JPS59136058A - 3-phase brushless motor - Google Patents

3-phase brushless motor

Info

Publication number
JPS59136058A
JPS59136058A JP58008866A JP886683A JPS59136058A JP S59136058 A JPS59136058 A JP S59136058A JP 58008866 A JP58008866 A JP 58008866A JP 886683 A JP886683 A JP 886683A JP S59136058 A JPS59136058 A JP S59136058A
Authority
JP
Japan
Prior art keywords
output
elements
hall
hall elements
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58008866A
Other languages
Japanese (ja)
Inventor
Satoshi Sakamoto
敏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58008866A priority Critical patent/JPS59136058A/en
Publication of JPS59136058A publication Critical patent/JPS59136058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To reduce a consumption current in a compact structure by using a Hall element disposed at the position of 120 or 240 deg. of an electric angle for detecting the rotating position of a rotor so that the difference of the neutral point voltage of the output signal of the element becomes 15% or less of the maximum value of the output signal. CONSTITUTION:A stator is provided with flat stator coils L1-L6 distributed in an equal angular range such as 60 deg. on a substantially circuilar base plate, and opposed coils L1 and L4, L2 and L5, L3 and L6 are respectively connected in series. Hall elements H1, H2 are arranged in the intermediate between the coils L6 and L1 and in the intermediate between the coils L1 and L2. A rotor 2 is magnetized at a main pole 2a and an auxiliary pole 2b, and the pole 2b is passed on the elements H1, H2. The detected differential voltage signal of the elements H1, H2 is inputted to a control signal forming circuit 6. The element that the difference of the neutral point voltage of the output signals of the elements H1, H2 becomes 15% or less of the maximum value of the output signal is used, a brushless motor is driven in 3-phase by the output of the circuit 6, and the consumption current can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は3相ブラシレスモータに関する。[Detailed description of the invention] Industrial applications The present invention relates to a three-phase brushless motor.

背景技術とその問題点 従来第1図に示す如き偏平な小形の3相ブラシレスモー
タが提案されていた。この第1図に於いて、(1)はス
テータ、(2)はロータ、(3)は回転軸を示す。この
ステータ(1)は第2図に示す如く略円形の基板(4)
上に互いに等しい角範囲例えば60度範囲[分布−jる
6個の偏平なステータコイルLl、L2・・・L6を設
けたものである。この場合、対向するステータコイルL
1とL4 、 L2とLs 、 L3とL6とは夫々直
列接続する如くなす。又ロータ(2)は例えば第3図に
示す如くN極及びS極の8極が交互に等角範囲に着磁さ
れた円板状のマグネットよりなるものである。又ステー
タ(1)の所定位置例えばこのステータ(1)の外周部
のステータコイルL6とLlとの中間、LlとL2との
中間及びL2とL3との中間に夫々ホール素子H1,H
2及びH3を配する。この場合各ホール素子H1,H2
及びH3の幾何学的角度は60度であるがロータ(2)
の極数が8極であるので電気角で240度の相対位置関
係にあることになる。
BACKGROUND ART AND PROBLEMS Conventionally, a small, flat three-phase brushless motor as shown in FIG. 1 has been proposed. In FIG. 1, (1) indicates a stator, (2) a rotor, and (3) a rotating shaft. This stator (1) has a substantially circular base plate (4) as shown in Figure 2.
Six flat stator coils L1, L2, . In this case, the opposing stator coil L
1 and L4, L2 and Ls, and L3 and L6 are connected in series, respectively. The rotor (2) is, for example, a disk-shaped magnet in which eight poles of north and south poles are magnetized alternately in equiangular ranges, as shown in FIG. Furthermore, Hall elements H1 and H are provided at predetermined positions of the stator (1), for example, between stator coils L6 and Ll, between Ll and L2, and between L2 and L3 on the outer periphery of the stator (1).
Place 2 and H3. In this case, each Hall element H1, H2
and the geometric angle of H3 is 60 degrees, but the rotor (2)
Since the number of poles is 8, there is a relative positional relationship of 240 degrees in electrical angle.

