JPS59130698A - Production of stainless steel flux cored wire - Google Patents

Production of stainless steel flux cored wire

Info

Publication number
JPS59130698A
JPS59130698A JP460583A JP460583A JPS59130698A JP S59130698 A JPS59130698 A JP S59130698A JP 460583 A JP460583 A JP 460583A JP 460583 A JP460583 A JP 460583A JP S59130698 A JPS59130698 A JP S59130698A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
sheath
flux
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP460583A
Other languages
Japanese (ja)
Inventor
Rokuro Fujimoto
藤本 六郎
Kyukichi Yanagidate
柳舘 久吉
Tatsuo Enomoto
榎本 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP460583A priority Critical patent/JPS59130698A/en
Publication of JPS59130698A publication Critical patent/JPS59130698A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods

Abstract

PURPOSE:To produce a titled wire with good productivity in the state of drawing continuously the wire packed with a flux in a tubular stainless steel sheath by maintaining the sheath of the wire at specific hardness. CONSTITUTION:A wire W formed by packing a flux in a tubular stainless steel sheath is let off from a wire bobbin 3 and after it is drawn by a die 4, the wire is heated to about 780-1,050 deg.C while it passes a heater 5. The heated wire is then cooled in a cooling device 6 to adjust the Vickers hardness of the wire 4 sheath at <=300. The above-mentioned stage is repeated a number of times until an intended wire diameter is obtained, then the wire is taken up on a take-up bobbin 7. The flux cored wire having a small diameter of about 1.2mm.phi is thus produced from a large diameter of about >=3mm.phi in a continuous integrated process thereby productivity is improved.

Description

【発明の詳細な説明】 本発明は、ステンレス鋼フラックス入りワイヤの製造方
法に係り、さらに詳しくは、生産性のすぐれたステンレ
ス鋼フラックス人シワイヤの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a stainless steel flux-cored wire, and more particularly to a method of manufacturing a stainless steel flux-cored wire with excellent productivity.

ステンレス鋼は、すぐれた耐誘性、耐食性、耐酸化性、
耐熱性を有することから、各方面で広く使用されている
。ステンレス鋼の溶接は、被覆アーク溶接棒による手溶
接が主体であるが、能率が劣るという点で問題がある。
Stainless steel has excellent resistance to corrosion, corrosion, and oxidation.
Because it has heat resistance, it is widely used in various fields. Stainless steel is mainly welded by hand using a coated arc welding rod, but there is a problem in that it is less efficient.

これに代るものとして、ソリッドワイヤによるM I 
G #W法が普及してきている。このソリッドワイヤに
よるMIG溶接法は能率面ですぐれているが、ステンレ
ス鋼に適用するとブローホールが発生しやすぐ、また多
層溶接で溶接金属の広がりが得られに<<、融合不良を
生じやすく、これらを生じない適正条件範囲が非常にせ
まいという問題がある。
As an alternative to this, solid wire MI
The G#W method is becoming popular. This MIG welding method using solid wire is excellent in terms of efficiency, but when applied to stainless steel, blowholes easily occur, and the weld metal cannot spread in multi-layer welding, resulting in poor fusion. There is a problem in that the range of appropriate conditions that do not cause these problems is extremely narrow.

このMI()溶接における問題点を解決し、かつ?J 
I G溶接法の能率全維持する溶接法として、フラック
スを内包した1、6wφ、1゜2闘φの細径ワイヤを用
い、゛さらにシールドガスを流して溶接を行う溶接法が
注目されてきている。このような細径の7ラツクス入り
ワイヤによるガスシールドアーク浴接は、内包フラック
スによるスラグシールドとガスシルードの両者により溶
接金属を保護するので、溶接金属の広がりが得られ、ピ
ード形状が良好で、ブローホール、融合不良などの溶接
欠陥が発生しに<<、且つ高能率溶接が可能であり、近
年ますますその細径の7ラツクス入りワイヤの需要が高
まってきている。
Solve this problem in MI() welding and? J
As a welding method that maintains the full efficiency of the IG welding method, a welding method that uses a small diameter wire of 1.6 wφ, 1°2 mm diameter containing flux and welds by flowing shielding gas has been attracting attention. There is. Gas-shielded arc bath welding using such a small-diameter 7-lux cored wire protects the weld metal with both a slag shield and a gas shield created by the included flux, so the weld metal spreads out, has a good bead shape, and is easy to blow. It is possible to perform highly efficient welding without the occurrence of welding defects such as holes and poor fusion, and in recent years the demand for 7 lux cored wire with a small diameter has been increasing.

