JPS59135377A - Method for evaluating grounding fault point of three- phase power transmission distribution line - Google Patents

Method for evaluating grounding fault point of three- phase power transmission distribution line

Info

Publication number
JPS59135377A
JPS59135377A JP976783A JP976783A JPS59135377A JP S59135377 A JPS59135377 A JP S59135377A JP 976783 A JP976783 A JP 976783A JP 976783 A JP976783 A JP 976783A JP S59135377 A JPS59135377 A JP S59135377A
Authority
JP
Japan
Prior art keywords
distribution line
fault
fault point
transmission
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP976783A
Other languages
Japanese (ja)
Other versions
JPH0515990B2 (en
Inventor
Masaomi Nagae
永江 正臣
Motoshirou Kaneda
金田 元四郎
Yousuke Nakanishi
要祐 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP976783A priority Critical patent/JPS59135377A/en
Publication of JPS59135377A publication Critical patent/JPS59135377A/en
Publication of JPH0515990B2 publication Critical patent/JPH0515990B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To realize the titled method wherein the influence of the variation in the impedance of a fault point is reduced and the reception of the influence of distribution capacitance is reduced even if the frequency of a testing power source is taken high so as to be capable of simply performing the application of AC voltage for evaluation to a transmission distribution line, by estimating the distance from the measuring end of the grounding fault point on the basis of first and second measured values by respectively providing current source circuits to both ends of the section of the transmission distribution line to be subjected to the evaluation of the grounding fault point. CONSTITUTION:When grounding fault is generated at the trouble point F of a transmission distribution line L2, the grounding detecting apparatus not shown in the drawing detects the generation of the fault and, by this detection, grounding phase discriminating apparatuses 13, 23 are operated to discriminate that the transmission distribution line L2 is a fault line while the contacts of switches 14, 24 and switches 16, 26 are selectively closed to respectively connect AC transformers 12, 22 and current transformers 15, 25 corresponding to the accident line to current source circuits 1, 2. In this state, a measuring instrument 30 measures the specific electric value, for example, the reactive power in the current source circuit 1. This measured value is a first measured value. At the same time, the zero phase voltage V0 of a three-phase transmission distribution line is measured by a means not shown in the drawing.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分舒〕 本発明は三相送配電線路中で地絡故障が生じたとき5地
絡故障点の位置の評定1例えばある測定点からの該地絡
故障を生じた送配電線中の故障点までの距離の推定を行
なう方法に関する。 〔従来技術とその問題点〕 在来のかかる故障位置評定の最も簡単な手段は。 ある測定点から地絡故障点までの送配電線のインピーダ
ンスを測定して、これと該送配電線の特性インピーダン
スとから故障点までの距離を推定するものであるが、装
置が比較的簡易に構成できる反面、地絡故障点における
送配電線と大地とのインピーダンスすなわちいわゆる故
障点インピーダンス□の値によって距離の推定値に誤差
が生じやすいことが一般に知られている。 前記の故障点インピーダンスは主として抵抗性であり、
この点に注目して送配電線のりアクタンス成分を重点に
測定して故障点を評定する手段も公知である。しかし、
非接地送配電系におけるある測定例では架空線の断面が
60−のとき地絡故障点における故障点インピーダンス
の抵抗弁はO〜加キロオームの間の広範囲に変動しうろ
ことが知られている。−万において評定距離の誤差を1
00メートル以内に納めるには、送配電線の地絡故障に
よるインピーダンスの変化を抵抗弁で0.03オーム、
リアクタンス分でも0.030(50ヘルツに対する値
)以内の精度で測定する必要がある。従って故il1点
インピーダンスが高くて10キロオーム程度ある場合に
は、故障点インピーダンスの10 〜10  すなわち
少なくとも子分の1パ一セント以上の精度の測定が必要
になり、実用的にはかかる測定は不可能に近い。 このため、故障点インピーダンスの影響を余り受けない
で送配電線の故障点までのインピーダンスもしくはこれ
に関連する電気量を精密に測定する手段として、本出願
人は特願昭56−22423号の発明を出頭した。しか
し、当該発明では測定用電源の周波数を比較的低くとる
必要があり、測定用電源を高圧ないし超高圧の送配線に
結合するための変成器などの結合器を経済的に製作する
には当該測定用電源の周波数を高めるのが望ましいが、
周波数を数百ヘルツ程度にまで上げると送配電線のもつ
分布キャパシタンスの影響が無視できなくなってしまう
。 〔発明の目的〕 本発明は以上に説明した従来技術の欠点ないし問題点の
認識トて立脚して、地絡故障点における故81 h”4
インピーダンスの変動の影響が少なく、かつ送配電線へ
の評定用交流電圧の注入を簡単にできるよう試験用電源
の周波数を高(とっ
[Distribution of the technology to which the invention pertains] When a ground fault occurs in a three-phase power transmission/distribution line, 5. Evaluation of the location of the ground fault point 1. This invention relates to a method for estimating the distance to a fault point in an electric wire. [Prior art and its problems] What is the simplest conventional means of fault location evaluation? This method measures the impedance of a power transmission and distribution line from a certain measurement point to a ground fault point, and estimates the distance to the fault point from this and the characteristic impedance of the power transmission and distribution line, but the device is relatively simple. However, it is generally known that errors are likely to occur in the estimated value of the distance depending on the impedance between the power transmission/distribution line and the ground at the ground fault point, that is, the value of the so-called fault point impedance □. The fault point impedance mentioned above is mainly resistive;
In view of this point, there is also a known method of evaluating the fault point by measuring the actance component of the power transmission/distribution line as a priority. but,
In certain measurements in ungrounded power transmission and distribution systems, it is known that when the cross section of the overhead line is 60 -, the resistance valve of the fault point impedance at the ground fault point will vary over a wide range between 0 and +K ohms. - 1 million errors in evaluation distance
In order to keep the range within 0.00 meters, the change in impedance due to ground faults in power transmission and distribution lines should be reduced to 0.03 ohm using a resistance valve.
Even the reactance component needs to be measured with an accuracy within 0.030 (value for 50 hertz). Therefore, if the impedance at one point is high, about 10 kilohms, it is necessary to measure with an accuracy of 10 to 10 of the impedance at the failure point, that is, at least 1% of the subordinate, and such measurement is not practical. Close to possible. Therefore, the present applicant has proposed the invention of Japanese Patent Application No. 56-22423 as a means to precisely measure the impedance up to the fault point of a power transmission/distribution line or the amount of electricity related thereto without being significantly influenced by the fault point impedance. appeared in court. However, in this invention, it is necessary to keep the frequency of the power supply for measurement relatively low, and in order to economically manufacture a coupler such as a transformer for coupling the power supply for measurement to high-voltage or ultra-high voltage transmission lines, It is desirable to increase the frequency of the measurement power supply, but
When the frequency is increased to several hundred hertz, the influence of the distributed capacitance of power transmission and distribution lines cannot be ignored. [Object of the Invention] The present invention is based on the recognition of the above-described shortcomings or problems of the prior art, and is based on the above-mentioned problem.
The frequency of the test power supply was set to a high frequency to reduce the influence of impedance fluctuations and to easily inject the evaluation AC voltage into the transmission and distribution lines.

