JPS59133459A - Ion chromatograph - Google Patents

Ion chromatograph

Info

Publication number
JPS59133459A
JPS59133459A JP732483A JP732483A JPS59133459A JP S59133459 A JPS59133459 A JP S59133459A JP 732483 A JP732483 A JP 732483A JP 732483 A JP732483 A JP 732483A JP S59133459 A JPS59133459 A JP S59133459A
Authority
JP
Japan
Prior art keywords
ion
eluate
membrane
liquid
electrodialyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP732483A
Other languages
Japanese (ja)
Inventor
Fusao Shirato
白土 房男
Shigeyoshi Kawazoe
川副 重義
Norio Kobayashi
憲雄 小林
Katsuhisa Usami
勝久 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP732483A priority Critical patent/JPS59133459A/en
Publication of JPS59133459A publication Critical patent/JPS59133459A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • G01N2030/965Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To measure traces of ions with high sensitivity by using a special electrodialyzer. CONSTITUTION:When Na<+>, HCO3<-> and OH<-> exist in an eluate 5 contg. a sample component, a cation exchange membrane is used for an ion selective permeable membrane 15, a cation exchange resin is used for an ion exchange resin 16, and a dilute sulfuric acid soln. is used for a regenerating liquid 8. DC current is conducted to said liquid. Then, the Na<+> in the elutate 5 is attracted to a cathode 7b and is therefore detached from the resin 16 and enters the liquid 8 by passing the membrane 15a. At the same instant, HCO3<-> and OH<-> are attracted to the anode 7a but the membrane 15a exists and therefore both stay in the eluate without passing the membrane. However, the H<+> in the elutate 5 passes the membrane 15a and goes into the liquid 8. More specifically, the sample component in the eluate 5 is removed of cations and contains only the anion as said component passes a pair of the membranes 15a and is detected in the stage of passing an electrical conductivity detector 10; thereafter the sample is discharged 13. The rate of removing the ions that hamper the measurement is thus improved and the analysis with high sensitivity is made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体クロマトグラフに係シ、特に、複数のイオ
ンを同時分析するイオンクロマトグラフに関する本ので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a liquid chromatograph, and particularly to an ion chromatograph that simultaneously analyzes a plurality of ions.

〔従来技術〕[Prior art]

イオンクロマトグラフは複数種のイオンの同時分析装置
として急激に普及し、その応用範囲は環境関係試料等多
方面の試料の微量分析装置として用いられるようになっ
た。
Ion chromatographs have rapidly become popular as devices for simultaneous analysis of multiple types of ions, and their applications have come to be used as trace analysis devices for a wide variety of samples, including environmental samples.

イオンクロマトグラフィーにおいては、分離カラムに0
.005〜0.1 meql g位の低交換容量のイオ
ン交換樹脂を用い、分離カラムの下流に第2のイオン交
換カラム(サプレッサーとして用いる)を置いて展開剤
を弱イオン型に転換させるか、又はその展開剤を形成す
るイオンを除去しておシ、その後に分離カラムの溶出液
中の分析対象となるイオン類を電気伝導度検出器等の高
感度検出器で検出している。
In ion chromatography, the separation column is
.. Using an ion exchange resin with a low exchange capacity of 0.005 to 0.1 meql g, placing a second ion exchange column (used as a suppressor) downstream of the separation column to convert the developing agent to the weak ionic form, or After removing the ions forming the developing agent, the ions to be analyzed in the eluate from the separation column are detected using a highly sensitive detector such as an electrical conductivity detector.

イオンクロマトグラフの初期に用いられていた上記の第
2のイオン交換カラムは、その交換能力が次第に低下す
るので所定時間毎に再生が必要となる。この際は流路の
切換を行なって予備のイオン交換カラムを使用するので
分析装置の構成は複雑化し、更に、再生用の酸やアルカ
リ液を多量に用意して置かなければならない等の欠点を
生じていた。
The above-mentioned second ion exchange column, which was used in the early days of ion chromatographs, gradually loses its exchange capacity and therefore needs to be regenerated at predetermined intervals. In this case, the flow path is switched and a spare ion exchange column is used, which complicates the configuration of the analyzer.Furthermore, there are disadvantages such as the need to prepare a large amount of acid or alkaline solution for regeneration. was occurring.