一万、前記ステンレス鋼の溶接に使用されるフラックス
入りワイヤの外皮には、0r−Niミステンレス、Or
ステンレ°ス鋼、および軟鋼が用いられている。これら
のうち、0r−Niステンレス鋼は加工硬化がいちぢる
しく犬であるため、伸線加工がむずかしい。Orステン
レス鋼および軟鋼は、0r−Ni鋼はど加工硬化性がい
ちぢるしくないが、必要とするOr、Niなどの会合元
素を充填フラックスから供給する必要があるためおのず
からフラックスは充填率の制いものとなり、充填率が高
くなるにしたがい、当然の結果として伸線加工性が劣っ
てくる。したがって、ステンレス鋼フラックス入りワイ
ヤの製造においては、いずれ鋼の外皮を用いようとも前
述の伸森加工性が劣る点から、断線などのトラブルが生
じない範囲の低い加工率で、す々わち細い外径の素材を
用いて伸線して、1.6+mφ。
10,000, the outer sheath of the flux-cored wire used for welding the stainless steel is Or-Ni stainless steel, Or
Stainless steel and mild steel are used. Among these, 0r-Ni stainless steel is difficult to wire-draw because its work hardening is rather severe. Or stainless steel and mild steel have less work hardening properties than Or-Ni steel, but since the required associated elements such as Or and Ni need to be supplied from the filling flux, the flux naturally has a lower filling rate. As the filling rate increases, the wire drawability naturally deteriorates. Therefore, in the production of stainless steel flux-cored wire, even if a steel outer sheath is eventually used, due to the poor stretchability described above, it is necessary to use a low processing rate that does not cause problems such as wire breakage. Wire is drawn using a material with an outer diameter of 1.6+mφ.

1.2■φの7ラツクス入りワイヤを生産しており、こ
のため生産性が非常に低く、ステンレス鋼フラックス入
りワイヤの需要が高いにもかかわらず、大量安定供給が
できないという大きな問題点があった。
The company produces 7 lux-cored wire with a diameter of 1.2 mm, which results in very low productivity, and despite the high demand for stainless steel flux-cored wire, there is a major problem in that it is unable to provide a stable supply in large quantities. Ta.

本発明者らは、上述の問題点に鑑み、これ全改善すべく
数多くの研究を行った。その結果、伸線加工性の劣化は
伸線工程における加工硬化に起因することが判明した。
In view of the above-mentioned problems, the present inventors have conducted numerous studies in order to completely improve them. As a result, it was found that the deterioration in wire drawability was caused by work hardening during the wire drawing process.

この点につきさらに研究の結果、伸線工程における伸線
加工性は、第1図に示す如く、ワイヤ外皮のビッカース
硬さが300を超えると急激に劣化し、ワイヤ外皮のビ
ッカース硬さを300以下に維持すれば、劣化しないと
の知見を得た。
As a result of further research on this point, wire drawability in the wire drawing process deteriorates rapidly when the Vickers hardness of the wire sheath exceeds 300, as shown in Figure 1, and when the Vickers hardness of the wire sheath exceeds 300, We found that if maintained at a certain temperature, it would not deteriorate.

なお、第1図の伸線作業におけるトラブルとは、ダイス
の焼付きによシワイヤ外皮表面に肌荒れを生じ、断線に
至るという一連の過程全指し、伸線作業ff:著しく阻
害する要因となるものである。
The troubles in wire drawing work shown in Figure 1 refer to the entire process of roughening of the sheared wire outer skin surface due to die seizure, leading to wire breakage, and are factors that significantly impede wire drawing work. It is.

