JPS59133515A - Optical coupler and its manufacture - Google Patents

Optical coupler and its manufacture

Info

Publication number
JPS59133515A
JPS59133515A JP735983A JP735983A JPS59133515A JP S59133515 A JPS59133515 A JP S59133515A JP 735983 A JP735983 A JP 735983A JP 735983 A JP735983 A JP 735983A JP S59133515 A JPS59133515 A JP S59133515A
Authority
JP
Japan
Prior art keywords
substrate
light
optical
buffer layer
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP735983A
Other languages
Japanese (ja)
Inventor
Morio Kobayashi
盛男 小林
Takao Edahiro
枝広 隆夫
Hiroshi Terui
博 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP735983A priority Critical patent/JPS59133515A/en
Publication of JPS59133515A publication Critical patent/JPS59133515A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To enable the introduction of light into an optical waveguide film from any direction of an Si substrate by successively laminating a tapered buffer layer and the waveguide film on the front side of the substrate, concaving the rear side of the substrate, and successively adhering a rod lens and optical fibers to the concavity. CONSTITUTION:A substrate 1 is made of Si. Since the Si substrate becomes transparent at >=1.2mum wavelength, this invention is applicable to an optical integrated circuit which is worked at >=1.2mum wavelength. When light from optical fibers 8 is converged through a rod lens 7 and irradiated as a beam 4 of incident light on the tapered part 2' of a buffer layer 2 laminated on the rear side of the substrate 1, the light is introduced into an optical waveguide film 3 through the tapered part 2', giving guided light 5. Thus, an optical coupler is formed so as to satisfy conditions required to introduce light from the fibers 8 into the film 3.

Description

【発明の詳細な説明】 本発明は光ファイバと薄膜光導波路の光結合器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical coupler for optical fibers and thin film optical waveguides.

光ファイバと光導波膜の光結合に使われている光結合器
には、直接結合法、回折格子結合法、プリズム結合法を
利用したものがある。コア径が数μmの単一モード光フ
ァイバと膜厚1μm以下の薄い光導波膜の光結合には直
接結合法は光フアイバコア径と光導波膜膜厚の寸法が違
いすぎるので使用できず、回折格子結合法とプリズム結
合法のみが適用可能である。しかし回折格子結合法は精
密な回折格子製作が困難であるので、実際には結合効率
が80係以下と低(へ欠点がある。とれに対してプリズ
ム結合法は容易に数十係以上の結合効率が得られる。プ
リズム結合器の構造には、プリズムを光導波膜に圧着す
る方法と光導波膜基板にプリズムの機能を持たせた方法
(以下プリズム基板法という)がある。前者は圧着治具
を必要とすることや、機械的振動によって圧着状態が変
化して結合効率を劣化させることのため実用的でない。
Optical couplers used for optical coupling between optical fibers and optical waveguide films include those that utilize a direct coupling method, a diffraction grating coupling method, and a prism coupling method. The direct coupling method cannot be used for optical coupling between a single mode optical fiber with a core diameter of several μm and a thin optical waveguide film with a film thickness of 1 μm or less because the dimensions of the optical fiber core diameter and the optical waveguide film thickness are too different, and diffraction Only the lattice coupling method and the prism coupling method are applicable. However, since it is difficult to manufacture precise diffraction gratings in the diffraction grating coupling method, the coupling efficiency is actually low (less than 80 coefficients).On the other hand, the prism coupling method easily has a coupling efficiency of several tens of coefficients or more. Efficiency can be obtained. There are two methods of prism coupler structure: one in which a prism is crimped onto an optical waveguide film, and the other in which the optical waveguide film substrate has a prism function (hereinafter referred to as the prism substrate method). It is not practical because it requires a tool and the crimped state changes due to mechanical vibration, degrading the bonding efficiency.

これに対して後者のプリズム基板法は前者のような問題
がなく実用的である。
On the other hand, the latter prism substrate method does not have the problems of the former and is practical.

