JPS59129707A - Method and device for direct refining of metallic oxide - Google Patents

Method and device for direct refining of metallic oxide

Info

Publication number
JPS59129707A
JPS59129707A JP542283A JP542283A JPS59129707A JP S59129707 A JPS59129707 A JP S59129707A JP 542283 A JP542283 A JP 542283A JP 542283 A JP542283 A JP 542283A JP S59129707 A JPS59129707 A JP S59129707A
Authority
JP
Japan
Prior art keywords
tank
reduction
refining
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP542283A
Other languages
Japanese (ja)
Other versions
JPH037723B2 (en
Inventor
Nobuo Tsuchitani
槌谷 暢男
Mitsuo Kadoto
角谷 三男
Toshihiro Inatani
稲谷 稔宏
Eiji Katayama
英司 片山
Shiko Takada
高田 至康
Hisao Hamada
浜田 尚夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP542283A priority Critical patent/JPS59129707A/en
Publication of JPS59129707A publication Critical patent/JPS59129707A/en
Publication of JPH037723B2 publication Critical patent/JPH037723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the reaction efficiency for refining and to economize energy by charging a metallic oxide, carbonaceous material and reaction assistant in the 1st vessel, performing dry distillation and preliminary reduction and performing melting, reduction and oxidation refining in the 2nd vessel. CONSTITUTION:A dry distillation and preliminary reduction vessel A is segmented to an upper chamber A1 and a lower chamber A2 by a perforated sepn. plate 1. A carbonaceous material, metallic oxide, and additive are respectively supplied through supply ports 2, 3, 4 into the chamber A1, and autogenous circulating reducing gas of a high temp. is supplied through an introducing port 8 into the chamber A2. The chamber A1 is kept at about 500-700 deg.C, and dry distillation and reduction are effected therein. The materials are preheated to about 800-1,200 deg.C in the chamber A2. The resulting product of preliminary reduction is introduced through a transport pipe 10 into a melt-refining vessel B, into which heating air is fed through a supply port 14 to melt said material and to effect quickly the reduction. Gaseous oxygen is blown through blowing tuyeres 21 to the molten metal accumulating in the bottom of the vessel B to oxidize and refine the molten metal. The molten metal is then removed through a discharging port 15.

Description

【発明の詳細な説明】 本発明は、金属酸化物の直接精錬方法およびその装置に
関し、とくに鉄鉱石粉から精錬した鋼相当の溶融金属を
直接製造する好適な技術であって、鉄などの金属の乾式
製錬に際し炭材乾留を同時に起させて、タールや高カロ
リーガスを回収すル一方で、その自生ガスの循環使用を
図ってエネルギーの節減を達成する有利な技術について
提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for directly refining metal oxides, and in particular to a suitable technique for directly producing molten metal equivalent to refined steel from iron ore powder. This paper proposes an advantageous technology that allows carbonaceous distillation to occur simultaneously during pyrometallurgical refining to recover tar and high-calorie gas, while also achieving energy savings by recycling the naturally produced gas.

従来鉄鉱石などの金属酸化物がら溶鉄を得る方法として
各種の技術が研究されているが、今後予想される資源、
エネルギーおよび環境などからの制約に対処するために
新しい直接精錬法の開発が強く望まれている。
Various technologies have been researched to obtain molten iron from metal oxides such as iron ore, but the resources expected in the future,
There is a strong desire to develop new direct refining methods to address energy and environmental constraints.

酸化鉄または各種の金属酸化物を含有する鉱石の形状は
、塊状のものが減少し、粉状のものが増加する傾向にあ
る。この傾向は低品位鉱石の品位を向上させるために行
う浮選、磁選などの選鉱処理によって、今後ますます増
加することが予想されている。現在、稼動中の多くの製
錬炉は、原料として塊鉱石または事前処理にょる塊成化
鉱石を必要としており、上述した粉状鉱石はペレット、
焼結鉱、ブリケットなどに塊成化されて使用される。塊
成化には溶剤、結合剤などの余分の原料1、 および燃
料や動力などの余分なエネルギーを必要とする。さらに
、熱間塊成化のために焼成炉を用いる場合にはNOx 
、 SOxおよびダストの発生を伴い、これらがそのま
\放散されれば大気汚染の原因となるので、その防止設
備建設が必要であり、これには多大の費用がかかる。
The shape of ores containing iron oxide or various metal oxides tends to be less lumpy and more powdery. This trend is expected to increase in the future due to ore beneficiation treatments such as flotation and magnetic separation that are used to improve the quality of low-grade ores. Currently, many smelting furnaces in operation require lump ore or pre-processed agglomerated ore as raw material, and the powdered ore mentioned above can be used as pellets,
It is agglomerated and used as sintered ore, briquettes, etc. Agglomeration requires extra raw materials1 such as solvents and binders, and extra energy such as fuel and power. Furthermore, when using a firing furnace for hot agglomeration, NOx
, SOx and dust are generated, and if these are dissipated as they are, they will cause air pollution, so it is necessary to construct facilities to prevent them, which costs a lot of money.