また、溶出液中に含まれる展開剤として電気伝導度の低
い特殊な化合物を用いて第2のイオン交換カラムは使用
しないという方法も知られている。
Also known is a method in which a special compound with low electrical conductivity is used as a developing agent contained in the eluate and the second ion exchange column is not used.

しかし、この方法は上記第2のイオン交換カラムを用い
る方法に比較してバックグランド値が高く、測定感度は
低くなって微量分析用としては不適当である。
However, this method has a higher background value and lower measurement sensitivity than the method using the second ion exchange column, making it unsuitable for trace analysis.

第2のイオン交換カラムの代シに電気透析器を用いる方
法は、透析面の漏洩及び溶出液の拡散等を防止するため
のセルの構成とその加工に困難な所がある。また、陰イ
オン分析の際は第2のイオン交換カラムの代りに内径0
.4 wNs外径0.55■、長さ5mの陽イオン交換
チューブを用い、その外側KO,05モルのドデシルベ
ンゼンスルホン酸又は0.02規定硫酸の再生液を定常
的に流し、チューブ内を流れる溶出液中の陽イオンを再
生液側に抽出する方法が用いられている。これらの方法
においては長い交換膜チューブの加工性及び寿命の点に
問題をもっている。
The method of using an electrodialyzer in place of the second ion exchange column has difficulties in the construction and processing of the cell in order to prevent leakage from the dialysis surface and diffusion of the eluate. In addition, for anion analysis, a column with an inner diameter of 0 is used instead of the second ion exchange column.
.. 4 Using a cation exchange tube with an outer diameter of 0.55 cm and a length of 5 m, a regenerating solution of KO, 05 mol of dodecylbenzenesulfonic acid or 0.02 N sulfuric acid is constantly flowed outside the tube, and the regenerating solution is constantly flowed inside the tube. A method is used in which cations in the eluate are extracted into the regenerating solution. These methods have problems in terms of workability and service life of long exchange membrane tubes.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を解消し、特殊な電気透析
器を用いて微量のイオン類を高感度で測定することがで
きるイオンクロマトグラフを提供することである。
The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and provide an ion chromatograph that can measure trace amounts of ions with high sensitivity using a special electrodialyzer.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、分離カラムより流出した
溶出液を通過させる溶出液通路を一対の対向するイオン
選択性透過膜間に形成し、このイオン選択性透過膜の外
側の一方の再生液通路には陽極板を、他方の再生液通路
には陰極板を設置して通電し、溶出液中の妨害成分を除
去する電気透析器を分離カラムと検出器との間に設置し
たイオンクロマトグラフにおいて、電気透析器の溶出液
通路に、イオン選択性透過膜と同種のイオン交換樹脂を
充填して構成したことである。
The present invention is characterized in that an eluate passage through which the eluate flowing out from the separation column passes is formed between a pair of opposing ion-selective permeable membranes, and one of the regenerating liquids is placed outside the ion-selective permeable membrane. An ion chromatograph in which an anode plate is installed in one passage and a cathode plate is installed in the other regeneration liquid passage, and an electrodialyzer is installed between the separation column and the detector to remove interfering components in the eluate by applying electricity. In this method, the eluate passage of the electrodialyzer is filled with an ion exchange resin of the same type as the ion-selective permeable membrane.