第1図はR,Ulrich (Journal of 
the opticalsoiety of Amer
ica、 vol、61 PP、 1467−1476
(1971))に1って報告されたプリズム基板法によ
る光ビームと光導波膜の光結合器である。第1図におい
て、1は基板、2はバッファ層、8は光導波膜、4は入
射光ビーム、bは導波光である。基板端部が適当な角度
αで研磨されることと、基板の屈折率が導波層の屈折率
より大きいことが必要条件である。第1図の光結合器で
は、基板lにガラスを用いているが、端部詐功研磨する
ことが困難な欠点がある。また基板に屈折率1.7以上
のガラスを用いた場合、Sing等のガラスのバッファ
層をスパッタ法または蒸着法で形成する工程において、
基板およびバッファ層に「ヤケ」による着色が生じて伝
搬損が大きくなり実用に耐えない。
Figure 1 is R, Ulrich (Journal of
the optical society of Amer
ica, vol, 61 PP, 1467-1476
(1971)) is an optical coupler between a light beam and an optical waveguide film using a prism substrate method. In FIG. 1, 1 is a substrate, 2 is a buffer layer, 8 is an optical waveguide film, 4 is an incident light beam, and b is a waveguide light. The necessary conditions are that the edges of the substrate are polished at a suitable angle α and that the refractive index of the substrate is greater than the refractive index of the waveguide layer. In the optical coupler shown in FIG. 1, glass is used for the substrate l, but there is a drawback that it is difficult to polish the edges. In addition, when glass with a refractive index of 1.7 or more is used for the substrate, in the step of forming a glass buffer layer such as Sing by sputtering or vapor deposition,
Discoloration due to "fading" occurs on the substrate and buffer layer, increasing propagation loss and making it impractical.

結局、基板として屈折率1.7以下のガラスしか使えな
いから、光導波膜の屈折率が1゜7以下に制限されるの
で、適用できる光導波膜の範囲が狭い欠点がある。
After all, since only glass with a refractive index of 1.7 or less can be used as a substrate, the refractive index of the optical waveguide film is limited to 1.7 or less, which has the drawback that the range of applicable optical waveguide films is narrow.

本発明はこれらの欠点?除去するため、基板にSii用
いた光結合器全提供するものである。以下図面により本
発明の詳細な説明する。
Does the present invention have these drawbacks? In order to eliminate the problem, the entire optical coupler using SiI is provided on the substrate. The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の実施例の断面図であって、■は基板、
2はバッファ層、Bは光導波膜、4は入射光ビーム、5
は導波光、6は空気層、7はロッドレンズ、8は光ファ
イバ、9は半球窪み、10は接着剤である。
FIG. 2 is a cross-sectional view of an embodiment of the present invention, where ■ is a substrate;
2 is a buffer layer, B is an optical waveguide film, 4 is an incident light beam, 5
6 is a guided light, 6 is an air layer, 7 is a rod lens, 8 is an optical fiber, 9 is a hemispherical recess, and 10 is an adhesive.

以下の説明では光導波Mは2次元導波路とする6基板1
にはSlを用いるが、81基板は波長1.2μm以上で
透明になるので、本発明は波長1.2μm以上で動作さ
せる光集積回路に適用できる。
In the following explanation, the optical waveguide M is assumed to be a two-dimensional waveguide.
81 substrate is transparent at wavelengths of 1.2 μm or more, so the present invention can be applied to optical integrated circuits that operate at wavelengths of 1.2 μm or more.

本発明はプリズムカップラの原理ff:、応用したもの
で、81基板1にプリズムの役目をさせている。
The present invention applies the principle of a prism coupler, and uses the 81 substrate 1 to function as a prism.