他方、粉状鉱石を直接使用できる技術として、流動層を
用いる焙焼または還元技術が一部で実用化している。し
かし、生成した粉状の予備還元物を電炉、転炉その他の
溶解炉に使用するには、パイ3.−を添加、′ブ、ケッ
、などに塊成、化しわければならない。ごれに対し、ア
ーク炉やプラズマを利用して粉状のま\使用する方法も
提案されているが、電力消費量が莫大で、我が国のよう
に電力コストの高い地域では、国際競争力に劣るという
欠点があった。
On the other hand, as a technology that can directly use powdered ore, roasting or reduction technology using a fluidized bed has been put into practical use in some areas. However, in order to use the generated powder pre-reduced product in electric furnaces, converters, and other melting furnaces, pie 3. - must be added, agglomerated and converted into ``bu'', ``ke'', etc. Methods of using powdered powder using an electric arc furnace or plasma have been proposed to deal with dirt, but the amount of electricity consumed is enormous, and in regions like Japan where electricity costs are high, it is difficult to be internationally competitive. It had the disadvantage of being inferior.

また、従来技術の中に還元および溶融に必要な熱量とし
て電気や純酷素を用いずに、主に空気を用いてコークス
を燃焼させ、その燃焼熱を利用する方法がある。例えば
鉄、ニッケル、銅などの製錬用溶鉱炉は、この方法を用
いている。特に、製、鉄用溶鉱炉は操業技術の進歩と炉
の大型化によって製錬炉として非常に効率が良いことで
知られている。しかしこの製鉄用溶鉱炉は高いシャフト
炉であり、炉内の通気性を確保するために、前述のよう
な塊鉱石または塊成化鉱石が必要であるとともに、塊状
鉱石とコークスを炉内に層状に堆積させるので、強度の
高いコークスを必要とする′。強度の高いフニクスを製
造するためには、原料炭として資源的に将来不足が予想
され、価格が高い強粘結炭を必要とする欠点があった。
Furthermore, among the conventional techniques, there is a method in which coke is combusted mainly with air and the combustion heat is utilized, without using electricity or pure carbon as the amount of heat required for reduction and melting. For example, blast furnaces for smelting iron, nickel, copper, etc. use this method. In particular, blast furnaces for smelting and iron production are known to be extremely efficient as smelting furnaces due to advances in operating technology and larger furnaces. However, this ironmaking blast furnace is a high shaft furnace, and in order to ensure ventilation inside the furnace, lump ore or agglomerated ore as mentioned above is required, and the lump ore and coke are layered in the furnace. Since it is deposited, high strength coke is required. In order to produce high-strength funics, there was a drawback that it required highly coking coal, which is expected to be in short supply in the future as a coking coal resource and is expensive.

本発明は、上述した従来の製錬・精製と経る順次処理に
よる精錬する技術の問題点を克服することを目的として
開発した新技術であって、最初の予備還元工程では炭材
の乾留をあわせて行うこと、そして、次の工程では単一
の反応器で溶融と還元ならびに酸化の精錬を一挙に行い
、加えて第1の工程で生成する反応生成物の排ガスおよ
びチャーはそれぞれ有価回収物あるいは次の溶融精錬工
程の還元剤として使い、自生循環ガスを最大限利用する
ことによって、エネルギーの節約と鉱石原料から直接精
錬金属を得るようにした技術について1提案する。
The present invention is a new technology developed with the aim of overcoming the problems of the conventional smelting and refining technology described above through sequential processing. In addition, in the next step, melting, reduction, and oxidation refining are performed all at once in a single reactor, and in addition, the exhaust gas and char of the reaction products produced in the first step are recycled as valuable recovered materials or char, respectively. By using it as a reducing agent in the next melting and refining process and making maximum use of the naturally occurring circulating gas, we will propose a technology that saves energy and obtains refined metal directly from ore raw materials.