第1図は本発明の一実施例であるイオンクロマトグラフ
の系統図である。試料液中の分析対象イオンが隘イオン
か陽イオンかによってそれに適した展開剤を含んでいる
溶離液1は、送液ポンプ2aによって送シ出される。こ
の送液ポンプ2aと分離カラム4との間には試料導入器
3が設置され、これから導入された計量ずみの試料液は
溶離液1の流れに乗って分離カラム4に導びかれる。
FIG. 1 is a system diagram of an ion chromatograph which is an embodiment of the present invention. An eluent 1 containing a developing agent suitable for whether the analyte ions in the sample liquid are empty ions or cations is delivered by a liquid pump 2a. A sample introducer 3 is installed between the liquid feed pump 2a and the separation column 4, and a measured sample liquid introduced therefrom is guided to the separation column 4 along with the flow of the eluent 1.

なお、試料導入器3はパルプ切替方式のものが用いられ
ている。
Note that the sample introducer 3 is of a pulp switching type.

分離カラム4内には低イオン交換能力をもつイオン交換
樹脂が充填されており、試料液中のイオン類は上記イオ
ン交換樹脂との親和力の差によって溶離され、親和力の
弱いイオンから順次に分離カラム4から溶出する。この
溶出液5は特殊な電気透析器6に導かれ、陽極7aと陰
極7bとの間に一定の電流を流すことによって検出の妨
害となる物質、例えば展開剤中の高電導度を示す成分等
は除去される。また、再生液8は電気透析器6において
除去する物質を抽出するもので、送液ポンプ2bによっ
て電気透析器6に導入され排出管9から排出される。
The separation column 4 is filled with an ion exchange resin with a low ion exchange capacity, and ions in the sample solution are eluted due to the difference in affinity with the ion exchange resin, and the ions are eluted from the separation column in order from the weakest affinity to the ion exchange resin. Elutes from 4. This eluate 5 is led to a special electrodialyzer 6, and a constant current is passed between the anode 7a and the cathode 7b to remove substances that may interfere with detection, such as components that exhibit high conductivity in the developing agent. is removed. Furthermore, the regenerating liquid 8 is used to extract substances to be removed in the electrodialyzer 6, and is introduced into the electrodialyzer 6 by the liquid feed pump 2b and discharged from the discharge pipe 9.

上記電気透析器6から流出した溶出液5は電気伝導度検
出器10を通る際に電導度が測定され、その後は排出水
13となって捨てられる。電気伝導度検出器10によっ
て測定された電導度を示す信号出力は、増幅器11によ
って増幅された後演算処理されて記録計12にクロマト
グラムとして記録される。また、上記電気伝導度検出器
10の代シにpH検出器、クーロメトリ検出器、アンベ
ロメトリ検出器、差動屈折計、原子吸光光度計及び吸光
光度計等も使用できる。なお、吸光光度計による検出法
においては、図示されていない送液ポンプ2によって特
定の試薬を溶出液5に送って反応させ、その呈色或いは
減色の吸光度測定を実施する。
The electrical conductivity of the eluate 5 flowing out from the electrodialyzer 6 is measured when it passes through an electrical conductivity detector 10, and is then discarded as waste water 13. A signal output indicating the electrical conductivity measured by the electrical conductivity detector 10 is amplified by the amplifier 11, then subjected to arithmetic processing, and recorded as a chromatogram in the recorder 12. Further, instead of the electrical conductivity detector 10, a pH detector, a coulometry detector, an amberometry detector, a differential refractometer, an atomic absorption photometer, an absorption photometer, etc. can be used. In the detection method using an absorptiometer, a specific reagent is sent to the eluate 5 using a liquid pump 2 (not shown) to cause a reaction, and the absorbance of the color change or color reduction is measured.

第2図は第1図の電気透析器の拡大断面図であシ、第1
図と同じ部分には同一符号を付しである。
Figure 2 is an enlarged sectional view of the electrodialyzer shown in Figure 1.
The same parts as in the figure are given the same reference numerals.