この各ホール素子H1,H2及びH3を夫々第4図に示
す如く電源端子(5)と大地との間に接続し、このポー
ル素子H1、H2及びH3の一方及び他方の出力端子間
に夫々得られる出力信号を夫々半導体集積回路より成る
制御信号形成回路(6)に供給し、この制御信号形成回
路(6)の6つの出力端子を夫々npn形トランジスタ
(7a) 、 (7b) 、 (8a) 、 (8b)
 、 (9a)及び(9b)の夫々のベースに接続する
。このトランジスタ(7a) 、 (8a)及び(9a
)の夫々のコレクタを正の直流電圧が供給される電源端
子0Iに接続し、このトランジスタ(7a)、(8a)
及び(9a)の夫々のエミッタを夫々トランジスタ(7
b) 、 (8b)及び(9b)の夫々のコレクタに接
続し、之等トランジスタ(7b) 、 (8b)及び(
9b)の夫々のエミッタを接地する。このトランジスタ
(7a)のエミッタ及びトランジスタ(7b)のコレク
タの接続点をステータコイルL1及びL4の直列回路と
ステータコイルL5及びL2の直列回路との直列回路を
介してトランジスタ(8a)のエミッタ及びトランジス
タ(8b)のコレクタの接続点に接続し、ステータコイ
ルL4及びL5の接続点をステータコイルL6及びL3
の直列回路を介してトランジスタ(9a)のエミッタ及
ヒトランジスタ(9b)のコレクタの接続点に接続する
。この場合制御信号形成回路(6)に於いてはホール素
子H1,H2及びH3の出力側に第5図A。
These Hall elements H1, H2 and H3 are respectively connected between the power supply terminal (5) and the ground as shown in FIG. The six output terminals of the control signal forming circuit (6) are connected to npn transistors (7a), (7b), (8a), respectively, and the output signals are respectively supplied to a control signal forming circuit (6) formed of a semiconductor integrated circuit. , (8b)
, (9a) and (9b). These transistors (7a), (8a) and (9a
) are connected to the power supply terminal 0I to which a positive DC voltage is supplied, and the transistors (7a) and (8a)
The emitters of and (9a) are connected to transistors (7
b) connected to the collectors of transistors (7b), (8b) and (9b), respectively;
9b) each emitter is grounded. The connection point between the emitter of the transistor (7a) and the collector of the transistor (7b) is connected to the emitter of the transistor (8a) and the collector of the transistor (8a) through a series circuit of a series circuit of stator coils L1 and L4 and a series circuit of stator coils L5 and L2. (8b) to the connection point of the collector, and connect the connection point of stator coils L4 and L5 to the connection point of stator coils L6 and L3.
It is connected to the connection point of the emitter of the transistor (9a) and the collector of the transistor (9b) through a series circuit. In this case, in the control signal forming circuit (6), the output side of the Hall elements H1, H2, and H3 as shown in FIG. 5A.

B及びCに示す如き順次電気角で240度の位相の異な
る矩形波信号が得られたときにステータコイルL1及び
L4の直列回路を流れる電流をIa、ステータコイルL
2及びL5の直列回路を流れる電流をIb、ステータコ
イルL3及びL6の直列回路を流れる電流をIcとした
とき之等電流Ia 、 Ib及びIcは夫々第5図り、
E及びFに示す如く順次120度づつ位相が異なり、電
気角で120度間正の■l流、次の60度間零電流、次
の120度間負の電流及び次の60度間零電流を順次繰
り返す電流が得られる如き制御信号を発生する如く構成
されている。
The current flowing through the series circuit of stator coils L1 and L4 when rectangular wave signals having different phases of 240 electrical degrees as shown in B and C are sequentially obtained is Ia and stator coil L.
When the current flowing through the series circuit of stator coils L3 and L5 is Ib, and the current flowing through the series circuit of stator coils L3 and L6 is Ic, the equal currents Ia, Ib, and Ic are shown in Figure 5, respectively.
As shown in E and F, the phase is sequentially different by 120 degrees, positive current for 120 electrical degrees, zero current for the next 60 degrees, negative current for the next 120 degrees, and zero current for the next 60 degrees. The circuit is configured to generate a control signal such that a current that repeats sequentially is obtained.

斯る従来の3相ブラシレスモータは3個のホール素子H
1、H2及びH3を必要とするため、これと駆動回路と
の結線本数が多く、又ボール素子の駆動電力が省電力化
の点で無視できない問題点かあつた。更にモータを小形
化すると、ホール素子の位1m 14度が出しにくく、
ホール素子を設けるスペースが少なくなるので、従来の
ように3個のホール素子を必要とすることは好ましくな
い。
Such a conventional three-phase brushless motor has three Hall elements H.
1, H2, and H3, the number of connections between these and the drive circuit is large, and the drive power of the ball element is a problem that cannot be ignored in terms of power saving. Furthermore, if the motor is made smaller, it will be difficult to produce 14 degrees at a distance of 1 meter, as long as the Hall element.
It is not preferable to require three Hall elements as in the prior art, since the space for providing the Hall elements is reduced.

