混合し粒径10μm以下は摩砕し、
平均粒径150μmの鉄粉を混合物100重量部に対し
て80重量部添加した後、再び混合し、次いで混合粉末
を攪拌式加圧容器に充填した後、温度250℃、保持時
間5時間の条件で水熱処理を施した。水熱処理後の粉末
の一部を分析した結果、ゾノライト、マグネタイト及び
少量のトバモライトの生成が確認された。水熱処理後の
残りの粉末を乾燥し圧力1 ton ’ / cnlで
加圧成形し、大気中温度800℃、保持時間60分の条
件で焼成することによって大きさ100xlOOxlO
(顛)の試料3を作成した。周知の方法で分析した結果
、ケイ灰石とマグネタイトが生成していた。
Example 2 Quicklime and cristobalite were mixed so that the Ca/Si atomic ratio was 1.2, and the particles with a particle size of 10 μm or less were ground.
After adding 80 parts by weight of iron powder with an average particle size of 150 μm to 100 parts by weight of the mixture, the mixture was mixed again, and the mixed powder was then filled into a stirring pressurized container, followed by a temperature of 250°C and a holding time of 5 hours. was subjected to hydrothermal treatment. Analysis of a portion of the powder after hydrothermal treatment confirmed the formation of zonolite, magnetite, and a small amount of tobermorite. The powder remaining after the hydrothermal treatment is dried, pressure-molded at a pressure of 1 ton'/cnl, and fired in the atmosphere at a temperature of 800°C and a holding time of 60 minutes to obtain a size of 100xlOOxlO.
(2) Sample 3 was created. Analysis using a well-known method revealed that wollastonite and magnetite were produced.

この試料2を用いて実施例1と同様に電磁波吸収効果を
評価した結果を第3図に示す。
Using this sample 2, the electromagnetic wave absorption effect was evaluated in the same manner as in Example 1. The results are shown in FIG.

実施例3 鉄粉の添加量が生石灰とクリストバライトとの混合物1
00重量部に対して200重量部である以外は実施例2
と同一の条件で試料3を作成した。
Example 3 The amount of iron powder added is 1 in a mixture of quicklime and cristobalite
Example 2 except that the amount was 200 parts by weight relative to 00 parts by weight.
Sample 3 was prepared under the same conditions as above.

分析の結果、ケイ灰石とマグネタイトが生成していた。Analysis revealed that wollastonite and magnetite were produced.

試料3を用いて電磁波吸収効果を評価した結果を第3図
に示す。
FIG. 3 shows the results of evaluating the electromagnetic wave absorption effect using Sample 3.

実施例4 生石灰とクリストバライトをCa/Si原子比が1.0
となるように混合し粒径10μm以下に摩砕し、平均粒
径50μmの鉄粉を混合物100重量部に対し150重
量部添加した後、再び混合し、圧力1ton/adで加
圧成形し、成形体に温度300℃、保持時間3時間の条
件で水熱処理を施した。
Example 4 Quicklime and cristobalite with Ca/Si atomic ratio of 1.0
After mixing and grinding to a particle size of 10 μm or less, adding 150 parts by weight of iron powder with an average particle size of 50 μm to 100 parts by weight of the mixture, mixing again and press molding at a pressure of 1 ton/ad, The molded body was subjected to hydrothermal treatment at a temperature of 300° C. and a holding time of 3 hours.

水熱処理後の成形体を分析した結果、ゾノトライト、1
−ハモライト及びマグネタイトの生成が確認された。次
に水熱処理後の成形体を大気中温度800℃保持時間6
0分の条件で焼成することによって大きさ100xlO
OxlO(m)の試料4を作成した。分析の結果、ケイ
灰石とマグネタイトが生成していた。実施例1と同様に
して電磁波吸収効果を測定した結果を第3図に示す。
As a result of analyzing the molded body after hydrothermal treatment, xonotlite, 1
- Generation of hamolite and magnetite was confirmed. Next, the molded body after hydrothermal treatment was held at a temperature of 800°C in the atmosphere for 6 hours.
The size is 100xlO by firing under the conditions of 0 minutes.
Sample 4 of OxlO(m) was prepared. Analysis revealed that wollastonite and magnetite were produced. The results of measuring the electromagnetic wave absorption effect in the same manner as in Example 1 are shown in FIG.