この電気透析器6けその中心に設置した一対のイオン選
択性透過膜15の中にNa等の陽イオンを分離するイオ
ン交換樹脂16を充填し、その上下端をフィルタ17a
、17bで封止しているが、分離カラム4からの溶出液
5はこの中を下から上に向って流通させている。また、
上記イオン選択性透過膜15の外側には再生液8が上か
ら下に向って通過する両側の再生液通路があり、その中
には電極7に接続した導線が設置されている。更に、そ
の外側は一対のセルブロック14a、14bで包囲され
て一体化されている。
A pair of ion-selective permeable membranes 15 installed at the center of the electrodialyzer 6 are filled with an ion exchange resin 16 for separating cations such as Na, and the upper and lower ends are filtered by a filter 17a.
, 17b, and the eluate 5 from the separation column 4 is allowed to flow through it from the bottom to the top. Also,
On the outside of the ion-selective permeable membrane 15, there are regenerating liquid passages on both sides through which the regenerating liquid 8 passes from top to bottom, and a conducting wire connected to the electrode 7 is installed in the passages. Furthermore, the outside thereof is surrounded and integrated with a pair of cell blocks 14a and 14b.

この電気透析器6は分離カラム4からの溶出液5中の高
電導度を示す展開剤、例えば陰イオン分析時の(NaH
COs+ NazCOs )等を低電導度の物質に転換
するか又は除去する装置であり、上記セルブロック14
はアクリル樹脂材を加工して形成される。イオン選択性
透過膜15は、陰イオン分析の場合は陽イオン交換膜を
使用し、陽イオン分析時は陰イオン交換膜を使うことに
なる。これらのイオン選択性透過膜15は溶出液5が通
るイオン交換樹脂16層と再生液8との間に在って陽イ
オン又は陰イオンを透析する。この再生液80通路には
電柱7a、7bが設置され、定電流電源よ勺の直流電圧
が印加されている。
This electrodialyzer 6 uses a developing agent exhibiting high conductivity in the eluate 5 from the separation column 4, such as (NaH) for anion analysis.
This is a device that converts or removes COs+NazCOs) etc. into a substance with low conductivity, and the cell block 14
is formed by processing acrylic resin material. As the ion-selective permeable membrane 15, a cation exchange membrane is used for anion analysis, and an anion exchange membrane is used for cation analysis. These ion-selective permeable membranes 15 are located between the ion exchange resin 16 layer through which the eluate 5 passes and the regeneration liquid 8, and dialyze cations or anions. Telephone poles 7a and 7b are installed in the path of the regenerating liquid 80, and a direct current voltage from a constant current power source is applied thereto.

次に電気透析器6の作用を詳しく説明する。試料成分を
含む溶出液5にN a ” 、 HCO3−及びOH−
が存在しているとすると、イオン選択性透過膜15は陽
イオン交換膜を用い、イオン交換樹脂16には陽イオン
交換樹脂を、再生液としては希He溶液を用いて直流電
流を流す。したがって、溶出液5中のNa+は陰極7b
に引かれるので陽イオン交換樹脂16から離脱して陽イ
オン交換膜15aを通シ再生液8に入る。これと同時に
HCO3−及びOH−は陽極7aに引きよせられるが、
陽イオン交換膜15aが存在するので通過しないで溶出
液5中にとどまる。しかも溶出液5中のH+が陽イオン
交換膜15aを通って再生液8中に出て行く。即ち、溶
出液5中の試料成分は一対の陽イオン交換膜15aを介
して陽イオンは除去され、陰イオンのみを含んで電気伝
導度検出器10を通る際に検出された後排出水13とな
る。
Next, the operation of the electrodialyzer 6 will be explained in detail. Eluate 5 containing sample components was treated with Na'', HCO3- and OH-
is present, a cation exchange membrane is used as the ion-selective permeable membrane 15, a cation exchange resin is used as the ion exchange resin 16, a dilute He solution is used as the regeneration liquid, and a direct current is applied. Therefore, Na+ in the eluate 5 is absorbed by the cathode 7b.
Since it is attracted by the water, it separates from the cation exchange resin 16 and enters the regenerating liquid 8 through the cation exchange membrane 15a. At the same time, HCO3- and OH- are attracted to the anode 7a,
Since the cation exchange membrane 15a is present, the eluate does not pass through and remains in the eluate 5. Furthermore, H+ in the eluate 5 passes through the cation exchange membrane 15a and exits into the regenerating solution 8. That is, the sample components in the eluate 5 pass through a pair of cation exchange membranes 15a to remove cations, and contain only anions, which are detected when passing through the electrical conductivity detector 10 and then separated into the waste water 13. Become.