【も送配電線のもつ分布キャパシタンスの影響を受けることが少ない送配′電線路の地絡故障点を評定する方法を実現することにある。 〔発′明の要点〕Another object of this invention is to realize a method for evaluating the ground fault point of a transmission and distribution line that is less affected by the distributed capacitance of the transmission and distribution line. [Key points of the invention]

本発明によれば上述の目的を達成するために、故障点評
定なすべき送配電線路区間の両端に地絡故障が生じた送
配電線に評定用の交流電流を注入する電流源回路をそれ
ぞれ設けておき、地絡故障が生じたとき両端の電流源回
路から同一周波数。 同一振幅でかつ互いに逆位相の評定電流をそれぞれ当該
地絡事故送配線に注入する。地絡事故発生点における故
障点インピーダンスにはこれら画定流源回路から注入さ
れた評定用電流が1資して流れることになるが、前述の
ように両測定用電流は逆位相なので両者は実質的に相殺
され、当該故障点インピーダンスには全(測定用電流が
流れないかあるいは流れても従来手段に比して極めて小
さな電流が流れるに過ぎなくなる。このことが本発明方
法が故障インピーダンスの影響を受けることが本質的に
少ない大きな理由になっている。 さて、地絡故障が生じると、評定用電流に対する送配電
線のインピーダンスが正規状態から当然) て変化するので、本発明による評定にあたフてはかかる
特性電気値を測定して第1の測定値とする。 この第1の測定値は地絡故障点の位置の関数であるが、
同時に故障点インピーダンスの関数でもあるので、故障
インピーダンスの値が決まらな(・と地絡故障点の位置
を決めることができない。 このため本発明においては第2の測定値として地絡故障
時の三相送配電線の零相電圧を測定する。 この零相電圧は故障点インピーダンスの関数ではあるが
、地絡故障点の位置とは関係しな(・。従ってとの零相
電圧の測定値から故障点インピーダンスの値を一錠的に
決めることができ、次にこの故障点インピーダンスの値
を用いて第1の測定値から容易に地絡故障点の位置を評
定することかで館る。 〔発明の実施例〕 次に図面を参照しながら本発明の詳細な説明する。第1
図は本発明の原理説明図であって、Lが1本の送配電線
を模式的に示し、その長さlが本発明方−法によって地
絡故障を評定すべき区間を示している。該区間の両端に
は電流源回路1.2がそれぞれ設けられて適当な結合手
段を介して高電圧の送配電線りに評定用電流を注入する
のであるが、この図では簡単化のため評定用電流11.
I2が電流源回路1.2から逆配置!線LK直接注入さ
れるよう描かれている。これら測定電流は同一の周波数
fと同一の振幅工、をもっように制御されるが、その位
相は互いに逆位相に選ばれる。この逆位相であることを
示すため、第1図では電流源回路2の測定用電流I2は
送配電線りから注出される方向に矢印が付されている。 地絡故障点はFで示され、この点と大地との間の故障点
インピーダンスすなワチ地絡抵抗ハn・gであり、送配
電線区間りの左端から地絡故障APまでの距離がXであ
るとする。 いま地絡故障点Fが送配電線区間りの中央点にあり、従
って、Z’ = l/2であったとすると、故障点イン
ピーダンスRgには電流源回路1からの測定用電流II
K比例する電流II’  と電流源回路2がらの測定用
電流工2に比例する電流I2’  とが互いに逆方向に
流れ、容易に諒解されるようにIf’  とI2’の大
きさは等しいので、面電流II’とI2’とは相殺し合
って故障点インピーダンスR,gに流れる電流は零にな
る。しかし、地絡故障点Fが中央点以外にあるときには
、送配電線りの左端から故障点Fまでのインピーダンス
z1と右端から故障点FまでのインピーダンスZ2はそ
れらの間の送配電線の長さXおよび73−xに比例する
から、インピーダンスZ1.Z2の値は相異なり、故障
点Fにおける2電流11’、I2’  の大きさも異な
って来て面電流は完全には相殺しない。かがる一般的な
場合には次の方程式が成立する。 上式中のすべての符号はベクトル舒であり、Vl。 v2は第1図に示すように送配電線りの左端および右端
の電圧であるが、これらは周波数fの測定用電流回踏め
電圧であって送配電線の商用周波電圧とは異なることに
留意されたい。 まりだその他の符号の内容は次のとおりである。 Ra =v’yz  (伝播定数)。 】二等価インピーダンス/単位長 Z#−、/フ「(4+性インピーダンス)2:等価対地
アドミッタンス/単位長 AI = cash (Ror*x )CI =(1/
Za+ ) 5inh (Rax )Bl −Zm 5
inh (RaIx )DI =cosh (Ra1x
) A2=cosh(Ra+(J−x)) C2= (1/Zω) 5inh i Ra(l!−r
))B2=Zω5inh(Rs(l!−z))D2=c
osh (Ra(l  −2’ ) )さて、前述のよ
5にIx=Iz=Igであるから、この条件を(11式
に入れて開式左辺の■1の値を故障点インピータンスR
,をパラメークとしXを変数として求めることができる
。この結果により送配電線の左端側における特性電気値
たとえば無効電力Q爾VI II、 sinθ (ただ
しθは■1と13との間の位相角)を求めると第2図の
とおりKなる。 第2図の横軸は送配電線の左端から地絡故障点Fまでの
距離x、縦軸は前述の無効電力Qであって、図の曲線勤
は故障虞インピーダンスRgが零すなわち完全接地の場
合1曲線1(,5,R10は故障点インピーダンスがそ
れぞれ5.10キロオームの場合。 曲線Rは故障点インピーダンスが無限大すなわち地絡故
障がない場合に対応する。ただしこの数値計算は送配電
線が60−@面の架空銅線の分布インダクタンス0.0
01 mH/m 、分布キャパシタンス0.01nF、
漏、測定用電流の周波数f=300Hz、注入電流値I
、=IA、送配電線長z−stbとして無効電力Qを求
めたもので、6.6kV級の配電線の代表的な値である
。 第2図に表わされた結果から次のことがわかる。 送配電線の中央点で接地故障が生じた場合は該線区端に
おける無効電力Qは故障点インピーダンスRgQいかん
に拘らず地絡故障が全くない場合の無効電力Q。に等し
い。これは前述のように故障が中央点にあるとき故障点
インピーダンスRIlに測定電流が全(流れないことか
らも容易に予測されたところで−ある。つぎに地絡故障
点までの距Kl 、1Mが中央点からはずれると、故障
点インピーダンスRgO値に応じて無効電力値Qの値は
距離Xのほぼ直線的な関数に従って変化する。従って故
障点インピータンスIjgO値さえわかれば第2図に示
すような関係を用いて、前述の第1の測定値である無効
電力Qの測定値から極めて簡単に距離Xを求めることが
できる。 この故障点インピーダンスRgO値を求めるために、本
発明においては第2の測定値として地絡故障時の三相送
配電I?li!路の商用周波に対する零相電圧を測定す
る。この零相電圧■。は次式で表わされる。 ただしく2)式において。 E : 三相送配電線の相電圧 Rn=  中性点接地抵抗 Cb二  対地静電容量(三相分) ω−2πf、f:周波数(髄用周波) である。(2)式においてE = 6.6/J3 kV
、 R,n = 10キロオーム、(シb=3μF、f
=50Hzとし、たときのv。とRgとの間の関係を第
3図に示す。なお、上の(2)式の対地静電容量Cbけ
三相送l記這線路全体の値であり、故障点から見たこの
イ[αは故障点の位置に関せず一定であり、従って琴相
′這圧V。は故障点の位置に関係せず線路がきまれば故
障点インピーダンスの1直にのみ関係することがわかる
。 以上のように第1測定値である前述の特性電気値たとえ
ば無効電力Qと第2の測定値である零相電圧■。とが測
定されると、該零相電圧V。の値から第3図のような関
係によって故障点インピーダンス几gの値が知られ、こ
の故障点インピーダンスRgの値と無効電力Qの値とか
ら第2図に示すような関係によって地絡故障点までの距
離xを求めることができる。 つぎに上述の原理を用いた送配電線路、の地絡故障点評
定の方法を第4区により説明する。第4図では送配電線
路りは三相の高圧架空線Ll 、 L2 およびL3か
らなり、このうら架空@L2の故障点Fに故障点インピ
ーダンスRgの地絡故障が生じた場合が示されている。 電流源回路]、2は当該送配電線路区間りの両端にそれ
ぞれ配設され、定電に、発生装置11.21で発生した
同一周波数、同−損1@の評定用電流を変漆器12.2
2を介して高圧の送配電線の内の1本に測定用電流を注
入する。もちろん区間の左右端からは互いに逆位相の評
定用電流が注入される。地絡判別装置12 、23は公
知の装置であってよいので簡略化1〜て描かれており、
地絡故障を生じた送配電線を見付けてその線に対応する
開閉器14 、24 +7’)接点を選択的に閉じて各
3個の変流器12゜220うちの対応する変流器のみに
定電流装置11 。 21からの電流を流して故障線に測定用電流を注入する
。なお、変流器15 、25は所定の送配電線路区間外
に評定用電流が流出するのを防ぐためのものであって、
前述の地絡相判81+装置13 、23からの指令圧よ
って開閉器16の接点を選択的に閉じて、各3個のf流
器1.5 、25の5ちの対応する変流器の回路のみを
事故#に接続する。またフィルタ17 、27は変流器
12 、22を介して電流源回路1.2内に侵入してく
る商用周波イ8号を除去するためのものである。 測定回路30は電流源回路1.2の特性電気値だ1、止
えは無効電力、電圧、力率などを測定するものである。 図示の電流源回路1.2の構、成において、定電流装置
ii tたは21がらの定電流はそれぞれ3個の変流器
12または22の5ちの一つを流れ、さらにそれぞれ3
個の変流器15または25の5ちの〜つぉよび開閉器1
4または脚を通うて測定器3oに入り、そこからそれぞ
れ定′Pt流装置11または21 K帰る。 なお、測定器30は線路区間りの測定端たとえば図の左
方の電流源回路1@にのみ設げるだけでよい。 いま電流源回路1の万を測定端として故障点評定の方法
を説明する。図示のよ5に送配電線L2の故障点Fで地
絡故障が生じると、図示しない地絡検出装置が地絡が生
じたことを検出し、これによってjtl!絡相判別装f
i 13 、23が動作して送配を線L2が故障線であ
ることを判別し、開閉器14.2/jおよび開閉器肌2
6の接点を選択的に閉じて事故線に対応する変流器ル、
22および変流器15.25を電流源回路1.2にそれ
ぞれ接続する。この状態において測定器30は電流諒回
路工内の特性電気値例えば無効電力Qを611定する。 これが第1の測定値となる。 同時に公知の図示しない手段により三相送配電線路の零
相電圧V。を測定する。例えは送配電線L1〜L3の各
線に接続された電圧変成器の出力を相加して平均値をと