以下に本発明の構成の詳細について好適実施例である鉄
鉱石の乾式製錬の例で図面をもとに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the configuration of the present invention will be explained below with reference to the drawings using an example of pyrometallurgical smelting of iron ore as a preferred embodiment.

図示のAは乾留・予備還元槽で、これは上室A□と下室
A2とに多孔分離板1を介して区画されている。その内
部には供給口2を通じて石炭などの粉状の炭材を装入し
、供給口8からは金属酸化物として鉄鉱石を装入し、供
給口4からは鉄鉱石用フラックスや炭材用脱硫剤などの
反応助勢剤を装入する。一方、こうした原料の装入に対
し、該乾留・予備還元槽の下室A2には、後述する自生
循環させる高温還元ガスを導入する。その結果、吹込ん
だ高温還元ガスが多孔分離板1を経て上昇すると、上記
粉状の炭材、金属酸化物、添加物に接触して、これらを
炭材の乾留に適当な500〜700°Cの温度域で流動
化させる。この流動化作用によって、きわめて粘着し易
い石炭などの炭材が一定温度域で混合、急速加熱され、
乾留反応が円滑に、進行するようになる。
A in the figure is a carbonization/prereduction tank, which is divided into an upper chamber A□ and a lower chamber A2 via a porous separator plate 1. Powdered carbonaceous material such as coal is charged into the interior through the supply port 2, iron ore as a metal oxide is charged from the supply port 8, and flux for iron ore and carbonaceous material are charged from the supply port 4. Charge a reaction promoter such as a desulfurization agent. On the other hand, in response to charging of the raw materials, a high-temperature reducing gas to be self-circulated, which will be described later, is introduced into the lower chamber A2 of the carbonization/pre-reduction tank. As a result, when the injected high-temperature reducing gas rises through the porous separator plate 1, it comes into contact with the powdered carbonaceous materials, metal oxides, and additives, and heats them at a temperature of 500 to 700° suitable for carbonization of the carbonaceous materials. Fluidize in the temperature range of C. Due to this fluidization effect, highly sticky carbonaceous materials such as coal are mixed and rapidly heated within a certain temperature range.
The carbonization reaction will proceed smoothly.

なお、炭材の乾留に関してそれが有効におこり始めるの
は、500°C前後でありそれ以下の温度では、反応効
率が低下する。これに対し700°C以上の反応温度で
乾留を行なうことも可能であるが、炭材中のタール成分
が揮発してガス状態となるから、液状タールの形で分離
装置にて有効に回収するためには、700°C以下が望
ましい。それは700°C以上の反応温度になると、液
状タール成分が分解して炭化水素ガスに転化する割合が
増加するためである。
It should be noted that carbonization of carbonaceous materials begins to take place effectively at around 500°C, and at temperatures below that, the reaction efficiency decreases. On the other hand, it is possible to carry out carbonization at a reaction temperature of 700°C or higher, but since the tar component in the carbon material volatilizes and becomes a gas, it must be effectively recovered in the form of liquid tar using a separation device. For this purpose, the temperature is preferably 700°C or less. This is because when the reaction temperature reaches 700°C or higher, the rate at which the liquid tar component decomposes and converts into hydrocarbon gas increases.