上記とは反対に、再生液8として水酸化カリウム溶液、
一対のイオン選択性透過膜15として陰イオン交換樹脂
を用いれば、HCO3−は陽極7a側の再生液8中に出
て行くことになるので、排出水13は水酸化ナトリウム
溶液となる。
Contrary to the above, potassium hydroxide solution as the regeneration liquid 8;
If an anion exchange resin is used as the pair of ion-selective permeable membranes 15, HCO3- will exit into the regenerating liquid 8 on the anode 7a side, so the discharged water 13 will become a sodium hydroxide solution.

第3図及び第4図は第2図の電気透析器を用いて分析し
た場合の溶出液中のNa+の除去効率と溶出液5の電気
伝導度の変化を示す線図である。
3 and 4 are diagrams showing the removal efficiency of Na+ in the eluate and changes in the electrical conductivity of the eluate 5 when analyzed using the electrodialyzer shown in FIG. 2.

その実験条件は試料液の3mmotを(NaHCOs+
NaaCOs)液を1mt/―の割合で流している溶離
液に導入し、再生液8としては0.05モルの硫酸溶液
を用いている。使用した電気透析器6の溶出液5の流通
路は2XIX5001E11の寸法で、その中に陽イオ
ン交換樹脂16aを充填すると共に陽イオン交換膜15
aで包囲している。
The experimental conditions were as follows: 3 mmot of the sample solution (NaHCOs+
A NaaCOs) solution was introduced into the eluent flowing at a rate of 1 mt/-, and a 0.05 mol sulfuric acid solution was used as the regenerating solution 8. The flow path for the eluate 5 of the electrodialyzer 6 used has dimensions of 2
It is surrounded by a.

第3図は同種の陽イオン交換膜に陽イオン交換樹脂を充
填した場合と陽イオン交換膜だけの従来の場合とのpJ
a+の除去効率を比較して示す線図であり、横軸は印加
電圧を直流1v〜15Vに変化させたときの電流量をア
ンペアで示し、縦軸はNa+の除去率をチで示しである
Figure 3 shows the pJ of the same type of cation exchange membrane filled with cation exchange resin and the conventional case of only a cation exchange membrane.
It is a diagram comparing and showing the removal efficiency of a+, the horizontal axis shows the amount of current in amperes when the applied voltage is changed from DC 1v to 15V, and the vertical axis shows the removal rate of Na+ in chi. .

(9) 本実施例のように陽イオン交換樹脂15aを充填した電
気透析器6を用いたときのNaゝ除去率を示す実線18
は除去率が良好で、0.03Aの印加電流においては9
8チの除去率を示している。
(9) A solid line 18 showing the Na removal rate when using the electrodialyzer 6 filled with the cation exchange resin 15a as in this example.
has a good removal rate, with an applied current of 0.03A, 9
It shows the removal rate of 8chi.

しかるに陽イオン交換樹脂15aを充填しない破線19
の場合は、0.03Aにおいて約24%であシ、電流値
が0.08 A程度になって両線は接近する。
However, the broken line 19 is not filled with the cation exchange resin 15a.
In the case of , it is about 24% at 0.03 A, and the current value becomes about 0.08 A and the two lines approach each other.