るだけで地絡故障時の零相電圧■。 を第2の測定値として簡単に読取りないしは記録するこ
とができる。なお、この零相電圧V。は区間り内で測定
する必要はなく、三相送配電線路のどこで測定してもよ
(・。 前述のように第1の測定値と第2の測定値がわかれば容
易に故障点までの距離Xを推定することができる。すな
わち、まず第2の測定値である零相電圧■。の値から(
21式によりあるいは第3図の図式により故障点インピ
ーダンスRgを求め、ついでこのRKの値に対応する距
離Xの値を第2図の図式から簡単に求めることができる
。 上記のような故障点評定にあたりては、測定電流の周波
数は数百ないし数千ヘルツの範囲に選ぶことができる。 また上述の説明においては測定すべき特性電気値として
主に無効電力について説明したが、必ずしもこれに限定
されるものではなく、無効力率でも、インピーダンス値
でも、あるいは有効電力であっても差し支えない。 〔発明の効果〕 釣上説明したとおり、本発明においては地絡故障評定を
すべき送配電線路区間の両端に該区間の送配電線に評定
用交流電流を注入する電流源回路をそれぞれ設けて、両
筒流源回路がら同一周波数。 同一振幅かつ互いに逆位相の評定用電流を送配電線に注
入した状態において、測定端となる電流源回路において
無効電力などの特性電気値を第1の測定値として測定し
、−万三和送配電線路の地絡故障時の零相電圧を第2の
測定値として測定して、該第1および第2の測定値から
地絡故障点の測定端からの距離を推定するようにしたの
で、地絡故障点の故障インピーダンスに流れる評定用電
流が本質的に少なく、従って該故障インピーダンスが高
い場合においても地絡故障点の位置ないし距離の評定誤
差が従来技術に比して少ない利点がある。 また第2図から読み取れるように本発明の場合には評定
電流の周波数が数百ヘルツ(第2図は300ヘルツに対
するもの)になっても、故障点までの距Mrとiilの
測定値例えば無効電力値Qとの関係は明確な相関関係が
あり、従って第1の測定値に対応して求める距離xを正
硼に決めることができる。さらに前述のQとXとの相関
はほとんど直線的であり、Xの推定に便利な点はもちろ
ん評定周波数がさらに高(なっても本発明の方法が利用
できることを示している。具体的には数千ヘルツまで適
用が可能なことがわかっており、従って本発明の方法は
従来技術て較べて評定電流の周波数を高(選定して送配
電線への評定電流の注入のための装置を経済化できる利
A¥有する。この利点はとくに配電線網中の地絡故障点
を評定するため、多数の個所に評定区間を設定しなげれ
ばならない時に大きな意味をもつものである。
According to the present invention, in order to achieve the above-mentioned object, current source circuits for injecting alternating current for evaluation into the transmission and distribution line in which the ground fault has occurred are provided at both ends of the transmission and distribution line section where the fault point evaluation is to be performed. Keep the same frequency from the current source circuits at both ends when a ground fault occurs. Rating currents with the same amplitude and mutually opposite phases are injected into the ground fault transmission wiring. The evaluation current injected from these defined current source circuits will contribute to the fault point impedance at the point where the ground fault occurs, but as mentioned above, since the two measurement currents are in opposite phases, they are substantially equal to each other. This cancels out the current at the fault point, and either no measurement current flows through the impedance at the fault point, or even if it does, only a very small current flows compared to the conventional means.This means that the method of the present invention eliminates the influence of the fault impedance. This is a major reason why there are essentially fewer ground faults.Now, when a ground fault occurs, the impedance of the transmission and distribution line relative to the rating current changes from its normal state (of course), so this Then, this characteristic electrical value is measured and used as the first measurement value. This first measurement is a function of the location of the ground fault point;
At the same time, it is also a function of the fault point impedance, so the fault impedance value cannot be determined (and the position of the ground fault fault point cannot be determined. Therefore, in the present invention, the second measured value is Measure the zero-sequence voltage of the phase transmission and distribution line. This zero-sequence voltage is a function of the fault point impedance, but is not related to the position of the ground fault fault point (... Therefore, from the measured value of the zero-sequence voltage The value of the fault point impedance can be determined in one step, and then this fault point impedance value can be used to easily evaluate the position of the ground fault fault point from the first measurement value. Embodiments of the Invention] Next, the present invention will be described in detail with reference to the drawings.
The figure is an explanatory diagram of the principle of the present invention, where L schematically represents one power transmission/distribution line, and its length l represents the section in which a ground fault should be evaluated by the method of the present invention. Current source circuits 1 and 2 are provided at both ends of the section, respectively, and inject current for evaluation into the high-voltage power transmission and distribution line via appropriate coupling means. Current 11.
I2 is reversely placed from current source circuit 1.2! Line LK is drawn to be directly injected. These measuring currents are controlled to have the same frequency f and the same amplitude, but their phases are chosen to be opposite to each other. In order to indicate this opposite phase, in FIG. 1, an arrow is attached in the direction in which the measuring current I2 of the current source circuit 2 is drawn out from the power transmission/distribution line. The ground fault fault point is indicated by F, and the fault point impedance between this point and the ground is the ground fault resistance han g, and the distance from the left end of the transmission/distribution line section to the ground fault AP is Suppose that it is X. Now, if the ground fault fault point F is located at the center point of the transmission and distribution line section, and therefore Z' = l/2, then the fault point impedance Rg has the measurement current II from the current source circuit 1.