すなわち81基板1の表面に積層したバッファ層2のテ
ーパ部2′の位置に、光ファイバ8がらの光をロッドレ
ンズ7で絞って入射光ビーム鶴として照射すると、バッ
ファ層テーパ部z′ヲ介して光導波膜8に光が導入され
て導波光5となる。このようにして光ファイバ8から先
導波膜8に光を導入するため以下の条件を満たすLうに
光結合器を構成する。
In other words, when the light from the optical fiber 8 is focused by the rod lens 7 and irradiated as an incident light beam onto the tapered portion 2' of the buffer layer 2 laminated on the surface of the 81 substrate 1, the light beam passes through the tapered portion z' of the buffer layer. The light is introduced into the optical waveguide film 8 and becomes the guided light 5. In this way, in order to introduce light from the optical fiber 8 to the leading wave film 8, an optical coupler is constructed that satisfies the following conditions.

(1)  Si基板1、バッファ層2、光導波膜8、空
気層6の屈折率をそれぞれns、 nb、 nf* n
aとば、ns> nf’ > nb > naに選ぶ。
(1) The refractive indices of the Si substrate 1, buffer layer 2, optical waveguide film 8, and air layer 6 are ns, nb, nf*n, respectively.
Select a and ns >nf'> nb > na.

このようにすると光導波膜8の中に光を導波することが
でき、かつロッドレンズ7からの入射光ビーム4の入射
角度θを調整して沢山ある導波モードの中から任意の導
波モードと選択的に結合できる。
In this way, light can be guided into the optical waveguide film 8, and the incident angle θ of the incident light beam 4 from the rod lens 7 can be adjusted to select an arbitrary waveguide mode from among the many waveguide modes. Can be selectively combined with modes.

(2) バッファ層テーパ部2′は直線状としてそのテ
ーパ角度e(ラジアン)が(])式を満たすように選定
する。
(2) The buffer layer taper portion 2' is selected to be linear so that its taper angle e (radian) satisfies the equation ( ]).

6 = 0.18λ/(〈2二1)   ・・・(1)
nb ここでλは尤の波長(真空中)、Wは入射光ビームの8
1基板表面でのスポットサイズ、Nは光導波膜8の所望
のモードの導波光の等価屈折率である。このように6を
選定すれば最大結合効率が得られる。(参考文献: R
6U1riah+ opti −mumExcitat
ionofOpticalSurf!Lcsl八’:a
”/8Fl+J、Opt。
6 = 0.18λ/(<221) ...(1)
nb where λ is the likely wavelength (in vacuum) and W is the wavelength of the incident light beam.
The spot size on one substrate surface, N, is the equivalent refractive index of the guided light in the desired mode of the optical waveguide film 8. By selecting 6 in this way, the maximum coupling efficiency can be obtained. (Reference: R
6U1riah+ opti-mumExcitat
ionofOpticalSurf! Lcsl8':a
”/8Fl+J, Opt.

Soc、Am、611467へ1971) )(8) 
 31基板1の裏面に半球窪み9を設ける。その位置は
次のようにして決める。プリズムカップラ法等を利用し
て第1図の右側から左側へ光を導波させる。すなわち第
1図の導波光4と逆向きに光?導波させるS、、(以下
逆向き導波光と言うことにする)。逆向き導波光はバッ
ファ層テーパ部zli介して81基板1中に出射される
。この出射光と81基板1の裏面との交点(図中のA)
を中心に半球窪みを設ける。半球窪み9の半径はロッド
レンズ7が納壕ればどのような大きさでもかまわない。
Soc, Am, 1971 to 611467) ) (8)
31 A hemispherical recess 9 is provided on the back surface of the substrate 1. Its position is determined as follows. Light is guided from the right side to the left side in FIG. 1 using a prism coupler method or the like. In other words, is the light directed in the opposite direction to the guided light 4 in Fig. 1? S to be guided (hereinafter referred to as reverse guided light). The reversely guided light is emitted into the substrate 81 through the buffer layer taper part zli. The intersection of this emitted light and the back surface of the 81 substrate 1 (A in the figure)
A hemispherical depression is provided at the center. The radius of the hemispherical recess 9 may be of any size as long as the rod lens 7 is accommodated therein.