第4図は溶出液の電導度の変化を比較して示す線図で、
分離カラム4からの溶出液5の電導度は約770μS/
cmであるが、作動時間と共に電導度は低下して約18
分後にけ略一定となり、陽イオン交換樹脂16を充填し
た電気透析器6を用いている実線20の場合の電導度は
約18μS/cmとなる。しかるに陽イオン交換樹脂1
6を充填しない陽イオン透過膜15だけの時は破線21
の如く約90μS/cmとなる。
Figure 4 is a diagram comparing and showing changes in the electrical conductivity of the eluate.
The conductivity of the eluate 5 from the separation column 4 is approximately 770 μS/
cm, but the conductivity decreases with the operating time to about 18 cm.
The conductivity becomes approximately constant after a few minutes, and the conductivity in the case of the solid line 20 using the electrodialyzer 6 filled with the cation exchange resin 16 is about 18 μS/cm. However, cation exchange resin 1
When there is only the cation permeable membrane 15 without filling 6, the broken line 21
It is approximately 90 μS/cm as shown in FIG.

したがって、陽イオン交換樹脂を充填した電気透析器6
を用いた時は、透析効率が大幅に向上するという利点が
得られる。
Therefore, the electrodialyzer 6 filled with cation exchange resin
When used, the advantage is that the dialysis efficiency is greatly improved.

(10) 第5図は第2図の電気透析器を用いて6種類の陰イオン
を分離測定したイオンクロマトグラムである。試料は各
イオンl0IFI!1度の混合液を100μを試料導入
器3より導入し、溶離液1としては3ミリモルのNa)
ICO3と2.4ミリモルのNa@COs  との混合
水溶液を用い、2 m t/1dl(D流速で流通させ
ている。各イオンの分離能は第5図から明らかなように
極めて良好で高精度であり、再現性も良好であった。
(10) FIG. 5 is an ion chromatogram obtained by separating and measuring six types of anions using the electrodialyzer shown in FIG. 2. The sample is each ion l0IFI! 100 μ of the mixed solution was introduced from the sample introducer 3, and the eluent 1 was 3 mmol Na).
A mixed aqueous solution of ICO3 and 2.4 mmol of Na@COs was used, and was flowed at a flow rate of 2 mt/1 dl (D).As is clear from Figure 5, the separation ability of each ion is extremely good and highly accurate. The reproducibility was also good.

本実施例のイオンクロマトグラフは、イオン選択性透過
膜で仕切られた分離カラムからの溶出液通路にイオン交
換樹脂を充填するという比較的簡単な改良を施こした電
気透析器を用いることによって、測定の妨害となるイオ
ンの除去率を向上すると共に、分析対象とするイオン種
を高感度で測定できるという効果が得られる。
The ion chromatograph of this example uses an electrodialyzer with a relatively simple modification of filling an ion exchange resin in the eluate passage from the separation column partitioned by an ion-selective permeable membrane. This has the effect of improving the removal rate of ions that interfere with measurement, and allowing the ion species to be analyzed to be measured with high sensitivity.

上記実施例は主として試料液中の陰イオンの分析を例と
して説明したが、陽イオンを分析する場合には陰イオン
透過膜中に陰イオン交換樹脂を充填した電気透析器を使
用し、アルカリ再生液を流(11) 通させて行うことになる。その効果は上記の場合と同程
度となる。
The above example was mainly explained using the analysis of anions in the sample liquid as an example, but when analyzing cations, an electrodialyzer with an anion-permeable membrane filled with an anion exchange resin is used, and an alkali regeneration method is used. This is done by passing the liquid through the flow (11). The effect will be the same as in the above case.