本発明は上記の知見に基ずいてなされたもので、その要
旨は管状のステンレス鋼外皮に7ラツクスを充填したワ
イヤを連続伸線する工程において、ワイヤ外皮のビッカ
ース硬さを300以下に維持して伸線することを特徴と
するステンレス鋼フラックス入りワイヤの製造方法にあ
る。
The present invention has been made based on the above findings, and the gist thereof is to maintain the Vickers hardness of the wire sheath at 300 or less in the process of continuously drawing a wire filled with 7 lux in a tubular stainless steel sheath. A method for manufacturing a stainless steel flux-cored wire, characterized in that the wire is drawn using a wire.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

寸ず1本発明にいうフラックス人クワイヤとは第4図(
a)% (b)にその−例を示すような断面をもつワイ
ヤを指すものである。すなわちステンレス鋼を管状に成
形した外皮1にフラックス2を充填したものである。な
お外皮の形状は第4図に示す態様以外の種々の形状とす
ることは本発明の趣旨を損うものではない。
The Flux choir referred to in the present invention is shown in Figure 4 (
a) % Refers to a wire with a cross section as shown in (b). That is, the outer skin 1 is made of stainless steel and is filled with flux 2. Note that the shape of the outer skin may be various shapes other than the shape shown in FIG. 4 without detracting from the spirit of the present invention.

ステンレス鋼は加工硬化性が著しく、伸線加工すること
によ!ll硬化して伸線作業にトラブルを生じ、加工に
耐えられずついには断線してしまうことが多く、伸)碗
加工がむずかしい。
Stainless steel has remarkable work hardening properties, so it can be hardened by wire drawing! It often hardens and causes trouble in wire drawing work, and it cannot withstand processing and eventually breaks, making drawing processing difficult.

3 mm ’ゝ以上の大径から1.6甜φ、1.2mφ
の細イ61で伸將するために、本発明Vこおいては、伸
線二L451中において、ワイヤのピンカース硬さが3
00を超えないよう適宜熱処理を施して常にビッカース
硬さが300以下に維持する。この熱処理条件の加熱温
度とワイヤ外皮のビッカース硬さとの関係について研究
の結果、第2図を得た。第2図から明らかなように、ワ
イヤ外皮を加熱することによりワイヤは軟化し、ビッカ
ース硬さが300程度のとき750℃加熱でビッカース
硬さは200以下となり、780℃以上では伸線加工に
最適なビッカース硬さが160程度となる。
From large diameters of 3 mm or more to 1.6 mmφ and 1.2 mφ
In order to elongate the wire with the thin wire 61, in the present invention V, the pincer hardness of the wire is set to 3 during the wire drawing L451.
The Vickers hardness is always maintained at 300 or less by performing appropriate heat treatment so as not to exceed 0.00. As a result of research on the relationship between the heating temperature under these heat treatment conditions and the Vickers hardness of the wire sheath, Figure 2 was obtained. As is clear from Figure 2, heating the wire sheath softens the wire, and when the Vickers hardness is around 300, heating at 750°C reduces the Vickers hardness to 200 or less, and temperatures above 780°C make it ideal for wire drawing. The Vickers hardness is about 160.

この研究から、ワイヤ外皮のビッカース硬さが300に
達したら780℃以上に加熱してワイヤ外皮のビッカー
ス硬さを常に300以下に維持するならば、伸線加工は
トラブルなく行えることが知られた。しかし−万、加熱
温度が1050℃を超えるとワイヤ外皮の結晶粒が粗大
化して悪影響をもたらすので加熱温度は780℃〜10
50℃の範囲とする。即ち、本発明は前記の通りワイヤ
ーをビッカース硬さが300以下に維持するが、そのた
めに、伸線工程においてワイヤ外皮のビッカース硬さが
300に達したら、好ましくは達する前に780℃〜1
050℃に加熱すればよいことが判明した。
From this research, it was found that wire drawing can be performed without trouble if the Vickers hardness of the wire sheath reaches 300 and is heated above 780°C and the Vickers hardness of the wire sheath is always maintained below 300. . However, if the heating temperature exceeds 1050°C, the crystal grains of the wire sheath will become coarse and have an adverse effect, so the heating temperature should be 780°C to 1000°C.
The temperature should be in the range of 50°C. That is, the present invention maintains the Vickers hardness of the wire at 300 or less as described above, but for this purpose, when the Vickers hardness of the wire sheath reaches 300 in the wire drawing process, it is preferably heated to 780°C to 1
It was found that heating to 050°C was sufficient.