この為先例第6図に示す如く、ロータ(2)の回転位置
を検出するホール素子の2個H1,H2を電気角で12
0度又は240度の相対位置関係に配置し、このホール
素子H1,H2の夫々の出力信号を合成して之等ホール
素子H1、H2の出力信号とは120度の位相差を有す
る合成イi号を得、この合成信号と之等ホール素子H1
,H2の出力信号とによりステータコイルLl 、L2
・・・Le K駆動電流を供給する様にした3相ブラシ
レスモータが提案されている。即ち第6図例に於いては
ステータ(1)及びロータ(2)は第2図及び第3図と
同様に構成し、第2図のホール素子用、H2及びH3の
うちホール素子H3を除去し、2個のホール素子H1及
びH2を設ける如くする。
For this reason, as shown in Fig. 6 of the precedent example, two Hall elements H1 and H2 for detecting the rotational position of the rotor (2) are set at 12 in electrical angle.
They are arranged in a relative positional relationship of 0 degree or 240 degrees, and the respective output signals of these Hall elements H1 and H2 are synthesized to form a composite i which has a phase difference of 120 degrees from the output signals of the Hall elements H1 and H2. This composite signal and the Hall element H1
, H2 output signals, the stator coils Ll, L2
... A three-phase brushless motor that supplies Le K drive current has been proposed. That is, in the example shown in Fig. 6, the stator (1) and rotor (2) are constructed in the same manner as in Figs. 2 and 3, and the Hall element H3 among the Hall elements H2 and H3 in Fig. 2 is removed. However, two Hall elements H1 and H2 are provided.

この場合各ホール素子H1及びH2は電気角で240度
の相対位置関係にあることになる。このホール素子H1
及びH2に夫々電源端子(5)よりの直流電圧を抵抗器
OI)を介してバイアス電圧として供給し、このホール
素子H1の一方及び他方の出力端子a1及び32間に得
られる検出差冨、圧信号を制御信号形成回路(6)の第
1及び第2の入力端子間に供給すると共にホール素子H
2の一方及び他方の出力端子cl及び02間に得られる
検出差電圧イざ号を制御信号形成回路(6)の第3及び
第4の入力端子間に供給する。このホール素子H1の一
方の出力端子a1とホール素子H2の他方の出力端子C
2との間に抵抗値Rの等しい2個の抵抗器(12+及び
(13)の直列回路を接続し、この抵抗器02)及び(
i3)の接続点を制御信号形成回路(6)の第6の入力
端子に接続すると共にホール素子H1の他方の出力端子
a2とホール素子H2の一方の出力端子CIとの間に抵
抗値Hの等しい2個の抵抗器α(イ)及びα5)の直列
回路を接続し、この抵抗器側及びα5)の接続点を桓5
の入力端子に接続する。この場合抵抗器a2)、αJ、
圓及びα5)の夫々の抵抗値Rをホール素子H1,H2
の抵抗1色より極め”〔大きく選定する。又この場合ホ
ール素子H1の一方及び他方の出力端子al及びa2の
夫々の出力電正値をVa及びVa’としホール素子H2
の一方及び他方の出力端子CI及びc2の夫々の出力電
圧1直をVc及びVc’としたとき制御信号形成回路(
6)の第5の入力端子に供給される電圧値vbは Vl) = −L (Va’−Vc )であり、第6の
入力端子に供給される電圧値■b′は Vb’ =2 (Va Vc′) である。ここで第5及び第6の入力端子間の入力信号す
は b = Vb−Vb’ =−8(Va−Va’)−j、
−(We−Vc’)である。ここで第1及び第2の入力
端子間の入力信号即ちホール素子用の出方信号aは a = Va −Va’ であり、第3及び第4の入力端子間の入力信号即ちホー
ル素子H2の出力信号Cは c = Vc −Vc’ である。従って b−一丁(a+c) となり、制御信号形成回路(6)の入力側に第5図A。
In this case, the Hall elements H1 and H2 have a relative positional relationship of 240 electrical degrees. This Hall element H1
A DC voltage from the power supply terminal (5) is supplied to H2 and H2 as a bias voltage through a resistor OI), and the detected difference between the output terminals a1 and 32 of one side and the other side of this Hall element H1, the voltage A signal is supplied between the first and second input terminals of the control signal forming circuit (6), and the Hall element H
The detected difference voltage equal signal obtained between one and the other output terminals cl and 02 of the control signal forming circuit (6) is supplied between the third and fourth input terminals of the control signal forming circuit (6). One output terminal a1 of this Hall element H1 and the other output terminal C of Hall element H2
A series circuit of two resistors (12+ and (13)) with the same resistance value R is connected between the resistors 02 and (02) and (13).
i3) is connected to the sixth input terminal of the control signal forming circuit (6), and a resistance value H is connected between the other output terminal a2 of the Hall element H1 and one output terminal CI of the Hall element H2. Connect a series circuit of two equal resistors α (a) and α5), and connect the connection point of this resistor side and α5) to
Connect to the input terminal of In this case, the resistor a2), αJ,
The respective resistance values R of the circle and α5) are determined by the Hall elements H1 and H2.
In this case, the output voltage values of one and the other output terminals al and a2 of the Hall element H1 are set as Va and Va', respectively, and the resistance of the Hall element H2 is
The control signal forming circuit (
The voltage value vb supplied to the fifth input terminal of 6) is Vl) = -L (Va'-Vc), and the voltage value ■b' supplied to the sixth input terminal is Vb' = 2 ( VaVc'). Here, the input signal between the fifth and sixth input terminals is b = Vb-Vb' = -8(Va-Va')-j,
-(We-Vc'). Here, the input signal between the first and second input terminals, that is, the output signal a for the Hall element H2, is a = Va - Va', and the input signal between the third and fourth input terminals, that is, the output signal a for the Hall element H2. The output signal C is c = Vc - Vc'. Therefore, it becomes b-one (a+c), and the signal shown in FIG. 5A is on the input side of the control signal forming circuit (6).