〔発明の効果〕〔Effect of the invention〕

本発明のイオンクロマトグラフは、従来の装置を複雑大
形化することなく電気透析器の改良によって分析性能を
大幅に向上させ、イオン類を高感度で測定できるという
効果が得られる。
The ion chromatograph of the present invention has the effect of greatly improving the analytical performance by improving the electrodialyzer without making the conventional device complicated and large, and can measure ions with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるイオンクロマトグラフ
の系統図、第2図は第1図の電気透析器の拡大断面図、
第3図は溶出液中のNa+除去効率と電極に流した電流
との関係を本実施例と従来の装置の場合とで比較して示
す線図、第4図は溶出液の電導度の変化を本実施例と従
来の装置の場合とで比較して示す線図、第5図は第2図
の電気透析器を用いて陰イオンを分離測定したイオンク
ロマトグラムである。 1・・・溶離液、2・・・送液ポンプ、3・・・試料導
入器、4・・・分離カラム、5・・・溶出液、6・・・
電気透析器、7・・・電極、8・・・再生液、9・・・
排出管、10・・・電気(12) 伝導度検出器、11・・・増幅器、12川記録計、13
・・・排出水、14・・・セルブロック、15・・・イ
オン選択性透過膜、15a川陽イオン交換膜、16・・
・イオン交換樹脂、17・・・フィルタ。 代理人 弁理士 高橋明夫 (13) 第zIJ 子JD
FIG. 1 is a system diagram of an ion chromatograph that is an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the electrodialyzer shown in FIG. 1,
Figure 3 is a diagram comparing the relationship between the Na+ removal efficiency in the eluate and the current applied to the electrode between this example and the conventional device, and Figure 4 is a graph showing the change in the conductivity of the eluate. FIG. 5 is an ion chromatogram obtained by separating and measuring anions using the electrodialyzer shown in FIG. 2. DESCRIPTION OF SYMBOLS 1... Eluent, 2... Liquid pump, 3... Sample introducer, 4... Separation column, 5... Eluent, 6...
Electrodialyzer, 7... Electrode, 8... Regeneration liquid, 9...
Discharge pipe, 10... Electricity (12) Conductivity detector, 11... Amplifier, 12 River recorder, 13
... Effluent water, 14... Cell block, 15... Ion selective permeable membrane, 15a River cation exchange membrane, 16...
- Ion exchange resin, 17...filter. Agent Patent Attorney Akio Takahashi (13) No. zIJ Child JD

Claims (1)

【特許請求の範囲】 1、分離カラムより流出した溶出液を通過させる溶出液
通路を一対の対向するイオン選択性透過膜間に形成し、
このイオン選択性透過膜の外側の一方の再生液通路には
陽極板を、他方の再生液通路には陰極板を設置して通電
し、上記溶出液中の防害成分を除去する電気透析器を上
記分離カラムと検出器との間に設置したイオンクロマト
グラフにおいて、上記電気透析器の上記溶出液通路に、
上記イオン選択性透過膜と同種のイオン交換樹脂を光填
してなることを特徴とするイオンクロマドグ゛う7゜ 2、上記同種のイオン交換樹脂が、上記イオン選択性透
過膜を透過するイオンと同種のイオンを離脱交換する樹
脂でるる特許請求の範囲第1−項記載のイオンクロマト
グラフ。
[Claims] 1. An eluate passage through which the eluate flowing out from the separation column passes is formed between a pair of opposing ion-selective permeable membranes,
An electrodialyzer that removes harmful components in the eluate by installing an anode plate in one regenerating liquid passage and a cathode plate in the other regenerating liquid passage outside the ion-selective permeable membrane and applying electricity. In the ion chromatograph installed between the separation column and the detector, in the eluate passage of the electrodialyzer,
An ion chromatography device comprising an ion-exchange resin of the same type as the ion-selective permeable membrane is filled with light; An ion chromatograph according to claim 1, which is made of a resin that detaches and exchanges ions of the same type as the ion chromatograph.
JP732483A 1983-01-21 1983-01-21 Ion chromatograph Pending JPS59133459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP732483A JPS59133459A (en) 1983-01-21 1983-01-21 Ion chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP732483A JPS59133459A (en) 1983-01-21 1983-01-21 Ion chromatograph

Publications (1)

Publication Number Publication Date
JPS59133459A true JPS59133459A (en) 1984-07-31

Family

ID=11662783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP732483A Pending JPS59133459A (en) 1983-01-21 1983-01-21 Ion chromatograph

Country Status (1)