比較例 ポリプロピレン100重量部に平均粒径250μmのフ
ェライト粉末を混合し、押出機を用いて厚さ2鮪のシー
トを作成した。このシートを100龍四方に切断したも
のを5枚重ねることによって上記各実施例と比較するた
めの試料5を得た。実施例1と同様にして電磁波吸収効
果を測定した結果を第3図に示す。
Comparative Example Ferrite powder having an average particle size of 250 μm was mixed with 100 parts by weight of polypropylene, and a sheet with a thickness of 2 mm was prepared using an extruder. Sample 5 was obtained for comparison with each of the above examples by cutting this sheet into 100 square pieces and stacking five sheets. The results of measuring the electromagnetic wave absorption effect in the same manner as in Example 1 are shown in FIG.

第3図かられかるように、本発明の技術的範囲に属する
試料1〜4はいずれも従来の電磁波吸収材料である試料
5と同等の電磁波吸収効果を有していた。しかも本発明
電磁波吸収体はその母相にケイ灰石を多量に含有してい
るために軽量であり、また断熱性、1lii+熱性及び
耐火性に優れている。
As can be seen from FIG. 3, Samples 1 to 4, which fall within the technical scope of the present invention, all had the same electromagnetic wave absorption effect as Sample 5, which is a conventional electromagnetic wave absorbing material. Moreover, since the electromagnetic wave absorber of the present invention contains a large amount of wollastonite in its matrix, it is lightweight and has excellent heat insulation properties, 1lii+ heat properties, and fire resistance.

次に本発明の電磁波吸収体を構成するケイ灰石とマグネ
タイトの含有比と該電磁波吸収体の製造法を前述の槌に
限定した理由を述べる。
Next, the content ratio of wollastonite and magnetite constituting the electromagnetic wave absorber of the present invention and the reason why the manufacturing method of the electromagnetic wave absorber was limited to the above-mentioned hammer will be described.

ケイ灰石とマグネタイトの比については、ケイ灰石10
0重量部に対してマグネタイトが50重量部未満の場合
は従来品と同等の電磁波吸収効果が得られず、300重
量部を超えると効果の向上は見られない上6ひ軽量化を
阻害するので、その含有比をケイ灰石100重量部に対
し、マグネタイトが5θ〜300重量部に限定した。
Regarding the ratio of wollastonite and magnetite, wollastonite 10
If the amount of magnetite is less than 50 parts by weight, the electromagnetic wave absorption effect equivalent to that of conventional products cannot be obtained, and if it exceeds 300 parts by weight, no improvement in the effect will be seen, and the weight reduction will be hindered. The content ratio of magnetite was limited to 5θ to 300 parts by weight per 100 parts by weight of wollastonite.

本発明電磁渡り成体は実施例1に示したように普通焼結
法によって製造すれば廉価に製造することができるが、
用途に応じて実施例2〜4に示したような水熱処理を施
した場合には、上記の利点を損わずに次に示す利点を付
加的に有することができる。
The electromagnetic bridge body of the present invention can be manufactured at low cost if it is manufactured by the ordinary sintering method as shown in Example 1.
When hydrothermal treatment as shown in Examples 2 to 4 is performed depending on the application, the following additional advantages can be obtained without impairing the above-mentioned advantages.

イ)製造工程の中間でゾノトライト針状結晶又はトバモ
ライト板状結晶が生成し、これらが相互に絡み合った網
状組織の中にマグネタイトが分散しているので、焼成後
にゾノトライト又はトバモライトがケイ灰石に変化して
も体積収縮が極めて小さく、寸法精度が良くなる。
b) Zonotlite needle crystals or tobermorite plate crystals are formed in the middle of the manufacturing process, and magnetite is dispersed in the network structure in which these crystals are intertwined with each other, so after firing, the xonotlite or tobermorite changes to wollastonite. However, the volumetric shrinkage is extremely small and the dimensional accuracy is improved.

口)上記網状組織が焼成後にも維持されるので、得られ
る電磁波吸収体は多孔質であり、このことが建材して不
可欠な軽量化、断熱性、耐熱性及び耐火性を助長する。
Since the network structure is maintained even after firing, the resulting electromagnetic wave absorber is porous, which promotes weight reduction, heat insulation, heat resistance, and fire resistance, which are essential for building materials.

尚、水熱処理の条件はゾノトライト又はトバモライトが
生成する条件であれば実施例2〜4に示した条件に限定
されないが、カルシアとシリカとの反応性と加圧容器の
耐熱性及び耐圧性とを考慮すれば、温度は200〜60
0℃、静水圧力は30〜400気圧が好ましい。
The conditions for the hydrothermal treatment are not limited to those shown in Examples 2 to 4 as long as xonotlite or tobermorite is produced, but depending on the reactivity of calcia and silica and the heat resistance and pressure resistance of the pressurized container. Considering that the temperature is 200-60
Preferably, the temperature is 0°C and the hydrostatic pressure is 30 to 400 atm.