石炭などの炭材中の揮発分は、上記温度域で乾留される
と、タール、水素、メタンなどを含有する乾留ガスを発
生し、このガスを上室A□からの排出口5よりとりだし
、セパレーター6で液状タールを分別して回収する一方
、残りの排出ガスを脱硫装置などを含む精製装置7を通
じて、回収す   ゛る。その回収ガスは、水素、−酸
化炭素、炭化水素ガスなどを含有し、クリーンな燃料ガ
スとして、また鉱石用還元ガス、化学工業用原料ガスな
どとして有効に利用できる。勿論後述する溶融還元装置
に供給する高温の空気の加熱源として利用することも可
能である。また、回収タールは別途精製などの処理に廻
して化学工業用原料とする。
When the volatile matter in carbonaceous materials such as coal is carbonized in the above temperature range, it generates carbonized gas containing tar, hydrogen, methane, etc., and this gas is taken out from the exhaust port 5 from the upper chamber A□, While the liquid tar is separated and recovered in a separator 6, the remaining exhaust gas is recovered through a purification device 7 including a desulfurization device and the like. The recovered gas contains hydrogen, carbon oxide, hydrocarbon gas, etc., and can be effectively used as a clean fuel gas, a reducing gas for ores, a raw material gas for the chemical industry, etc. Of course, it is also possible to use it as a heating source for high-temperature air to be supplied to a melt-reducing device, which will be described later. In addition, the recovered tar is sent for separate processing such as refining and used as raw material for the chemical industry.

なお、上述の槽内反応には蒸気を添加してもよい。Note that steam may be added to the above-mentioned reaction in the tank.

王室A□での上述した乾留によって揮発分が除去された
残渣(チャー二石炭乾留の際に得られる残留物)は、予
熱された鉄鉱石の予備還元粒およびフラックスとともに
下室A2に移動するが、その過程で前記鉄鉱石は下室か
らの還元ガスならびに乾留ガスによって流動化しながら
還元反応を起して予備還元物を生成する。この予備還元
状態の金属酸化物(海綿鉄)は、石炭などの炭材の乾留
反応に対して、触媒的な機能を発揮し、乾留反応が円滑
に、しかもより収率高く進行させるのに有効である。ま
た、該乾留・予備還元槽での反応では炭材中の硫黄など
が、乾留ガス中に移行するため、石炭などの粉状の脱硫
剤を添加物として供給しているが、このことによって乾
留ガス中の硫黄をきわめて有効に吸収できるため、発生
ガス処理用精製装置6の負担を軽減できる。
The residue from which the volatile matter has been removed by the above-mentioned carbonization in Royal A During this process, the iron ore is fluidized by the reducing gas and carbonization gas from the lower chamber, causing a reduction reaction to produce a pre-reduced product. This pre-reduced metal oxide (sponge iron) exhibits a catalytic function in the carbonization reaction of coal and other carbonaceous materials, and is effective in making the carbonization reaction proceed smoothly and with a higher yield. It is. In addition, in the reaction in the carbonization/pre-reduction tank, sulfur and other substances in the carbonaceous material migrate into the carbonization gas, so a powdered desulfurization agent such as coal is supplied as an additive, but this Since sulfur in the gas can be absorbed very effectively, the burden on the generated gas processing purification device 6 can be reduced.

また、この乾留・予備還元槽A内反比において脱硫剤と
して用いられる石灰は、金属酸化物の溶融を容易にする
ための7ラツクスの成分としても有効に用いられるもの
であるが、ここでは上室A□における乾留排ガスの脱硫
、後述する溶融還元槽Bにおける易溶融のための7ラツ
クスとして、また金属−化物、チャー中の硫黄をスラグ
として捕集するという複数の機能を有するものであり、
石灰利用法としても本発明の構成はきわめて効果的であ
る。
In addition, lime, which is used as a desulfurizing agent in this carbonization/prereduction tank A, is also effectively used as a component of 7 lux to facilitate the melting of metal oxides. It has multiple functions: desulfurization of carbonized exhaust gas in A□, easy melting in smelting reduction tank B (described later), and collecting sulfur in metal compounds and char as slag.
The structure of the present invention is also extremely effective as a lime utilization method.

以上説明したように、該乾留・予備還元槽の王室におい
ては、金属酸化物、炭材、添加物を500〜700°C
の温度域で同時に流動化させることが本発明の特徴のひ
とつである。
As explained above, in the royal carbonization/pre-reduction tank, metal oxides, carbonaceous materials, and additives are heated at 500 to 700°C.
One of the features of the present invention is that fluidization can be performed simultaneously in a temperature range of .

次に、前述のように乾留・予備還元槽Aにおいて生成し
た500〜700″Cの粉状生成物は、チャー。
Next, the powdery product of 500 to 700"C produced in the carbonization/prereduction tank A as described above is char.