Since the current II' proportional to K and the current I2' proportional to the measuring current 2 of the current source circuit 2 flow in opposite directions, and as is easily understood, the magnitudes of If' and I2' are equal. , the plane currents II' and I2' cancel each other out, and the current flowing through the fault point impedances R and g becomes zero. However, when the ground fault fault point F is located other than the center point, the impedance z1 from the left end of the power transmission/distribution line to the fault point F and the impedance Z2 from the right end to the fault point F are the lengths of the power transmission/distribution line between them. Since it is proportional to X and 73-x, the impedance Z1. The values of Z2 are different, the magnitudes of the two currents 11' and I2' at the fault point F are also different, and the plane currents do not cancel out completely. In the general case, the following equation holds. All symbols in the above formula are vectors, Vl. As shown in Figure 1, v2 is the voltage at the left and right ends of the power transmission and distribution lines, but note that these are current stepping voltages for measuring frequency f and are different from the commercial frequency voltage of the power transmission and distribution lines. I want to be The contents of Marida and other codes are as follows. Ra = v'yz (propagation constant). ]2 equivalent impedance/unit length Z#-,/F'(4+sexual impedance)2: equivalent ground admittance/unit length AI = cash (Ror*x) CI = (1/
Za+) 5inh (Rax)Bl-Zm 5
inh (RaIx) DI = cosh (Ra1x
) A2=cosh(Ra+(J-x)) C2= (1/Zω) 5inh i Ra(l!-r
)) B2=Zω5inh(Rs(l!-z))D2=c
osh (Ra(l -2')) Now, as mentioned in 5 above, since Ix = Iz = Ig, put this condition into equation (11) and calculate the value of ■1 on the left side of the opening equation as the fault point impedance R.
, can be obtained as a parameter and X as a variable. Based on this result, the characteristic electrical value at the left end of the power transmission and distribution line, such as the reactive power QVI II, sin θ (where θ is the phase angle between 1 and 13), is determined to be K as shown in FIG. The horizontal axis in Figure 2 is the distance x from the left end of the power transmission/distribution line to the ground fault point F, and the vertical axis is the aforementioned reactive power Q. Case 1 Curve 1 (, 5, R10 is when the fault point impedance is 5.10 kilohms. Curve R corresponds to the case where the fault point impedance is infinite, that is, there is no ground fault. However, this numerical calculation is based on the transmission and distribution line. The distributed inductance of the overhead copper wire on the 60-@ plane is 0.0
01 mH/m, distributed capacitance 0.01 nF,
Leakage, measurement current frequency f = 300Hz, injection current value I
, = IA, the reactive power Q was determined as the power transmission/distribution line length z-stb, and is a typical value for a 6.6 kV class power distribution line. The following can be seen from the results shown in FIG. When a ground fault occurs at the center point of a power transmission/distribution line, the reactive power Q at the end of the line is the reactive power Q when there is no ground fault at all, regardless of the fault point impedance RgQ. be equivalent to. This is easily predicted from the fact that when the fault is at the center point, the entire measured current does not flow through the fault point impedance RIl, as described above.Next, the distance Kl, 1M, to the ground fault fault point is When it deviates from the center point, the value of the reactive power Q changes according to the fault point impedance RgO value according to a nearly linear function of the distance Using the relationship, the distance X can be found extremely easily from the measured value of the reactive power Q, which is the first measured value. As a measurement value, the zero-sequence voltage with respect to the commercial frequency of the three-phase power transmission/distribution I?li! line at the time of a ground fault is measured. This zero-sequence voltage (■) is expressed by the following equation. However, in equation 2). E: Phase voltage of three-phase power transmission and distribution line Rn = Neutral point grounding resistance Cb2 Ground capacitance (for three phases) ω-2πf, f: Frequency (medullary frequency). In equation (2), E = 6.6/J3 kV
, R,n = 10 kilohms, (shib = 3μF, f