(4) ロッドレンズ7の中心軸が、(8)で述べた逆
向きの出射光の中心軸と一致するようにする。このよう
にするとロッドレンズ7の中心軸は半球窪み9の中心(
図中のA)を通っている。光ファイバ8のコア中心とロ
ッドレンズ7の中心軸を合わせる。
(4) The central axis of the rod lens 7 is made to coincide with the central axis of the reversely emitted light described in (8). In this way, the central axis of the rod lens 7 is the center of the hemispherical depression 9 (
It passes through A) in the figure. The core center of the optical fiber 8 and the central axis of the rod lens 7 are aligned.

以上のように構成すると、光の可逆性から光ファイバ8
からの光は逆向き導波光の出射光往路を全く逆にたどり
なから導波光4となり、光結合が行われる。81基板1
の裏面に半球窪み9vf−設けることに工っで、どの工
うな導波モード(例えばTEo、 TWIG、・・・;
 TMo、 TM、−・・)の導波光4に対しても、光
ファイバ8の光と結合させることができる効果がある。
With the above configuration, the optical fiber 8
Since the light from the reverse guided light does not follow the outgoing light path of the backward guided light in the completely opposite direction, it becomes the guided light 4 and is optically coupled. 81 board 1
By providing a hemispherical recess 9VF on the back side of the 9VF, it is possible to select any waveguide mode (e.g. TEo, TWIG,...;
There is also an effect that the guided light 4 of TMo, TM, --...) can be coupled with the light of the optical fiber 8.

以下その理由を述べる。The reason is explained below.

入射光ビーム4の中心軸は半球窪み0の中心Aを通るよ
うに選定されているので、半球窪み9の界面で、入射光
ビーム4は屈折することなく直進する。
Since the central axis of the incident light beam 4 is selected to pass through the center A of the hemispherical depression 0, the incident light beam 4 travels straight without being refracted at the interface of the hemispherical depression 9.

従って半球窪み9の位置とロッドレンズ7の傾きを調整
すれば入射光ビーム4の角度θ<00から00°までの
任意の値を選択できる。一方、入射光ビーム4が等側屈
折率Niもっ導波光4と結合するための条件は N==nainθ           (2)を満た
すことである。Nは光導波路の性質からnb<N<n8
であるので、(2)式を満たす角度θを必ず見出すこと
ができる。すなわち等側屈折率Nがn、 < N < 
n8の範囲にある導波光4と光ファイバの光を結合でき
る。これは光導波膜8の屈折率nrがn、 < n、 
< n11の条件を満たすすべての導波膜に対して光結
合可能なことを意味するので、光導波膜の選択範囲が広
いことになる。例えばバッファ層2に石英スパッタ膜を
用いれば、その屈折率は1.6(波長1.3μm)であ
り、81基板lの屈折率は8.4(波長1.8μm)で
あるので、光導波膜8の屈折率nrは、1.5〜8.4
の広い範囲の中の所望のものを使うことができる。これ
に対して三角プリズムを光導波膜上に圧着する従来のプ
リズムカップラ法では三角プリズムの形状から来る制限
のため、結合できる等側屈折率の範囲が狭く、従って使
用する光導波膜にも制限を受ける。例えばSlで断面が
45°−90°−45°の通常の三角プリズムを作った
とすと、屈折率が1.85〜2.85の光導波膜しか使
うことができない。
Therefore, by adjusting the position of the hemispherical recess 9 and the inclination of the rod lens 7, any angle of the incident light beam 4 can be selected from θ<00 to 00°. On the other hand, the condition for the incident light beam 4 to couple with the waveguide light 4 having an equal refractive index Ni is to satisfy N==nainθ (2). N is nb<N<n8 due to the properties of the optical waveguide.
Therefore, it is possible to always find an angle θ that satisfies equation (2). That is, the isolateral refractive index N is n, < N <
It is possible to couple the guided light 4 in the range of n8 with the light of the optical fiber. This means that the refractive index nr of the optical waveguide film 8 is n, < n,
This means that optical coupling is possible with all waveguide films satisfying the condition <n11, so the selection range of optical waveguide films is wide. For example, if a quartz sputtered film is used for the buffer layer 2, its refractive index is 1.6 (wavelength 1.3 μm), and the refractive index of the 81 substrate l is 8.4 (wavelength 1.8 μm), so optical waveguide The refractive index nr of the film 8 is 1.5 to 8.4.
Any desired one from a wide range can be used. On the other hand, in the conventional prism coupler method in which a triangular prism is crimped onto an optical waveguide film, the range of isolateral refractive indexes that can be coupled is narrow due to limitations caused by the shape of the triangular prism, and therefore there are also restrictions on the optical waveguide film that can be used. receive. For example, if a normal triangular prism with a cross section of 45°-90°-45° is made of Sl, only an optical waveguide film with a refractive index of 1.85 to 2.85 can be used.