予備還元金属酸化物、添加物であり、上述した多孔分離
板2を通して下室A2に移行する。下室A2には、溶融
精錬槽Bの高温の排出ガスの一部ないしは全部を、必要
に応じて、添加される前記乾留予備還元槽での排出ガス
の一部と混合して、ガス導入口8より導入し、該下室A
2内に移っている粉状生成物を流動化させるとともに、
これらを800〜1200°Cに予熱する。ここでの反
応温度は1200°C以上になると、石炭などの炭材中
の灰分あるいは予備還元生成物の一部が溶融、粘着しは
じめるケースが多く、該乾留・予備還元槽Aでのトラブ
ルの原因となる。しかし、溶融精錬槽Bで溶融ならびに
還元反応をすみやかに行わせるためには、乾留・予備還
元槽Aでの予熱温度は高いほど望ましい。
These are pre-reduced metal oxides and additives, and are transferred to the lower chamber A2 through the porous separator 2 described above. In the lower chamber A2, a part or all of the high-temperature exhaust gas from the melting and refining tank B is mixed with a part of the exhaust gas from the carbonization preliminary reduction tank to be added as needed, and a gas inlet is provided. 8, and the lower chamber A
2. Fluidize the powdered product transferred into the container, and
Preheat these to 800-1200°C. When the reaction temperature here exceeds 1200°C, there are many cases where the ash in the carbonaceous material such as coal or a part of the pre-reduction product begins to melt and stick, which can cause trouble in the carbonization/pre-reduction tank A. Cause. However, in order to quickly carry out the melting and reduction reactions in the melting and refining tank B, it is desirable that the preheating temperature in the carbonization/pre-reduction tank A be as high as possible.

かかる下室A2内への予備還元用導入ガスは、後述する
溶融精錬槽Bから発生する高温の排出ガス中の主として
一酸化炭素、ならびに前記乾留・予備還元槽Aの上室排
ガス中の水素、炭化水素との高温混合ガスであり、それ
らの強力な還元作用によって上室における場合以上に鉄
鉱石の予備還元が進行し、例えば金属酸化物の種類など
に応じてパ・その還元率は80〜90%に及ぶ。要する
に下室A2での反応は、溶融精錬槽B排出ガスの顕熱の
回収と、還元能力また上室A□排出ガスの還元能力を組
み合わせて利用するものである。
The gas introduced into the lower chamber A2 for preliminary reduction is mainly carbon monoxide in the high temperature exhaust gas generated from the melting and refining tank B, which will be described later, as well as hydrogen in the upper chamber exhaust gas of the carbonization/preliminary reduction tank A. It is a high-temperature mixed gas with hydrocarbons, and due to their strong reducing action, the preliminary reduction of iron ore proceeds more than in the upper chamber, and the reduction rate is 80 to 80% depending on the type of metal oxide, etc. Up to 90%. In short, the reaction in the lower chamber A2 utilizes the recovery of the sensible heat of the melting and refining tank B exhaust gas in combination with the reducing ability and the reducing ability of the upper chamber A□ exhaust gas.

前述のようにして生成した予備還元ならびに予熱された
金属酸化物2反応助勢剤およびチャーは、十分に混合さ
れた状態で、予備還元生成物排出口9、輸送管10.予
備還元生成物導入口11を通じて溶融精錬槽Bに給送さ
れる。輸送管10中には、輸送量制御のための弁などの
制御装置12が設置され、溶融還元反応の進行に応じて
、機能させることができる。
The pre-reduced and pre-heated metal oxide 2 reaction promoter and char produced as described above are thoroughly mixed and passed through the pre-reduction product outlet 9, the transport pipe 10. The preliminary reduction product is fed to the melting and refining tank B through the inlet 11. A control device 12 such as a valve for controlling the amount of transportation is installed in the transport pipe 10, and can be operated according to the progress of the melt-reduction reaction.