= 50Hz, v. The relationship between Rg and Rg is shown in FIG. In addition, the ground capacitance Cb in equation (2) above is the value of the entire three-phase transmission line, and this α [α is constant regardless of the location of the fault point, Therefore, the pressure is V. It can be seen that, regardless of the location of the fault point, once the line is determined, it is related only to one line of the fault point impedance. As described above, the characteristic electric value, for example, the reactive power Q, which is the first measurement value, and the zero-sequence voltage (2), which is the second measurement value. When V is measured, the zero-sequence voltage V. From the value of , the value of the fault point impedance g is known from the relationship shown in Figure 3, and from the value of this fault point impedance Rg and the value of the reactive power Q, the ground fault fault point can be determined from the relationship shown in Figure 2. The distance x can be found. Next, a method for evaluating the ground fault point of power transmission and distribution lines using the above-mentioned principle will be explained in Section 4. In Figure 4, the power transmission and distribution line consists of three-phase high-voltage overhead lines Ll, L2, and L3, and a ground fault with a fault point impedance Rg occurs at the fault point F of the overhead @L2. . Current source circuits], 2 are respectively arranged at both ends of the transmission and distribution line section, and transformer 12. 2
A measuring current is injected into one of the high voltage transmission and distribution lines via 2. Of course, evaluation currents with mutually opposite phases are injected from the left and right ends of the section. Since the ground fault determination devices 12 and 23 may be known devices, they are depicted as simplified 1 to 1.
Find the transmission/distribution line where the ground fault has occurred and selectively close the contacts of the switch (14, 24 +7') corresponding to that line, and disconnect only the corresponding current transformer out of each of the three current transformers (12, 220). Constant current device 11. 21 to inject a measuring current into the fault line. Note that the current transformers 15 and 25 are for preventing the evaluation current from flowing outside the predetermined transmission/distribution line section.
The contacts of the switch 16 are selectively closed by the command pressure from the above-mentioned ground fault detector 81 + devices 13 and 23, and the circuits of the five corresponding current transformers of the three F current transformers 1.5 and 25 are closed. Only connect to Accident #. Further, the filters 17 and 27 are for removing the commercial frequency No. 8 that enters the current source circuit 1.2 via the current transformers 12 and 22. The measuring circuit 30 measures the characteristic electrical values of the current source circuit 1.2, and the measuring circuit 30 measures reactive power, voltage, power factor, etc. In the configuration of the illustrated current source circuit 1.2, the constant current from the constant current device II or 21 flows through one of the three current transformers 12 or 22, respectively, and
5 current transformers 15 or 25 and switch 1
4 or leg into the meter 3o and from there return to the constant Pt flow device 11 or 21K, respectively. Note that the measuring device 30 only needs to be provided at the measuring end of the line section, for example, at the current source circuit 1@ on the left side of the figure. Now, the method of fault point evaluation will be explained using the current source circuit 1 as the measuring terminal. When a ground fault occurs at the fault point F of the power transmission/distribution line L2 as shown in FIG. Entanglement discriminator f
i 13 and 23 operate to determine that the transmission/distribution line L2 is a faulty line, and switch 14.2/j and switch skin 2
A current transformer corresponding to the fault line by selectively closing the contacts of 6;
22 and current transformer 15.25 are respectively connected to the current source circuit 1.2. In this state, the measuring device 30 determines 611 a characteristic electrical value, for example, a reactive power Q in the current duct. This becomes the first measurement value. At the same time, the zero-sequence voltage V of the three-phase power transmission and distribution line is determined by known means (not shown). Measure. For example, by simply adding up the outputs of the voltage transformers connected to each line of power transmission and distribution lines L1 to L3 and taking the average value, the zero-sequence voltage (■) at the time of a ground fault can be determined. can be simply read or recorded as a second measurement value. Note that this zero-phase voltage V. It is not necessary to measure within the section, it can be measured anywhere on the three-phase transmission and distribution line (... As mentioned above, if the first and second measured values are known, it is easy to trace to the failure point. It is possible to estimate the distance