B及びCに示す如き検出信号が供給されたことと/、ぐ
る。第6図に於いてその他は第4図同様に土、す成する
。従って第6図に於いても第4図と同様にロータ(2)
を回転することができる。
Detection signals as shown in B and C were supplied. In Figure 6, the rest is made of soil as in Figure 4. Therefore, in Fig. 6, as in Fig. 4, the rotor (2)
can be rotated.

この第6図に於いてはホール素子を3個から2個に低減
することができ、このホール素子と駆動回路との間の結
線の本数を減少することができると共に消費電力の低減
を図ることができ、更にそれだけモータを小形化する点
で有利となる。
In FIG. 6, the number of Hall elements can be reduced from three to two, and the number of connections between this Hall element and the drive circuit can be reduced, and power consumption can be reduced. This is advantageous in terms of making the motor more compact.

然しなから斯る第6図に示す如き3相ブラシレスモータ
はホール素子を1個少なくすることができるが、この代
りに4 (IMiの抵抗器(12+ 、 (13) 、
 (14)及び(固を増加する必要があり、それだけ構
成が複雑となると共にこの抵抗器021.α3) 、 
0.4)及び(151にある程度の精度が要求される不
都合があった。
However, in a three-phase brushless motor as shown in FIG. 6, the number of Hall elements can be reduced by one, but instead of 4 (IMi resistors (12+, (13),
(14) and (resistor 021.α3 needs to be increased, the configuration becomes more complicated and this resistor 021.α3),
0.4) and (151) had the disadvantage that a certain degree of accuracy was required.

発明の目的 本発明は斯る点に鑑み2個のホール素子H1,H2を使
用した3相ブラシレスモータを部品を増加することなく
構成し、よりコンパクトな3相ブラシレスモータを得る
ことを目的とする。
Purpose of the Invention In view of the above, an object of the present invention is to configure a three-phase brushless motor using two Hall elements H1 and H2 without increasing the number of parts, and to obtain a more compact three-phase brushless motor. .

発明の概要 本発明はロータの回転位置を検出するホール素子の2個
を電気角で120度又は240度の相対位置関係に配置
し、この2個のホール素子の夫々の一方及び他方の出力
端子間より夫々第1及び第2の検出差電圧信号を得る様
にすると共に一方のホール素子の出力端子の一方と他方
のホール素子の出力端子の一方と間より第3の検出差電
圧信号を得る様にし、この第1.第2及び第3の検出差
−電圧信号より3相駆動電流を形成する様にした3相ブ
ラシレスモータに於いて、この2個のポール素子の出力
信号の中点電位の差がこのホール素子の出力信蓚の最大
値の15チ以下となる様な2個のホール素子を使用する
様にし、抵抗器等の部品を増加することなく、2個のホ
ール素子を使用して良好な3相ブラシレスモータを得る
様にしたものである。
Summary of the Invention The present invention arranges two Hall elements for detecting the rotational position of a rotor at a relative positional relationship of 120 degrees or 240 degrees in electrical angle, and output terminals of one and the other of the two Hall elements. A first and a second detected difference voltage signal are obtained from between, respectively, and a third detected difference voltage signal is obtained from between one of the output terminals of one Hall element and one of the output terminals of the other Hall element. Please follow this 1st. Second and third detection difference - In a three-phase brushless motor in which a three-phase drive current is formed from voltage signals, the difference between the midpoint potentials of the output signals of these two pole elements is the difference between the midpoint potentials of the Hall element. Two Hall elements are used so that the maximum value of the output signal is 15 inches or less, and a good three-phase brushless system is achieved by using two Hall elements without increasing the number of components such as resistors. It is designed to obtain a motor.