次に本発明の光結合器の製造方法を第8図を用いて説明
する。具体的な與作例として波長1.8μmで駆動する
ための81基板(13mm厚)、 SiO□バッファ層
(屈折率1.45、膜厚2pm)、810g−T、、0
゜50mo1%光導波膜(屈折率1.95、膜厚1 μ
m、 TE0モード励起)の光結合器について述べる。
Next, a method for manufacturing an optical coupler according to the present invention will be explained with reference to FIG. As a specific example, an 81 substrate (13 mm thick) for driving at a wavelength of 1.8 μm, a SiO□ buffer layer (refractive index 1.45, film thickness 2 pm), 810 g-T, 0
゜50mo1% optical waveguide film (refractive index 1.95, film thickness 1μ
We will now discuss the optical coupler for TE0 mode excitation).

この場合のTEoモードの等側屈折率Nはプリズムカッ
プ法で調べた結果1.88であった。
The isolateral refractive index N of the TEo mode in this case was found to be 1.88 as a result of examination using the prism cup method.

■SiO□バッファ層の形成 81基板lの上方の図中りの位置に、500μm厚のS
iウェーハをマスク11として配置してから、  Si
n、ターゲットを用いた高周波スパッタリング法で、バ
ッファ層ヲ81基板上に積層する。
■ Formation of SiO□ Buffer Layer 81 A 500 μm thick S
After placing the i wafer as a mask 11, Si
n. A buffer layer is laminated on the substrate 81 by a high frequency sputtering method using a target.

高周波スパッタリング法では、マスク11の下方にも5
101粒子がまわシ込んで付着する性質があるので、図
面のようにバッファ層端部にテーパを形成できる。テー
パの角度はマスク11の位置りを調整して変えられる。
In the high frequency sputtering method, there are also 5
Since the 101 particles have a tendency to penetrate and adhere, a taper can be formed at the end of the buffer layer as shown in the drawing. The angle of the taper can be changed by adjusting the position of the mask 11.

h=0.5mmとしてバッファ層2μm付着させたとき
、入射光スポットサイズw=100μmに最適のテーパ
角度6= 2 X 10−8が得られた。実際には完全
な直線状のテーパを得ることが難かしく、テーパの最先
端(図中のa)近傍と終端(図中のb)近傍では直線か
らはずれて来るが実用上結合効率への影蕃はない。なお
基板に81を使っているので、従来のガラス基板の場合
と異なり、バッファ層が基板の「ヤケ」の影響で変質す
ることが無く、極めて良質なバッファ層を形成できた。
When h=0.5 mm and a buffer layer of 2 μm thick was deposited, an optimal taper angle of 6=2×10 −8 for an incident light spot size w=100 μm was obtained. In reality, it is difficult to obtain a perfectly straight taper, and the areas near the tip (a in the figure) and the end (b in the figure) of the taper deviate from the straight line, but this does not affect the coupling efficiency in practice. There are no barbarians. Since 81 was used as the substrate, the buffer layer did not deteriorate in quality due to "fading" of the substrate, unlike in the case of conventional glass substrates, and an extremely high quality buffer layer could be formed.

■光導波膜の積層 SiO−T  0 50mo1mのターゲットを用い1
1ajlfi て高周波スパッタ法で1μm厚に積層した。
■Laminated optical waveguide film SiO-T 0 1 using a 50mol1m target
The film was laminated to a thickness of 1 μm using a high frequency sputtering method.