The fault point impedance Rg can be determined using Equation 21 or the diagram shown in FIG. 3, and then the value of the distance X corresponding to the value of RK can be easily determined from the diagram shown in FIG. For fault point evaluation as described above, the frequency of the measured current can be selected in the range of several hundred to several thousand hertz. Also, in the above explanation, reactive power was mainly explained as the characteristic electrical value to be measured, but it is not necessarily limited to this, and it may be reactive power factor, impedance value, or active power. . [Effects of the Invention] As explained above, in the present invention, current source circuits are provided at both ends of a transmission/distribution line section in which ground fault fault evaluation is to be performed for injecting alternating current for evaluation into the transmission/distribution line in the section. , the same frequency from both cylinder flow source circuits. With evaluation currents of the same amplitude and mutually opposite phases injected into the transmission and distribution line, characteristic electrical values such as reactive power are measured as the first measurement value in the current source circuit serving as the measurement end, and the The zero-sequence voltage at the time of a ground fault in the distribution line is measured as the second measurement value, and the distance from the measurement end to the ground fault point is estimated from the first and second measurement values. The evaluation current flowing through the fault impedance of the ground fault point is essentially small, so even when the fault impedance is high, there is an advantage that the error in evaluating the position or distance of the ground fault point is smaller than in the prior art. Furthermore, as can be read from Fig. 2, in the case of the present invention, even if the frequency of the rating current is several hundred hertz (Fig. 2 is for 300 hertz), the measured distances Mr and iil to the failure point are invalid, for example. There is a clear correlation with the power value Q, and therefore the distance x to be found corresponding to the first measurement value can be accurately determined. Furthermore, the correlation between Q and It has been found that the method of the present invention can be applied up to several thousand hertz, and therefore the method of the present invention makes it possible to select a high frequency of the rated current (as compared to the prior art) and to make the equipment for the injection of rated current into the transmission and distribution lines economical. This advantage is particularly significant when evaluation sections must be set at a large number of locations in order to evaluate ground fault fault points in a power distribution network.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はすべて本発明の詳細な説明するものであり、第1
図は本発明の原理説明のための回路図、第2図は測定端
から地絡故障点までの距離Xを変数とする本発明による
評定時に測定すべき特性電気値の一例としての無効電力
の変化を示すダイヤグラム、第3図は本発明による評定
時に測定される零相電圧と故障点インピーダンスとの相
関を示すダイヤグラム、第4図は本発明による評定時の
特性電気値の測定の具体的賽施例を説明する回路図であ
る。図において、1,2:電流源回路、11.21定電
流装置 、 12,22.15.25 :評定用電流を
送配電線に注入する手段としての変流器、F:地絡故障
点、L:地絡故障点を評定すべき送配電線路。 L2:地絡故障を生じた送配電線、l:送配電線路長、
Q:測定すべき電流源回路の特性電気値の例としての無
効電力、Vo:零相電圧、 X:測定端から地府故障点
までの距離、である。
All drawings are for detailed explanation of the invention, and the first
The figure is a circuit diagram for explaining the principle of the present invention, and Figure 2 shows reactive power as an example of the characteristic electrical value to be measured during evaluation according to the present invention, where the distance X from the measuring end to the ground fault point is a variable. FIG. 3 is a diagram showing the correlation between the zero-sequence voltage measured during evaluation according to the present invention and fault point impedance, and FIG. 4 is a diagram showing the specific method of measuring characteristic electrical values during evaluation according to the present invention. It is a circuit diagram explaining an example. In the figure, 1, 2: current source circuit, 11.21 constant current device, 12, 22. 15.25: current transformer as a means for injecting current for evaluation into the transmission and distribution line, F: ground fault point, L: Transmission and distribution line where the ground fault point should be assessed. L2: Transmission and distribution line where the ground fault occurred, l: Transmission and distribution line length,
Q: reactive power as an example of the characteristic electrical value of the current source circuit to be measured, Vo: zero-sequence voltage, X: distance from the measuring end to the local fault point.