実施例 以下第7図を参照しながら本発明3相ブラシレスモータ
の一実施例につき説明しよう。この第7図に於いて第4
図及び第6図に対応する部分には同一符号を付し、その
詳a説明は省略する。
EXAMPLE Hereinafter, an example of the three-phase brushless motor of the present invention will be described with reference to FIG. In this figure 7,
The same reference numerals are given to the parts corresponding to those in the figure and FIG. 6, and detailed explanation thereof will be omitted.

本例に於いてはステータ(1)は第2図に示す如く略由
形の基板(4)上に互いに等しい角範囲例えば60度範
囲に分布する6個の偏平なステータコイルLl。
In this example, the stator (1) has six flat stator coils L1 distributed over an equal angular range, for example, a 60 degree range, on a substantially rectangular substrate (4) as shown in FIG.

L2・・・Lsを設けたものである。この場合対向する
ステータコイルLlとL4 、 L2とLs 、 L3
とLsとは夫々直列接続する。又ステータ(1)の所定
位置例えばこのステータ(1)の外周部のステータコイ
ルL6とLlとの中間及びLlとL2との中間に夫々ホ
ール素子H工及びH2を配する。この場合各ホール素子
H1及びH2は電気角で240度の相対位置関係にある
ことになる。
L2...Ls is provided. In this case, the opposing stator coils Ll and L4, L2 and Ls, L3
and Ls are connected in series. Further, Hall elements H and H2 are disposed at predetermined positions of the stator (1), for example, at the outer periphery of the stator (1), between stator coils L6 and Ll, and between Ll and L2, respectively. In this case, the Hall elements H1 and H2 have a relative positional relationship of 240 electrical degrees.

本例に於いてはロータ(2)を第8図に示す如く構成す
る。即ちロータ(2)は磁性材よりなる円板K例えば8
極のN極及びS極を交互に等角範囲に着磁し、之等を主
磁極(2a)とし、この8つの主磁極(2a)の夫々の
外周の隣接子る中間点を互に結び、その外側に主磁極(
2a)とは逆極性の補助磁極(2b)を着磁する。この
場合このロータ(2)の補助磁極(2b)は略ステータ
のホール素子H1,H2上を通過する如くなす。
In this example, the rotor (2) is constructed as shown in FIG. That is, the rotor (2) is a disk K made of magnetic material, for example 8
The north and south poles of the poles are alternately magnetized in equiangular ranges, and these are used as main magnetic poles (2a), and the intermediate points of the adjacent outer circumferences of each of these eight main magnetic poles (2a) are connected to each other. , outside of which is the main magnetic pole (
An auxiliary magnetic pole (2b) having a polarity opposite to that of 2a) is magnetized. In this case, the auxiliary magnetic pole (2b) of the rotor (2) is made to pass approximately over the Hall elements H1, H2 of the stator.

本例に於いては第7図に示す如く電源端子(5)よりホ
ール素子H1及びH2に夫々バイアス電圧を供給し、こ
のホール素子H1の一方及び他方の出力端子a1及び8
2間に得られる検出差電圧信号を制御信号形成回路(6
)の第1及び第2の入力端子間に供給すると共にホール
素子H2の一方及び他方の出力端子C1及び02間に得
られる検出差電圧信号を制御信号形成回路(6)の第3
及び第4の入力端子間に供給する。又ホール素子H1の
他方の出力端子a2及びホール素子H2の一方の出力端
子C1を夫々制御信号形成回路(6)の第5及び第6の
入力端子に接続する。
In this example, as shown in FIG. 7, a bias voltage is supplied from the power supply terminal (5) to the Hall elements H1 and H2, respectively, and the output terminals a1 and 8 of one and the other of the Hall element H1 are
The detected difference voltage signal obtained between the two is sent to the control signal forming circuit (6
) is supplied between the first and second input terminals of the Hall element H2 and obtained between the one and the other output terminals C1 and 02 of the Hall element H2.
and the fourth input terminal. Further, the other output terminal a2 of the Hall element H1 and one output terminal C1 of the Hall element H2 are connected to the fifth and sixth input terminals of the control signal forming circuit (6), respectively.