Country Link
JP (1) JPS59133459A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180321A2 (en) * 1984-10-04 1986-05-07 Dionex Corporation Modified membrane suppressor and method of use
US5569365A (en) * 1995-03-03 1996-10-29 Dionex Corporation Intermittent electrolytic membrane suppressor regeneration for ion chromatography
US5633171A (en) * 1995-03-03 1997-05-27 Dionex Corporation Intermittent electrolytic packed bed suppressor regeneration for ion chromatography
US5759405A (en) * 1995-03-03 1998-06-02 Alltech Associates, Inc. Apparatuses and methods for electrochemically modifying the retention of species on chromatography material
US5935443A (en) * 1995-03-03 1999-08-10 Alltech Associates, Inc. Electrochemically regenerated ion neutralization and concentration devices and systems
JP2006500192A (en) * 2002-03-13 2006-01-05 ダイオネックス コーポレイション Water purification apparatus and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180321A2 (en) * 1984-10-04 1986-05-07 Dionex Corporation Modified membrane suppressor and method of use
JPH0650951A (en) * 1984-10-04 1994-02-25 Dionex Corp Ion analysis method
US5569365A (en) * 1995-03-03 1996-10-29 Dionex Corporation Intermittent electrolytic membrane suppressor regeneration for ion chromatography
US5633171A (en) * 1995-03-03 1997-05-27 Dionex Corporation Intermittent electrolytic packed bed suppressor regeneration for ion chromatography
US5759405A (en) * 1995-03-03 1998-06-02 Alltech Associates, Inc. Apparatuses and methods for electrochemically modifying the retention of species on chromatography material
US5935443A (en) * 1995-03-03 1999-08-10 Alltech Associates, Inc. Electrochemically regenerated ion neutralization and concentration devices and systems
US6235197B1 (en) 1995-03-03 2001-05-22 Alltech Associates, Inc. Electrochemically regenerated ion neutralization and concentration devices and systems
US7531075B2 (en) 1995-03-03 2009-05-12 Dionex Corporation Method and apparatus for generating a high purity eluant
US7780834B2 (en) 1995-03-03 2010-08-24 Dionex Corporation Apparatuses and methods for electrochemically modifying the retention of species on chromatography material
JP2006500192A (en) * 2002-03-13 2006-01-05 ダイオネックス コーポレイション Water purification apparatus and method

Similar Documents

Publication Publication Date Title
CA2319813C (en) Continuous electrolytically regenerated packed bed suppressor for ion chromatography
US4403039A (en) Method and apparatus for analysis of ionic species
AU2006292705B2 (en) Recycling of suppressor regenerants
US8293099B2 (en) Ion detector and system
CA2420411C (en) Continuous electrolytically regenerated packed suppressor for ion chromatography
US7390386B2 (en) Aqueous stream purifier and method of use
US11906409B2 (en) Analyte concentrator system and methods of use
US4861555A (en) Apparatus for chromatographic analysis of ionic species
JPS59133459A (en) Ion chromatograph
US20050100477A1 (en) Apparatus and method for removing gas prior to sample detection and/or analysis
US5073502A (en) Method and apparatus for analyzing total organic halogens
JP6062193B2 (en) Ion chromatograph analyzer and ion chromatograph analysis method
JPS581383B2 (en) Automatic measurement method for ammonium ions in water
EP0141259B1 (en) Improvements in liquid chromatography
JPH0329747Y2 (en)
JP3470062B2 (en) Liquid chromatograph mass spectrometer
JPS608741B2 (en) Capillary electrophoresis device equipped with a halogen ion removal column
JPH0225146B2 (en)
JPH0587787A (en) Measuring method of negative ions
JPS58123457A (en) Ion exchange chromatograph
JPH0587789A (en) Measuring method of positive ions
JPS60224061A (en) Analyzing instrument for bile acid
JPH04132956A (en) Ion chromatograph for analyzing anion
JPS6224129A (en) Concentration analysis method and apparatus
JPH03165258A (en) Ion chromatograph