Claims (1)

【特許請求の範囲】 1)三相送配電線路区間の両端にそれぞれ電流源回路を
設けて該画定流源回路から同一周波数、同一振幅かつ互
いに逆位相の評定用電流を前言己区間内で地絡故障を生
じた送配電線に注入した4犬態で測定した前記電流源回
路の特性電久値と、地絡故障時における三相送配電線の
零相電圧とを演1j定L、該零相電圧から推定される地
絡故障点の故障点インピーダンスと前記電流源回路の特
性電慄値とカ・ら地絡故障点の前記区間内の位置を評定
することを特徴とする三相送配電線路・の地絡故障点評
定方法0 2、特許請求の範囲第1項記載の方法におし・℃、評定
用電流の周波数が数百から数千ヘルツの範囲内に選ばれ
たことを特徴とする三相送配電線路の地絡故障点評定方
法。 3)l!!j許請求の範囲第1項記載の方法にお〜・て
。 零相電圧が商用周波で測定されることを特徴とする三相
送配電線路の地絡故障点評定方法。 る三相送配電線路の地絡故障点評定方法。 5)特許請求の範囲第1項記載の方法において、特性電
ヌ値が無効電力値であることを特徴とする三相送配電線
路の地絡故障点評定方法。
[Scope of Claims] 1) Current source circuits are provided at both ends of a three-phase transmission and distribution line section, and evaluation currents of the same frequency, same amplitude, and mutually opposite phases are applied to the ground within the aforementioned section from the defined current source circuit. The characteristic voltage value of the current source circuit measured in four states injected into the transmission and distribution line where the fault occurred and the zero-sequence voltage of the three-phase transmission and distribution line at the time of the ground fault are calculated as follows: A three-phase transmission characterized in that the position of the ground fault fault point within the section is evaluated from the fault point impedance of the ground fault fault point estimated from the zero-sequence voltage and the characteristic voltage value of the current source circuit. A method for evaluating the ground fault point of a power distribution line 0 2. The method described in claim 1 is used to determine that the frequency of the evaluation current is selected within the range of several hundred to several thousand hertz Features: Earth fault fault evaluation method for three-phase power transmission and distribution lines. 3)l! ! j. The method according to claim 1. A method for evaluating the ground fault point of a three-phase power transmission and distribution line, characterized in that zero-sequence voltage is measured at a commercial frequency. Ground fault fault evaluation method for three-phase power transmission and distribution lines. 5) A method for evaluating a ground fault fault point of a three-phase power transmission/distribution line in the method according to claim 1, wherein the characteristic power value is a reactive power value.
JP976783A 1983-01-24 1983-01-24 Method for evaluating grounding fault point of three- phase power transmission distribution line Granted JPS59135377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP976783A JPS59135377A (en) 1983-01-24 1983-01-24 Method for evaluating grounding fault point of three- phase power transmission distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP976783A JPS59135377A (en) 1983-01-24 1983-01-24 Method for evaluating grounding fault point of three- phase power transmission distribution line