■半球窪み製作のためのマスクパターン形成第2図の説
明で述べた工うに、逆向き導波光14の出射光15と8
1基板裏面との交点を求める。レーザは波長1.8μm
の半導体レーザを用いた0出射光と81基板裏面との交
点は、赤外線テレビカメラを用いて出射光が81基板裏
面に照射されたために生ずる輝点を観測して半球窪みの
中心を決めた。次にマスクとして使うたメ(7) Si
O,l1lj 12 kスパッタリングで、さらにAu
/Qr膜18を膜着8一様に積層した後、前記半球部み
の中心部分に約Q 、B rnrn径の孔16iホトリ
ソグラフィ技術で形成した。
■ Formation of a mask pattern for producing a hemispherical recess In the process described in the explanation of FIG.
1 Find the intersection with the back side of the board. Laser wavelength is 1.8μm
The center of the hemispherical recess was determined by observing the bright spot generated when the emitted light was irradiated onto the back surface of the 81 substrate using an infrared television camera to determine the intersection point between the 0 emission light using the semiconductor laser and the back surface of the 81 substrate. Next, use it as a mask (7) Si
O,l1lj 12k sputtering, further Au
After the /Qr film 18 was uniformly laminated on the film deposition 8, a hole 16i having a diameter of about Q and Brnrn was formed in the center of the hemispherical portion by photolithography.

■半球窪みの製作 硝酸90チとフッ化水累酸10係からなるエツチング液
をかくはんしながらエツチングを行うと、図示のように
徐々に半球窪みが形成される。半径1μmのところでエ
ツチングを止めた後、Au10r膜18、S10.膜1
2ヶ除去した。
(2) Production of hemispherical depressions When etching is carried out while stirring an etching solution consisting of 90 parts nitric acid and 10 parts fluorinated acid, hemispherical depressions are gradually formed as shown in the figure. After stopping etching at a radius of 1 μm, the Au10r film 18, S10. Membrane 1
Two were removed.

■ロッドレンズ、光ファイバの接着 逆向き導波光14からの出射光15の中心軸とロッドレ
ンズ7の中心軸を一致させた後、図示のように接着剤1
0で固定する。その後、ロッドレンズの端面と光ファイ
バ8の端面を突き合わせて接着する。
■ Adhesion of rod lens and optical fiber After aligning the central axis of the emitted light 15 from the reverse guided waveguide light 14 with the central axis of the rod lens 7, apply the adhesive 1 as shown in the figure.
Fixed at 0. Thereafter, the end face of the rod lens and the end face of the optical fiber 8 are butted against each other and bonded.

以上述べた工程によって本発明の光結合器を製作できた
。結合効率?θ係が得られた。
The optical coupler of the present invention was manufactured through the steps described above. Coupling efficiency? The θ coefficient was obtained.

なおバッファ層端部のテーパの形成には、前記の方法以
外に第8図■のS1ウエーノ\のマスクを、時間ととも
に図中において左側にゆっくり移動させることによって
も形成できた。捷たバッファ層、光導波膜は、高周波ス
パッタリング法以外に直流スパッタリング法、抵抗加熱
蒸着法もしくは電子ビーム蒸着法によって形成できる。
In addition to the above-described method, the taper at the end of the buffer layer could also be formed by slowly moving the S1 ueno mask shown in FIG. The twisted buffer layer and optical waveguide film can be formed by DC sputtering, resistance heating evaporation, or electron beam evaporation in addition to high-frequency sputtering.

以上2次元導波路の光結合器を説明したが、この光結合
器は光導波膜3次元加工すれば、すなわち8次元導波路
の光結合器として使うことができる。
Although the two-dimensional waveguide optical coupler has been described above, this optical coupler can be used as an eight-dimensional waveguide optical coupler if the optical waveguide film is processed three-dimensionally.