以上の通り、本発明によれば建材として好適な電磁波吸
収体が得られる。
As described above, according to the present invention, an electromagnetic wave absorber suitable as a building material can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁波の反射減衰量を測定する装置の配置を示
す平面図で、第2図は同じく正面図である。第3図は本
発明の実施例及び比較例によって得られる電磁波吸収体
を用いて種々の周波数におりる電磁波の反射減衰量を測
定した結果を表わすグラフである。 特許出願人 日本特殊陶業株式会社 代表者 小川修次 −4 第1図 第8図 ■ 婚 復諷  (t”u−+z) 昭和58年 3月λ斗日 特許庁長官   若 杉 和 夫 殿 1、事件の表示 昭和58年 特許願 第13224号 2、発明の名称 電磁波吸収体とその製造法 3、補正をする者 事件との関係   特許出願人 住 所   郵便番号 467−91 名古屋市瑞穂区高辻町14番18号 4、補正の対象 明細書中、発明の詳細な説明の欄。 5、補正の内容 別紙の通り ■、明細書第5頁、5行目〜6行目を下記の文に訂正し
ます。 「た結果、ゾノトライト、及びマグネタイトの生成が確
認された。水熱処理後の残」 2、同5頁、下から4行目〜5行目を下記の文に訂正し
ます。 「混合物100重量部に対して200重量部であること
と、温度が200℃であること以外は実施例2と同一の
条件で試料3を作成した。」3、同第6頁、6行目中、
r300Jをr230Jに訂正します。 4、同第8頁、10行目中、「イトが分散しているので
、」を「イトが均質に分散してい′るので、」に訂正し
ます。 5、同第8頁、13行目と14行目の間に次の文を挿入
します。 「特にゾノライトの場合はトポタクヂックな反応でケイ
灰石に変化するので、上記効果が顕著である。」 6、同第9頁、2行目〜3行目を下記の文に訂正します
。 「すれば、温度は150〜400 ”c、静水圧力は3
0〜400気圧が好ましい、又、温度が200℃以下で
はトバモライトが生成し、250 ’C以上でゾノトラ
イトが生成し、200〜250 ’Cで゛両者が共存す
る。 以上
FIG. 1 is a plan view showing the arrangement of an apparatus for measuring the return loss of electromagnetic waves, and FIG. 2 is a front view. FIG. 3 is a graph showing the results of measuring the return loss of electromagnetic waves at various frequencies using the electromagnetic wave absorbers obtained according to the examples and comparative examples of the present invention. Patent applicant: NGK SPARK PLUG Co., Ltd. Representative: Shuji Ogawa-4 Fig. 1 Fig. 8 ■ Marriage renewal (t”u-+z) March 1980 λ Tohito Commissioner of the Patent Office Kazuo Wakasugi 1; Indication of the case 1982 Patent Application No. 13224 2 Name of the invention Electromagnetic wave absorber and its manufacturing method 3 Person making the amendment Relationship to the case Patent applicant Address Postal code 467-91 14 Takatsuji-cho, Mizuho-ku, Nagoya City No. 18 No. 4, Detailed explanation of the invention in the specification subject to amendment. 5. Contents of amendment As shown in the attached sheet ■, Page 5 of the specification, lines 5 to 6 are corrected to the following sentence: ``As a result, the formation of xonotrite and magnetite was confirmed. Residue after hydrothermal treatment'' 2. On page 5, lines 4 and 5 from the bottom are corrected to the following sentence. “Sample 3 was prepared under the same conditions as Example 2 except that the amount was 200 parts by weight based on 100 parts by weight of the mixture and the temperature was 200°C.” 3, page 6, line 6 During,
Correct r300J to r230J. 4. On page 8, line 10 of the same text, ``Because it is dispersed,'' should be corrected to ``Because it is homogeneously distributed.'' 5. Insert the following sentence between lines 13 and 14 on page 8. ``In the case of zonolite in particular, the above effect is remarkable because it changes to wollastonite through a topotactic reaction.'' 6. Correct the following sentence from page 9, lines 2 to 3. ``Then the temperature is 150-400''c and the hydrostatic pressure is 3
A temperature of 0 to 400 atm is preferred; at a temperature of 200°C or lower, tobermorite is produced; at a temperature of 250'C or higher, xonotrite is produced; and at a temperature of 200 to 250'C, both coexist. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)ケイ灰石100重量部とマグネタイト50〜30
0重量部とが均質に分散しあった電磁波吸収体。
(1) 100 parts by weight of wollastonite and 50 to 30 parts by weight of magnetite
An electromagnetic wave absorber in which 0 parts by weight are uniformly dispersed.
(2)ケイ灰石とマグネタイトを混合し成形後、焼成す
ることを特徴とする電磁波吸収体の製造法。
(2) A method for producing an electromagnetic wave absorber, which comprises mixing wollastonite and magnetite, molding, and then firing.
(3)鉄、シリカ及びカルシアを混合し、ゾノトライト
又はトバモライトが生成する条件で水熱処理を施し、成
形後焼成することを特徴とする電磁波吸収体の製造法。
(3) A method for producing an electromagnetic wave absorber, which comprises mixing iron, silica, and calcia, subjecting the mixture to hydrothermal treatment under conditions that produce xonotlite or tobermorite, molding, and then firing.
(4)鉄、シリカ及びカルシアを混合し成形後、ジノ1
〜ライト又はトバモライトが生成する条件で水熱処理を
施し、次いで焼成することを特徴とする電磁波吸収体の
製造法。
(4) After mixing iron, silica and calcia and molding, Gino 1
- A method for producing an electromagnetic wave absorber, which comprises performing hydrothermal treatment under conditions that produce light or tobermorite, and then firing.
JP1322483A 1983-01-28 1983-01-28 Electromagnetic wave absorber and method of producing same Granted JPS59138399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322483A JPS59138399A (en) 1983-01-28 1983-01-28 Electromagnetic wave absorber and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322483A JPS59138399A (en) 1983-01-28 1983-01-28 Electromagnetic wave absorber and method of producing same