しかし実際の伸線作業中に、ワイヤ外皮の硬さを測定す
ることは困難である。この点について種々研究の結果、
伸線作業中のビッカース硬さとワD2− d2 イヤ断面減面率(X100:D−伸線加より2 前のワイヤ径(顎)、d=伸線加工後のワイヤ径(閘)
)との間に相関関係があることが下記の試験結果から知
られ、上記り、dを測定し上式から計6g rtcよっ
て求めた減面率でほぼ正確にワイヤ外皮のビッカース硬
さを推定できることが判った。
However, it is difficult to measure the hardness of the wire sheath during actual wire drawing work. As a result of various studies on this point,
Vickers hardness and wire diameter during wire drawing D2 - d2 ear area reduction rate (X100: D - wire diameter before wire drawing (jaw), d = wire diameter after wire drawing (lock)
It is known from the test results below that there is a correlation between It turns out it can be done.

第3図は試験結果から得られたワイヤ外皮のビッカース
硬さとワイヤ断面減面率との相関関係を示す図で、ワイ
ヤ外皮の材質にもよるが減面率が25〜35チに達する
とワイヤ外皮のビッカース硬さが300に達することが
判る。したがって実際の伸線作業において、本発明を適
用するに当っては、熱処理後のワイヤ断面減面率が25
〜35チになる箇所で熱処理を711iiせばワイヤ外
皮のビッカース硬さ全300以下に維持できる。ワイヤ
断面減面率が25%以下で熱処理を施しても何ら差支え
ないが、この場合は熱処理回数が増すためそれだけ2製
造コスト高となる。
Figure 3 shows the correlation between the Vickers hardness of the wire sheath and the cross-sectional area reduction rate of the wire obtained from the test results. It can be seen that the Vickers hardness of the outer skin reaches 300. Therefore, when applying the present invention in actual wire drawing work, the wire cross-sectional area reduction rate after heat treatment is 25.
If the heat treatment is performed at 711ii at the point where the wire thickness is 35 degrees, the Vickers hardness of the wire sheath can be maintained at 300 or less. There is no problem if heat treatment is performed when the wire cross-sectional area reduction rate is 25% or less, but in this case, the number of heat treatments increases, which increases the manufacturing cost accordingly.

以上説明したように本発明によれば3mφ以上のワイヤ
から1.2順φ細径フラックス入りワイヤを連続一貫工
程で生産が可能となり、生産性を飛躍的に向上できると
いう効果がある。
As explained above, according to the present invention, it is possible to produce flux-cored wires with a diameter of 1.2 in order from wires of 3 m in diameter or more in a continuous integrated process, and the productivity can be dramatically improved.

次に図面に基すいて本発明方法の適用例を説明する。Next, an application example of the method of the present invention will be explained based on the drawings.

第5図は本発明を実施するための装置例を示すもので、
ワイヤ?ピン3より取り出されたワイヤWldダイス4
で伸線加工後、加熱装置5′!il−通過する間に78
0℃〜1050℃に加熱され、次に冷却装置6で冷却さ
れ、この各工程を適数回、(第5図では3回)繰返して
、目的のワイヤ径に達したところで、巻取りゼビン7に
巻取られる。
FIG. 5 shows an example of an apparatus for carrying out the present invention.
Wire? Wire Wld die 4 taken out from pin 3
After wire drawing, heating device 5'! il - 78 while passing
The wire is heated to 0° C. to 1050° C., then cooled by a cooling device 6, and this process is repeated an appropriate number of times (three times in FIG. 5) until the desired wire diameter is reached. It is wound up.

ここでは、−例としてBはダイス4(1ないし複数から
なる)、加熱装置筺5.冷却装置6を1ブロツクとし、
このブロックを3組配置する伸線工程の態様を表わしで
あるが、そのブロック数は伸線開始のワイヤ径から目的
とするワイヤ径によって増減する。
Here, as an example, B is a die 4 (consisting of one or more), a heating device housing 5. The cooling device 6 is made into one block,
This figure shows an aspect of the wire drawing process in which three sets of blocks are arranged, and the number of blocks increases or decreases depending on the wire diameter at the start of wire drawing to the target wire diameter.