また尤ファイバから光導波膜に光を導入する場合を説明
したが、光の可逆性から本発明は光導波膜から光ファイ
バに光を導入させる場合にも使用できる。
Further, although the case where light is introduced from the optical waveguide film to the optical waveguide film has been described, the present invention can also be used when light is introduced from the optical waveguide film to the optical fiber due to the reversibility of light.

以上説明したように本発明は基板に81を用い、かつ8
1基板の裏面に半球窪みを設けたことに特徴があり、次
の利点がある。
As explained above, the present invention uses 81 for the substrate, and
The feature is that a hemispherical recess is provided on the back surface of one substrate, and it has the following advantages.

(1))Ieファイバからの入射光ビームの81基板表
面におけるエパネツセント波と光導波膜の導波光の結合
作用を利用しているので、光フアイバコア径エリも薄い
光導波膜にも光を導入できる◎(赫)  半球窪みから
光を導入しているので、入射光ビームの入射角を00か
ら90°の範囲内で任意に選択できる。その結果、  
Si基板の屈折率(約8.4)から5ins”ツ7ア層
の屈折率(約1.5)までの範囲内の屈折率を有する光
導波膜に光ファイバの光を導入できる。すなわち本発明
の光結合器は極めて広範囲の光導波膜に適用できる。
(1)) Since it utilizes the coupling effect of the epanescent wave of the incident light beam from the Ie fiber on the 81 substrate surface and the guided light of the optical waveguide film, light can be introduced into the optical waveguide film with a thin optical fiber core diameter. ◎ (赫) Since the light is introduced from the hemispherical depression, the incident angle of the incident light beam can be arbitrarily selected within the range of 00 to 90°. the result,
It is possible to introduce light from an optical fiber into an optical waveguide film having a refractive index within the range from the refractive index of the Si substrate (approximately 8.4) to the refractive index of the 5ins'' layer (approximately 1.5). The optical coupler of the invention can be applied to an extremely wide range of optical waveguide films.

(1n)  従来の基板端部を斜め研磨した光結合器と
異なり、光導入に半球窪みを用いているので、基板端部
に限らず、基板のどの位置からでも、光導波膜への光の
導入が可能である。
(1n) Unlike conventional optical couplers in which the edges of the substrate are obliquely polished, a hemispherical recess is used to introduce light, so light can be transmitted to the optical waveguide film from any position on the substrate, not just from the edge of the substrate. It is possible to introduce

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光結合器の断面図、第2図は本発明の一
実施例の断面図、第8図■、■、■、■。 ■は本発明の光結合器の製造方法全1明するための図で
ある。 1・・・基板、2・・・バッファ層、2′・・・ノ(ツ
7ア層2のテーバ部、8・・・光導波膜、4・・・入射
光ビーム、b・・・導波光、6・・・空気層、7・・・
ロッドレンズ、8・・・光ファイバ、9・・・半球窪み
、10・・・接着剤、11・・・Siウェーノーマスク
、1z・・・5102膜、18・・・Au10r膜、1
4・・・逆向き導波光、15・・・出射光、1G・・・
孔。 特許出願人 日本電信電話公社 第1図 第2図 2/6 6  5− 特開口R59−133515(5)
FIG. 1 is a sectional view of a conventional optical coupler, FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 8 is a sectional view of a conventional optical coupler. (2) is a diagram for explaining the entire method for manufacturing an optical coupler of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Buffer layer, 2'... Taper part of layer 2, 8... Optical waveguide film, 4... Incident light beam, b... Guide Wave light, 6...air layer, 7...
Rod lens, 8... Optical fiber, 9... Hemispherical depression, 10... Adhesive, 11... Si wafer mask, 1z... 5102 film, 18... Au10r film, 1
4... Reverse guided light, 15... Outgoing light, 1G...
Hole. Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 2 2/6 6 5- Special opening R59-133515 (5)

Claims (1)