この場合ホール素子H1の一方及び他方の出力端子a1
及びC2の夫々の出力信号Va及びVa’は、夫々の中
点電圧なVoa及びVo a’とし、磁束による変化分
をvaとしたとき Va = Voa 十−”a Va’ = Vo a’ −−y a となり、ホール素子H1の一方及び他方の出力端子a1
及び32間の出力信号aは a = Va −Va’= Voa −Voa’+Va
# vaである。又ホール素子H2の一方及び他方の出
力端子C1及びC2の夫々の出力信号Vc及びVc’は
、夫夫の中点地圧をVoc及びVoc’とし、磁束によ
る変化分をvcとしたとき となり、ホール素子H1の一方及び他方の出力端子C1
及び02間の出力信号Cは c = Vc −Vc’ = Voc −VOc’ +
 VC= v(。
In this case, one and the other output terminal a1 of the Hall element H1
The respective output signals Va and Va' of C2 and C2 are assumed to be the respective midpoint voltages Voa and Vo a', and when the change due to the magnetic flux is va, Va = Voa +"a Va' = Vo a' -- y a , and one and the other output terminal a1 of the Hall element H1
The output signal a between and 32 is a = Va - Va' = Voa - Voa' + Va
# va. Further, the output signals Vc and Vc' of one and the other output terminals C1 and C2 of the Hall element H2 are as follows, where the ground pressure at the midpoint of the two is Voc and Voc', and the change due to magnetic flux is vc. One and other output terminals C1 of Hall element H1
The output signal C between and 02 is c = Vc - Vc' = Voc - VOc' +
VC=v(.

である。又制御信号形成回路(6)の第5及び第6の入
力端子の電圧vb及びVblは vb = Va’   Vb’ = Vcであり、この
第5及び第6の入力端子間の入力信号すは b = Vb −Vb’ = Va’ −Vcとなり、
一般にVoa’ = VoaであるのでVoa = V
ocが実現できれば となる。この第7図に於いて、その他は第6図と同様に
構成する。貼る第7図に於いて、Voa二Vocが実現
できれば第6図と同様にロータ(2)を回転することが
できる。
It is. Further, the voltages vb and Vbl at the fifth and sixth input terminals of the control signal forming circuit (6) are vb = Va'Vb' = Vc, and the input signal between the fifth and sixth input terminals is b = Vb - Vb' = Va' - Vc,
Generally Voa' = Voa, so Voa = V
If oc can be realized. The other parts in FIG. 7 are constructed in the same manner as in FIG. 6. In the attached FIG. 7, if Voa-2-Voc can be realized, the rotor (2) can be rotated in the same way as in FIG. 6.

ところで一般的にホール素子の一方及び他方の出力端子
の中点地圧Vo及びVO/の差(不平衡電圧)は非常に
小さくなる様に構成されているが、このポール素子の中
点電圧を別々のボール素子について比較すると非常に犬
ぎくばらついている。この中点電圧のずれTを と定義すると、このTは±60%もばらついておりVo
a = Vocは一般的には成立しない。このVoa−
Vocが零でないときには制御信号形成回路(6)の第
1及び第2の入力端子間と第3及び第4の入力端子間と
第5及び第6の入力端子間とに夫々供給される信号aと
Cとbとは第9図Aに示す如くなり、信号すの零点がず
れこのときのロータの回転トルクは第9図Bに示す如く
大きなトルクむらを生じる。
By the way, the difference (unbalanced voltage) between the midpoint ground voltages Vo and VO/ of one and the other output terminals of the Hall element is generally configured to be very small, but the midpoint voltage of this pole element is Comparing the individual ball elements, there is a very sharp variation. If we define the deviation T of this midpoint voltage as, this T varies by ±60%, and Vo
a=Voc generally does not hold. This Voa-
When Voc is not zero, a signal a is supplied between the first and second input terminals, between the third and fourth input terminals, and between the fifth and sixth input terminals of the control signal forming circuit (6). , C and b are as shown in FIG. 9A, and the zero point of the signal is shifted, and the rotational torque of the rotor at this time causes large torque unevenness as shown in FIG. 9B.