本発明は前にも述べたようにワイヤ断面の減面率が25
〜35係になったとき熱処理を施すものである。したが
って熱処理全施さないときは加熱装置5、冷却装置6は
その機能を停止させワイヤを単に通過させればよい。
As mentioned before, the present invention has a wire cross-sectional area reduction ratio of 25
When the temperature reaches ~35, heat treatment is performed. Therefore, when the heat treatment is not performed completely, the functions of the heating device 5 and the cooling device 6 may be stopped and the wire may simply be passed through.

第5図によらず必要な箇所にのみ加熱装置5゜冷却装置
6を配置することは可能である。
It is possible to arrange the heating device 5° and the cooling device 6 only at necessary locations without referring to FIG.

第6図、第7図および第8図は加熱装置の態様例を示し
ており、第6図はワイヤWに給電ブツシュ8より通電し
て外皮1の抵抗熱により加熱する方式、第7図はワイヤ
Wを高周波リング9のなかを通過させ、高周波エネルギ
ーにより加熱する方式、第8図はワイヤWを燃焼管12
のなかを通過させ、燃焼孔11より噴出する炎の熱によ
り加熱する方式であり、いづれの方式でも同様の効果を
得ることができるものである。第6,7図において、8
′は配電盤、第8図の10はガス供給パイプである、 なお、加熱装置は第6図、第7図・および第8図に示す
態様以外の方式とすることは本発明の趣旨を損うもので
はない。
6, 7, and 8 show examples of the heating device, in which the wire W is energized from the power bushing 8 and heated by the resistance heat of the outer skin 1, and FIG. 7 is the heating device shown in FIG. A method in which the wire W is passed through a high-frequency ring 9 and heated by high-frequency energy; FIG.
This method heats the flame by the heat of the flame ejected from the combustion hole 11, and the same effect can be obtained with either method. In Figures 6 and 7, 8
'' is a switchboard, and 10 in Fig. 8 is a gas supply pipe. It should be noted that using a heating device other than that shown in Figs. 6, 7, and 8 will defeat the purpose of the present invention. It's not a thing.

冷却装置6における、冷却媒体はワイヤが第4図(a)
に示す断面形状の場合は液体冷却又は気体冷却とし、第
4図(b) [示す断面形状の場合は気体冷却とする。
In the cooling device 6, the cooling medium is a wire as shown in FIG. 4(a).
In the case of the cross-sectional shape shown in FIG. 4(b), liquid cooling or gas cooling is used, and in the case of the cross-sectional shape shown in FIG.

冷却温度は、ローラーダイスを使用する場合は350℃
以下とする。この温度以上ではローラーの損傷が多く、
寿命が短かくなる。引抜きダイスを使用する場合は25
0℃以下とする。この温度以上では、ダイスの焼付きを
生じゃすく、トラブルが多くなる。
The cooling temperature is 350℃ when using roller dies.
The following shall apply. Above this temperature, the rollers are often damaged.
Life expectancy will be shortened. 25 if using a drawing die
The temperature shall be below 0℃. If the temperature exceeds this temperature, the die may seize and cause many troubles.

外皮の組成としては、オーステナイト系、オーステナイ
トΦフェライト系、又はフェライト系のステンレス鋼を
用いるが、その成分例を示すと、オーステナイト系ステ
ンレス鋼u、Or 16〜26% 、 Ni 3.5〜
22%を主要成分とし、さらにM。
As the composition of the outer skin, austenitic, austenitic Φ ferritic, or ferritic stainless steel is used. Examples of the components include austenitic stainless steel u, Or 16-26%, Ni 3.5-
22% is the main component, and M.