【特許請求の範囲】 L  Si基板表面上に、端部に所定の角度のテーパを
有するバッファ層を積層し、該バッファ層上に所望の光
導波膜を積層し、Si基板裏面の所定の位置に半球窪み
を形成し、該半円球窪みにロッドレンズを接着固定し、
該ロッドレンズに光ファイバを接着した構造を有するこ
とを特徴とする光結合器。 t  si基板上の所定の位置にマスクを静止して配置
するかまたは所定の速度で基板表面に沿って移動する状
態にして、スパッタリング法または抵抗加熱蒸着法もし
くは電子ビーム蒸着法によって、所定の角度のテーバを
有するバッファ層を形成する工程と、該バッファ層上に
スパッタリング法または抵抗加熱蒸着法もしくは電子ビ
ーム蒸着法によって所定の膜厚に光導波膜を積層する工
程と、該光導波膜中の逆向き導波光からSi基板内に出
射される出射光と81基板裏面との交点を中心として所
定の半球窪みを形成する工程と、該半球窪み内にロッド
レンズを固定する工程と、該ロッドレンズに光ファイバ
を固定する工程からなる光結合器の製造方法。
[Claims] A buffer layer having an end tapered at a predetermined angle is laminated on the surface of the L Si substrate, a desired optical waveguide film is laminated on the buffer layer, and a desired optical waveguide film is laminated at a predetermined position on the back surface of the Si substrate. A hemispherical recess is formed in the hemispherical recess, and a rod lens is adhesively fixed to the hemispherical recess,
An optical coupler characterized by having a structure in which an optical fiber is bonded to the rod lens. The mask is placed stationary at a predetermined position on the Si substrate or moved along the substrate surface at a predetermined speed, and the mask is deposited at a predetermined angle by sputtering, resistance heating evaporation, or electron beam evaporation. a step of forming a buffer layer having a taper of 100 nm, a step of laminating an optical waveguide film to a predetermined thickness on the buffer layer by sputtering, resistance heating evaporation, or electron beam evaporation; A step of forming a predetermined hemispherical recess centered on the intersection of the outgoing light emitted from the reverse guided wave into the Si substrate and the back surface of the 81 substrate, a step of fixing a rod lens within the hemispherical recess, and the rod lens. A method for manufacturing an optical coupler comprising the step of fixing an optical fiber to a
JP735983A 1983-01-21 1983-01-21 Optical coupler and its manufacture Pending JPS59133515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP735983A JPS59133515A (en) 1983-01-21 1983-01-21 Optical coupler and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP735983A JPS59133515A (en) 1983-01-21 1983-01-21 Optical coupler and its manufacture

Publications (1)

Publication Number Publication Date
JPS59133515A true JPS59133515A (en) 1984-07-31

Family

ID=11663759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP735983A Pending JPS59133515A (en) 1983-01-21 1983-01-21 Optical coupler and its manufacture

Country Status (1)

Country Link
JP (1) JPS59133515A (en)

Similar Documents

Publication Publication Date Title
US4765702A (en) Glass integrated optical component
US5485540A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
US6511571B2 (en) Method for fabricating an optical waveguide
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
JPS6353729A (en) Integrated optical head
JPH10133055A (en) Photocoupler and its production
JPH0321881B2 (en)
JPH11153719A (en) Optical integrated circuit having planar waveguide turning mirror
JP2000117465A (en) Machining method and optical parts
US4976506A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JP2001033604A (en) Manufacture of optical component and polyimide thick film
JP2001350051A (en) Optical waveguide module and its manufacturing method
JP2000310750A (en) Optical isolator and optical module using same
JPS59133515A (en) Optical coupler and its manufacture
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JPS6243609A (en) Optical circuit element
JP2005140822A (en) Optical waveguide and manufacturing method therefor
JPS58196521A (en) Optical coupling circuit
JP2827640B2 (en) Optical component manufacturing method
US5687263A (en) Optical RF bandpass filter and method for manufacturing same
JPS635310A (en) Production of optical connecting circuit
JPH1048479A (en) Optical connector
JPS61166504A (en) Optical circuit device
JPS62251706A (en) Optical circuit and its manufacture
JPH08106023A (en) Optical waveguide coupler