この場合1Voa −Voclの値が大きい程トルクむ
らが太き(なる。
In this case, the larger the value of 1Voa - Vocl, the thicker the torque unevenness.

今ホール素子H1及びH2の出力信号の最大値を夫々a
p及びCpとし、 とし、このUを変化させ、例えばu = Q、7%のと
きは回転トルクのリップルは第10図Aに示す如(6,
6%であり極めて小さく、又u = 5%のときは回転
トルクのリップルは第10図Bに示す如< to、sz
であり比較的小さく使用に充分である。又u−23%の
ときは回転トルクのりップルは第10図Cに示す如<4
1%となり比較的大ぎく使用に不都合を生じる。斯るU
と回転トルりのリップルとの関係を曲線で表わせば第1
1図に示す如くなり、このu−1596以下とすれば通
常の3相ブラシレスモータと同程度の回転トルクむらと
同程度のトルクむらを持つモータを笑現できる。
Now let the maximum values of the output signals of Hall elements H1 and H2 be respectively a
Let p and Cp be, and change this U. For example, when u = Q, 7%, the rotational torque ripple will be as shown in Fig. 10A (6,
6%, which is extremely small, and when u = 5%, the rotational torque ripple is as shown in Figure 10B.
It is relatively small and sufficient for use. Also, when u-23%, the rotational torque ripple is <4 as shown in Figure 10C.
1%, which causes relatively large inconveniences in use. Such U
If the relationship between ripple and rotational torque is expressed as a curve, the first
As shown in FIG. 1, if it is less than U-1596, it is possible to realize a motor with rotational torque unevenness comparable to that of a normal three-phase brushless motor.

従って本例に於いては第7図の3相ブラシレスモータに
於いて、2個のホール素子H1,H2の出力1g号a、
cの中点電圧の差IVoa−Voclがホール素以下と
なる様な2個のホール素子H1,H2を使用する様にす
る。
Therefore, in this example, in the three-phase brushless motor shown in FIG. 7, the outputs 1g a,
Two Hall elements H1 and H2 are used such that the difference in midpoint voltage IVoa-Vocl of c is less than or equal to the Hall element.

尚本発明は上述実施例に限らず本発明の要旨を逸脱する
ことなく、その他種々の構成が取り得ることは勿論であ
る。
It goes without saying that the present invention is not limited to the above-described embodiments, and that various other configurations can be adopted without departing from the gist of the present invention.

発明の効果 本発明に依れば2 ili!itのホール素子1−11
 、H2を使用する3相ブラシレスモークを抵抗器等の
部品を増加することなく実現でき、コンパクトな3相ブ
ラシレスモータを得ることができる。更にホール素子を
3個から2個に低減し且つ抵抗器等の部品の増加がない
ので結線の本数を減少することができると共に消費電力
の低減を図ることができる。
Effects of the Invention According to the present invention, 2 ili! it hall element 1-11
, H2 can be realized without increasing parts such as resistors, and a compact three-phase brushless motor can be obtained. Furthermore, since the number of Hall elements is reduced from three to two and there is no increase in the number of components such as resistors, the number of connections can be reduced and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は偏平形3相プラシレスモークの例を示す断面図
、第2図は従来のステータの例を示す平面図、第3図は
従来のロータの例を示す平面図、第4図及び第6図は夫
々ブラシレスモーフの例を示す構成図、第5図、第9図
、第10図及び第11図は夫々本発明の説明に供する線
図、第7図は本発明に依る3相ブラシレスモータの一実
施例を示す構成図、第8図はロータの例を示す平面図で
ある。 (IIはステータ、(2)はロータ、(6)は制御信号
形成回路、(7a) 、(7b) +(sa) 、(s
b) +(9a)及び(9b)は夫夫トランジスタ、L
l、L2 、L3 、L4 、Ls及びL6は夫々ステ
ータコイル、Hl及びH2は夫々ホール素子である。 第6図 第5図 □ 0° I5′3Ir45″6067I)07θ’  1
05”  120”  /J5’ [1靜((1’) 
  (60°)  (+2(1°)  (180つ (
2’LD0) <300°) (jfltつ (0”)
   (61’)  (110a)g y、 M第7図 第8図 L4(%)
Fig. 1 is a sectional view showing an example of a flat three-phase plastic smoke, Fig. 2 is a plan view showing an example of a conventional stator, Fig. 3 is a plan view showing an example of a conventional rotor, Figs. FIG. 6 is a configuration diagram showing an example of a brushless morph, FIGS. 5, 9, 10, and 11 are diagrams for explaining the present invention, and FIG. 7 is a three-phase configuration according to the present invention. FIG. 8 is a block diagram showing an example of a brushless motor, and a plan view showing an example of a rotor. (II is the stator, (2) is the rotor, (6) is the control signal forming circuit, (7a), (7b) + (sa), (s
b) +(9a) and (9b) are husbandry transistors, L
1, L2, L3, L4, Ls and L6 are stator coils, respectively, and H1 and H2 are Hall elements, respectively. Figure 6 Figure 5□ 0° I5'3Ir45''6067I)07θ' 1
05"120"/J5' [1 quiet ((1')
(60°) (+2 (1°) (180 pieces (
2'LD0) <300°) (jflttsu (0”)
(61') (110a) g y, MFigure 7Figure 8L4 (%)