Publications (2)

Publication Number Publication Date
JPS59135377A true JPS59135377A (en) 1984-08-03
JPH0515990B2 JPH0515990B2 (en) 1993-03-03

Family

ID=11729417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP976783A Granted JPS59135377A (en) 1983-01-24 1983-01-24 Method for evaluating grounding fault point of three- phase power transmission distribution line

Country Status (1)

Country Link
JP (1) JPS59135377A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145977A (en) * 1984-08-09 1986-03-06 Takamatsu Electric Works Ltd Detecting and displaying method of earth point of distribution line
JPS6183974A (en) * 1984-09-29 1986-04-28 Takamatsu Electric Works Ltd Method for detecting ground fault point of distribution line
WO2011016213A1 (en) * 2009-08-05 2011-02-10 株式会社 東芝 Fault location method and system
CN102621451A (en) * 2012-03-28 2012-08-01 北京水木源华电气有限公司 Distribution line single-phase grounding fault detecting method and system based on instantaneous signal method
CN103336220A (en) * 2013-05-29 2013-10-02 河南省电力公司鹤壁供电公司 Method and apparatus for monitoring and positioning fault in power distribution network
CN103852688A (en) * 2012-11-30 2014-06-11 施耐德电器工业公司 Method for confirming position of a ground fault and device thereof
CN106501678A (en) * 2016-11-02 2017-03-15 李晓明 A kind of earth fault line selection method and system
CN106526413A (en) * 2016-10-13 2017-03-22 国家电网公司 Off-line ground fault detection system and method
CN106526429A (en) * 2016-12-06 2017-03-22 李晓明 Earth fault line selection method having error correction function
CN107064728A (en) * 2016-09-26 2017-08-18 国网甘肃省电力公司电力科学研究院 The single-ended holographic frequency domain Fault Locating Method of ultra-high-tension power transmission line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136172A (en) * 1981-02-18 1982-08-23 Fuji Electric Co Ltd Orientating system for trouble point

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136172A (en) * 1981-02-18 1982-08-23 Fuji Electric Co Ltd Orientating system for trouble point

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145977A (en) * 1984-08-09 1986-03-06 Takamatsu Electric Works Ltd Detecting and displaying method of earth point of distribution line
JPH0580629B2 (en) * 1984-08-09 1993-11-09 Energy Support Corp
JPS6183974A (en) * 1984-09-29 1986-04-28 Takamatsu Electric Works Ltd Method for detecting ground fault point of distribution line
WO2011016213A1 (en) * 2009-08-05 2011-02-10 株式会社 東芝 Fault location method and system
CN102621451A (en) * 2012-03-28 2012-08-01 北京水木源华电气有限公司 Distribution line single-phase grounding fault detecting method and system based on instantaneous signal method
CN102621451B (en) * 2012-03-28 2016-01-06 北京水木源华电气股份有限公司 Based on the distribution circuit single-phase earth fault detection method of momentary signal method
CN103852688A (en) * 2012-11-30 2014-06-11 施耐德电器工业公司 Method for confirming position of a ground fault and device thereof
CN103336220A (en) * 2013-05-29 2013-10-02 河南省电力公司鹤壁供电公司 Method and apparatus for monitoring and positioning fault in power distribution network
CN107064728A (en) * 2016-09-26 2017-08-18 国网甘肃省电力公司电力科学研究院 The single-ended holographic frequency domain Fault Locating Method of ultra-high-tension power transmission line
CN107064728B (en) * 2016-09-26 2019-10-25 国网甘肃省电力公司电力科学研究院 The single-ended holographic frequency domain Fault Locating Method of ultra-high-tension power transmission line
CN106526413A (en) * 2016-10-13 2017-03-22 国家电网公司 Off-line ground fault detection system and method
CN106501678A (en) * 2016-11-02 2017-03-15 李晓明 A kind of earth fault line selection method and system
CN106526429A (en) * 2016-12-06 2017-03-22 李晓明 Earth fault line selection method having error correction function

Also Published As

Publication number Publication date
JPH0515990B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
Dong et al. Online monitoring and diagnosis of HV cable faults by sheath system currents
FI106985B (en) Method for Determining the Distance to Grounding Errors in Electric Distribution Networks by Ring Coupling-Based Calculation
CN1786726B (en) System and method of locating ground fault in electrical power distribution system
CN110082636B (en) Power cable fault positioning method and system
CA2295342C (en) Fault-detection for powerlines
US20030085715A1 (en) System and method for locating a fault on ungrounded and high-impedance grounded power systems
JPS5830554B2 (en) Fault point location method for power line fault detection and power line protection
JPH05157783A (en) Apparatus for monitoring and measuring insulation of power supply system
EP0876620A1 (en) Method of detecting and locating a high-resistance earth fault in an electric power network
JPS59135377A (en) Method for evaluating grounding fault point of three- phase power transmission distribution line
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
US3938006A (en) Active negative sequence cable monitor
CN110244192A (en) A kind of power overhead network earth fault distance measurement method
CN103616615A (en) Single-phase earth fault locating method of power distribution network
CN109596934A (en) A kind of double split-core type meter mensurations of secondary circuit multipoint earthing
CN115407241B (en) Secondary circuit grounding current monitoring system, method and computer readable storage medium
JP2021056203A (en) Fault point distance detector
CN103454561B (en) A kind of one-phase earthing failure in electric distribution network localization method
CN103487724A (en) Single-phase ground fault positioning method of power distribution network
CN113295970B (en) Resistive phase detection method for isolating single-phase earth fault on site
EP4246154A1 (en) System and method for detecting faults in medium voltage circuits
CN114814409A (en) High-voltage cable protector fault on-line detection method based on sheath current angle difference
CN113671315A (en) ITn power supply insulation fault positioning method based on proportional differential principle
Sun et al. Fault location analysis of ungrounded distribution system based on residual voltage distribution
Lian et al. An overview of the digital fault location algorithms for the power transmission line protection based on the steady-state phasor approaches