1.2〜6 % 、 Ou 1〜2.5%、 N O,
30%以下、NbO,15%以下tたは10XO%以上
、Ti5XO%以上にそれぞれ単独に含有し、且っOO
,15%以下、Si5%以下、Mn 10%以下、 P
 O,040%以下、 S O,030%以下に含有す
るものである。オーステナイト・7エライト系ステンレ
ス鋼はNi3〜6チ、0r23〜28%、Mo 1〜3
 % k主要成分とし、且つc o、o s%以下、8
11 %以下、 Mn1.5%以下、 P O,040
チ以下、 S O,030チ以下を含イーするものであ
る。フェライト系は、 Cjrl 1.5〜27.5%
を主要成分とし、さらにMOo、75〜2−5 % 、
AN O−10−0−30% + T r 、Nb 、
Zr又はそれらの組合せでs x (0%xN%)〜0
゜8(lを単独または複aを含有し、且つOO,12%
以下、Si1%以下、 Mn 1%以下、P O,04
0%以下、SO,030チ以下、 N O,025%以
下を含有するものである、 ここソ、本発明のステンレス鋼スラックス入クワイヤに
充填するフラックスについて言及すると、TiO2,8
i02 、 ZrO2、Al2O3その他のスラグ成分
と(3r 、Ni 、Mo 、Mnなどの合金成分、さ
らにAI、Mg。
1.2-6%, Ou 1-2.5%, NO,
30% or less, NbO, 15% or less, or 10XO% or more, Ti 5XO% or more, and OO
, 15% or less, Si 5% or less, Mn 10% or less, P
It contains 0.040% or less and SO.0.030% or less. Austenitic/7-elite stainless steel has Ni3-6chi, 0r23-28%, Mo 1-3
% k main component, and less than co, o s%, 8
11% or less, Mn 1.5% or less, PO,040
This includes the following: SO, 030 and below. Ferrite type is Cjrl 1.5~27.5%
is the main component, and MOo, 75-2-5%,
AN O-10-0-30% + T r , Nb ,
Zr or a combination thereof s x (0% x N%) ~ 0
゜8 (l alone or containing multiple a, and OO, 12%
Below, Si 1% or less, Mn 1% or less, P O,04
Regarding the flux to be filled in the stainless steel slack-filled choir of the present invention, it contains TiO2,030% or less, NO,025% or less.
i02, ZrO2, Al2O3 and other slag components (3r, Ni, Mo, Mn and other alloy components, as well as AI, Mg.

て造粒したものである。It is granulated by

以下に本発明の試験例について述べる。Test examples of the present invention will be described below.

φ QX 4 iV (a) K示す態様で、外径11m、
肉厚1.42τのノξイゾ(外皮)に7ラツクスを充填
したもの、および肉厚帆7 mr ’P4A 11咽の
帯鋼音用い、U形に成形してフラックスを充填したのち
、第4図(b)に示す態様で外径3.2咽φにしたもの
を素材として伸線加工をした。
φ QX 4 iV (a) KAs shown, outer diameter 11 m,
Using a steel band with a wall thickness of 1.42τ filled with 7 lux and a steel band with a wall thickness of 7 mr 'P4A 11 mm, after forming it into a U shape and filling it with flux, the fourth A material with an outer diameter of 3.2 mm was drawn in the manner shown in Figure (b).

第9図に上記素材を用いた本発明の試験例および比較例
を示す。
FIG. 9 shows test examples and comparative examples of the present invention using the above materials.

第9図の試験例、比較例は引抜きダイスによるもので5
表において試験例1,2.3および4は外皮態様が第4
図(a)、その他は第4図(b)とし、外皮の材質はS
US 304 L ’i用いた。第9図中Q印は伸線工
程でダイスの使用を示し、ロコ印は熱処理ft施したこ
とを示す。ロコ中の数字に加熱温度℃を示す。加熱後の
冷却温度は1000とした。
The test example and comparative example in Figure 9 were conducted using a drawing die.
In the table, test examples 1, 2.3, and 4 have the outer skin aspect as the fourth.
Figure (a), other parts are as shown in Figure 4 (b), and the material of the outer skin is S.
US 304 L'i was used. In FIG. 9, the mark Q indicates the use of a die in the wire drawing process, and the mark Loco indicates that heat treatment was performed. The number in the box indicates the heating temperature in °C. The cooling temperature after heating was set to 1000.

なお試験例1,2および5は本発明例で必ジ、3.4お
よび6は比較例である。
Test Examples 1, 2, and 5 are necessarily examples of the present invention, and Test Examples 3.4 and 6 are comparative examples.