Claims (1)

【特許請求の範囲】[Claims] ロータの回転位置を検出するホール素子の2個を電気角
で120度又は240度の相対位置関係に配置し、該2
個のホール素子の夫々の一方及び他方の出力端子間より
夫々第1及び第2の検出差電圧信号を得る様にすると共
に上記−万のホール素子の出力端子の一方と上記他方の
ホール素子の出力端子の一方と間より第3の検出差電圧
信号を得る様にし、該第1.第2及び第3の検出差電圧
信号より3相駆動電流を形成する様にした3相ブラシレ
スモータに於いて、上記2個のホール素子の出力信号の
中点電位の差が上記ホール素子の出力信号の最大値の1
5%以下となる様な2個のホール素子を使用する様にし
たことを特徴とする3相ブラシレスモータ。
Two Hall elements that detect the rotational position of the rotor are arranged at a relative positional relationship of 120 degrees or 240 degrees in electrical angle, and the two
The first and second detection difference voltage signals are respectively obtained between one and the other output terminals of the -10,000 Hall elements, and between one of the output terminals of the -10,000 Hall elements and the other Hall element. A third detected difference voltage signal is obtained between one of the output terminals and the first. In a three-phase brushless motor in which a three-phase drive current is formed from second and third detected differential voltage signals, the difference between the midpoint potentials of the output signals of the two Hall elements is the output of the Hall element. 1 of the maximum value of the signal
A three-phase brushless motor characterized in that two Hall elements are used so that the ratio is 5% or less.
JP58008866A 1983-01-21 1983-01-21 3-phase brushless motor Pending JPS59136058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008866A JPS59136058A (en) 1983-01-21 1983-01-21 3-phase brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008866A JPS59136058A (en) 1983-01-21 1983-01-21 3-phase brushless motor

Publications (1)

Publication Number Publication Date
JPS59136058A true JPS59136058A (en) 1984-08-04

Family

ID=11704610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008866A Pending JPS59136058A (en) 1983-01-21 1983-01-21 3-phase brushless motor

Country Status (1)

Country Link
JP (1) JPS59136058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244057A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
JPS6389044A (en) * 1986-09-30 1988-04-20 Canon Electronics Inc Brushless motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244057A (en) * 1985-08-21 1987-02-26 Toyota Motor Corp Brushless motor
JPS6389044A (en) * 1986-09-30 1988-04-20 Canon Electronics Inc Brushless motor

Similar Documents

Publication Publication Date Title
US4912379A (en) Multi-phase brushless motor with increased starting torque and reduced torque ripple
US4639648A (en) Three-phase brushless motor
US4585979A (en) Three-phase brushless motor having auxiliary magnetic pole on rotor
JPH01259788A (en) Brushless dc motor
JPS5812838B2 (en) Chiyokuryu brushless motor
JPS59136058A (en) 3-phase brushless motor
JPS648555B2 (en)
JPS6227621B2 (en)
CA1256152A (en) Three-phase brushless motor
JPS6321434B2 (en)
JPS6233839B2 (en)
WO2004077656A1 (en) Device for measuring speed of brushless motor
JPH03277155A (en) Flat type brushless motor
JPS6022797Y2 (en) DC brushless motor
JPS6143956B2 (en)
KR900003890Y1 (en) Brushless motor
JPS6364159B2 (en)
JPS62140004A (en) Angle-of-rotation detector
JPS6087692A (en) Drive circuit in dc brushless motor
JPH0540819U (en) Magnetic detector
JPH06153480A (en) Speed detector for brushless motor
JPS6111982Y2 (en)
JPH0347439Y2 (en)
JPS5852878Y2 (en) Transistor motor drive circuit
JP2645604B2 (en) Drive circuit for brushless motor