Publications (2)

Publication Number Publication Date
JPS59138399A true JPS59138399A (en) 1984-08-08
JPH025032B2 JPH025032B2 (en) 1990-01-31

Family

ID=11827202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322483A Granted JPS59138399A (en) 1983-01-28 1983-01-28 Electromagnetic wave absorber and method of producing same

Country Status (1)

Country Link
JP (1) JPS59138399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152299U (en) * 1986-11-19 1988-10-06

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110496A (en) * 1978-02-17 1979-08-29 Tdk Corp Material for electric wave absorptive body
JPS54110497A (en) * 1978-02-17 1979-08-29 Tdk Corp Material for electric wave absorptive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110496A (en) * 1978-02-17 1979-08-29 Tdk Corp Material for electric wave absorptive body
JPS54110497A (en) * 1978-02-17 1979-08-29 Tdk Corp Material for electric wave absorptive body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152299U (en) * 1986-11-19 1988-10-06

Also Published As

Publication number Publication date
JPH025032B2 (en) 1990-01-31

Similar Documents

Publication Publication Date Title
Arenas et al. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers
Kjellsen Heat curing and post-heat curing regimes of high-performance concrete: influence on microstructure and CSH composition
CN113336570B (en) Novel composite foaming gypsum sound absorption material and preparation method thereof
CN107573080A (en) A kind of infusion process prepares SiCN/Si3N4The method of composite ceramics
Leiva et al. Potential recycling of bottom and fly ashes in acoustic mortars and concretes
CN108975836A (en) A kind of Electromgnetically-transparent composite material and preparation method and application
JPS59138399A (en) Electromagnetic wave absorber and method of producing same
CN108615519B (en) Graphene porous sound insulation and noise reduction material
CN112624706B (en) High-strength concrete and preparation process thereof
CN111849048B (en) Metal powder-rubber particle composite phononic material, preparation method and application
JPH0261123B2 (en)
JPH0262921B2 (en)
CN111572125A (en) Composite board
JPH0261122B2 (en)
CN111763098A (en) Method for producing masonry material by using foamed ceramic waste
Mercan Production of Aerogel-Modified Expanded Perlite Aggregate and Clay (AEP/C) Board and Investigation of Physical and Mechanical Properties
JP3848674B2 (en) Sound absorption and insulation panel
JPH0630820Y2 (en) Inorganic sound absorber
JPS5913473B2 (en) Manufacturing method of lightweight molded body
JPS61200212A (en) Night reflective sound absorbing board
JPS6117783B2 (en)
JPS6042286A (en) Foaming material
JP2891909B2 (en) Lightweight multilayer sound absorbing material
Chen Sustainable insulating lightweight materials for enhancing indoor building performance: Miscanthus, aerogel and nano-silica
Siddharth et al. Investigation of low frequency sound absorption property of fluorogypsum material for indoor applications