第9図の結果からワイヤ断面減面率25〜35チで80
0〜1050℃の熱処理′?f:施したものは伸線工程
でトラブルを生ずることなく、1.2順φのステンレス
鋼フラックス入りワイヤヲ製造できた。−万、比較例で
ある実1fa fJ 3は加熱温度不足、笑施例4 、
6Fi熱処理を施さないため断線し、目的とする条のワ
イヤを製造できなかった。
From the results in Figure 9, the wire cross-sectional area reduction rate is 80 to 25 to 35 inches.
Heat treatment from 0 to 1050℃'? f: A stainless steel flux-cored wire with a diameter of 1.2 ordinal could be manufactured without causing any trouble in the wire drawing process. - 10,000, Comparative Example 1fa fJ 3 has insufficient heating temperature, Example 4,
Since 6Fi heat treatment was not performed, the wire broke and the desired strip of wire could not be manufactured.

なお、第9図は引抜きダイスによる例であるが、ローラ
ーダイスを用いても本発明の効果を達成できることを確
認した。
Although FIG. 9 shows an example using a drawing die, it has been confirmed that the effects of the present invention can also be achieved using a roller die.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ワイヤ外皮の硬さと伸線加工性の関係を示す
図、第2図はワイヤ外皮の硬さと加熱温度の関係を示す
図、第3図はワイヤ外皮の硬さと減面率の関係を示す図
、第4−は本発明に用いるステンレス鋼フラックス入り
ワイヤの断面形状のlル様例を示す模式図、第5図は、
本発明全適用した伸線工程の態様例金示す模式図、第6
図、第7図および第8図は本発明による伸線工程のなか
で用いる加熱装置5の実施態様例を示す模式図、第゛9
図は本Xjチ明の試験例および比較例を示す図表である
っ W・・・ワイヤ、1・・・外皮、2・・・フラックス、
3・・・ワイヤ供給ボビン、4・・・ダイス、5・・・
加熱装置、6・・冷却装置、7・・・巻取りボビン、8
・・・給電ブツシュ、8′・・−配′[E盤、9・・・
高周波リング、10・・・ガス供給パイプ。11・・・
燃焼管、12・・・燃焼孔、A・・・ワイヤ供給ブロッ
ク、B・・・伸線工程ブロック、C・−・ワイヤ巻取り
ブロック。 代理人 弁理士  秋 沢 政 光 外2名 背IM 汁3図 zO4θ    6θ    θO ワイヤー′面のジ戎゛@率(呪) 首2図 pQ熱鳩度(°C) 1図 ((1)          Cb) 六5図 53 W6(2) ″に7図 オB図
Figure 1 shows the relationship between wire sheath hardness and wire drawability, Figure 2 shows the relationship between wire sheath hardness and heating temperature, and Figure 3 shows the relationship between wire sheath hardness and wire drawability. Figure 4 shows the relationship, and Figure 4 is a schematic diagram showing an example of the cross-sectional shape of the stainless steel flux-cored wire used in the present invention.
A schematic diagram showing an example of the wire drawing process to which the present invention is fully applied, No. 6
7 and 8 are schematic diagrams showing embodiments of the heating device 5 used in the wire drawing process according to the present invention, and FIG.
The figure is a chart showing test examples and comparative examples of this Xj material.W...Wire, 1...Sheath, 2...Flux,
3...Wire supply bobbin, 4...Dice, 5...
Heating device, 6... Cooling device, 7... Winding bobbin, 8
...Power bushing, 8'...-distribution' [E board, 9...
High frequency ring, 10... gas supply pipe. 11...
Combustion tube, 12... Combustion hole, A... Wire supply block, B... Wire drawing process block, C... Wire winding block. Agent Patent Attorney Masaaki Aki Sawa Mitsugai 2-person IM Juice 3 Figure zO4θ 6θ θO Wire 'plane's rate (curse) Neck 2 Figure pQ Heat pigeon degree (°C) Figure 1 ((1) Cb) 65 figure 53 W6 (2)'' to 7 figure O B figure

Claims (1)

【特許請求の範囲】[Claims] (1)  管状のステンレス鋼外皮に7ラツクスを充填
したワイヤ全連続伸線する工程において、ワイヤ外皮の
ビッカース硬さを300以下に維持して伸線することを
特徴とするステンレス鋼フラックス入りワイヤの製造方
法。
(1) A stainless steel flux-cored wire characterized in that the wire is drawn while maintaining the Vickers hardness of the wire jacket at 300 or less in the process of continuously drawing a wire whose tubular stainless steel jacket is filled with 7 lux. Production method.
JP460583A 1983-01-14 1983-01-14 Production of stainless steel flux cored wire Pending JPS59130698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP460583A JPS59130698A (en) 1983-01-14 1983-01-14 Production of stainless steel flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP460583A JPS59130698A (en) 1983-01-14 1983-01-14 Production of stainless steel flux cored wire

Publications (1)

Publication Number Publication Date
JPS59130698A true JPS59130698A (en) 1984-07-27

Family

ID=11588668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP460583A Pending JPS59130698A (en) 1983-01-14 1983-01-14 Production of stainless steel flux cored wire

Country Status (1)

Country Link
JP (1) JPS59130698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858860A1 (en) * 1997-02-11 1998-08-19 Nippon Steel Welding Products &amp; Engineering Co., Ltd. Process for manufacturing welding wire
CN1102480C (en) * 1997-02-27 2003-03-05 日铁溶接工业株式会社 Process for manufacturing welding wire
JP2014524841A (en) * 2011-07-13 2014-09-25 イリノイ トゥール ワークス インコーポレイティド Flux core welding wire, method of manufacturing the same and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858860A1 (en) * 1997-02-11 1998-08-19 Nippon Steel Welding Products &amp; Engineering Co., Ltd. Process for manufacturing welding wire
US5821500A (en) * 1997-02-11 1998-10-13 Nippon Steel Welding Products & Engineering Co., Ltd. Process for manufacturing welding wire
CN1102480C (en) * 1997-02-27 2003-03-05 日铁溶接工业株式会社 Process for manufacturing welding wire
JP2014524841A (en) * 2011-07-13 2014-09-25 イリノイ トゥール ワークス インコーポレイティド Flux core welding wire, method of manufacturing the same and use thereof
US9764429B2 (en) 2011-07-13 2017-09-19 Illinois Tool Works Inc. Flux-cored welding wire, the method for manufacturing the same and using of the same

Similar Documents

Publication Publication Date Title
US4125924A (en) Method of producing composite metal pipe
US20140138366A1 (en) Self-adjusting wire for welding applications
US20140138367A1 (en) Self-adjusting clad wire for welding applications
US2817364A (en) Welded tubing
JPS59130698A (en) Production of stainless steel flux cored wire
JPH0724577A (en) Butt welding method for clad tubes
KR100366250B1 (en) Multi-wound stainless steel pipe
JP7092571B2 (en) Manufacturing method of metal-based flux-cored wire and metal-based flux-cored wire
JPS62166074A (en) Manufacture of sleeve by overlay welding
JP2002361425A (en) Inert gas arc welding method and equipment
JP4591737B2 (en) Welding method of martensitic stainless steel ribbon
JP3231465B2 (en) Welding method for high silicon electromagnetic steel sheet
JPH01140922A (en) Electrode wire for wire electric discharging machining
CN114505620B (en) Fe-Cr-Mn welding wire and preparation method and welding process thereof
JPS61270339A (en) Manufacture of weld tube superior in groove corrosion resistance
JP2018176193A (en) Electric-resistance weld pipe welding device
JP3146889B2 (en) Method for producing duplex stainless steel welded pipe with excellent weld toughness and corrosion resistance
JP3146918B2 (en) Manufacturing method of austenitic stainless steel welded pipe
JPS602677A (en) Production of pipe for heat exchanger
JP2000005817A (en) Multi-wound stainless steel pipe
JP2004076159A (en) Breakage preventing treatment method of high chromium high carbon steel strip at continuous treatment and continuous treatment apparutus of steel strip
JPH02112888A (en) High-density energy beam welding method
Howden et al. Hydrogen in HY-130 Weld Metal
JPH02224815A (en) Method and apparatus for manufacturing high damping steel pipe
JPS58181496A (en) Production of flux cored wire for welding