予備還元生成物導入口11より該還元精錬槽Bに搬送さ
れた800〜1200℃に予熱されたチャーは、前記上
室A□から得られる排ガスなどを加熱源とする空気加熱
器18を経て、槽下部に設置された空気供給口14を通
じて導入される800〜1300℃に加熱された空気な
どの支燃性ガスと反応して燃焼し、それに伴って当該精
錬槽B内は1500℃以上のチャーの高温流動層を形成
する。勿、論、必要に応じて、別途調整した高純度酸素
を空気番こ添い。
The char, which has been preheated to 800 to 1200°C and is transported to the reduction and refining tank B from the preliminary reduction product inlet 11, passes through an air heater 18 whose heat source is exhaust gas obtained from the upper chamber A□. It burns by reacting with combustion-supporting gas such as air heated to 800 to 1300°C introduced through the air supply port 14 installed at the bottom of the tank. form a high temperature fluidized bed. Of course, if necessary, add separately prepared high-purity oxygen to the air.

なお、上記室へ〇と室A2を合体し、室A0を予熱、予
備還元のみに利用するときは、固体炭素の燃料を供給系
統21.22から供給して、高温流動層を形成すればよ
い。
In addition, when ○ and chamber A2 are combined into the above chamber and chamber A0 is used only for preheating and preliminary reduction, solid carbon fuel may be supplied from the supply system 21 and 22 to form a high temperature fluidized bed. .

チャーとともに、予備還元′生成物導入口11を通じて
供給された800〜1200℃に予熱され、30〜9,
0%に予備還元された粉状金属酸化物:IIJJち海綿
鉄は、きわめて良好に混合された粉状の7ラツクスとと
もに瞬時に溶融すると同時Gこ、接f1M+する高温の
チャーやチャーの流動燃焼で生成する一酸化炭素によっ
て還元反応が急速に進行する。その結果、溶融金属とス
ラグとが該溶融精錬槽Bの槽底部の溶融金属溜り19な
らび番こスラク°溜り20に溜まる。
Together with the char, the pre-reduced product is preheated to 800-1200°C and supplied through the pre-reduction product inlet 11.
Powdered metal oxide pre-reduced to 0%: IIJJ Sponge iron is instantaneously melted together with extremely well-mixed powdered 7 lux, and at the same time it is exposed to high temperature char and fluid combustion of char in contact with f1M+. The reduction reaction proceeds rapidly due to the carbon monoxide produced. As a result, molten metal and slag accumulate in the molten metal pool 19 and the slag pool 20 at the bottom of the melting and refining tank B.

さらにこの溶融精錬槽Bの槽底部内、上記溶融金属溜り
19に臨む槽底部、槽側部には、単管もしくは同心2重
管状の精錬気体・剤の吹込み羽目21.22が設けてあ
り、その吹込み羽口21゜22から酸素ガスを単独で吹
込んで、例えば溶融鉄を酸化精錬することにより、低炭
素の鋼相当の精錬金属を得る操業を行う。
Further, inside the bottom of the melting and refining tank B, on the bottom and side of the tank facing the molten metal reservoir 19, single pipe or concentric double pipe-shaped refining gas/agent injection panels 21 and 22 are provided. By blowing oxygen gas alone through the blowing tuyeres 21 and 22 to oxidize and refine, for example, molten iron, an operation is performed to obtain a refined metal equivalent to low carbon steel.

上記羽目21.22からの吹込みは酸素ガス単独の他に
精錬剤として造滓剤などを一緒に吹込んだり、単にこの
造滓剤をアルゴン等搬送気体を介して吹込み、成分調整
による精錬を行うように利用してもよい。
In the above-mentioned steps 21 and 22, in addition to oxygen gas alone, a slag-forming agent may be injected together as a refining agent, or the slag-forming agent may be simply blown in through a carrier gas such as argon to refine the composition by adjusting the composition. You may also use it to do this.

要するに、こうした溶融精錬槽Bの操業は、直・接溶融
製錬とその精(製)錬とによって、より実用的な金属溶
湯を直接製造するところに特徴がある。
In short, the operation of the melting and refining tank B is characterized in that a more practical molten metal is directly produced by direct melting and refining and its refining.

上述のようにして槽内底部に生成した溶融精錬金属なら
びに溶融スラグは溶融金属排出口15、溶融スラグ排出
口16を通じて炉外に排出される。
The molten refined metal and molten slag generated at the bottom of the tank as described above are discharged to the outside of the furnace through the molten metal discharge port 15 and the molten slag discharge port 16.

なお、この溶融精錬槽B内の反応の進行状況に応じて、
例えば貯留スラグ中にチャーが多層に混入するようなと
きには高純度酸素の追加やフラッフススを供給すること
により反応を促進させることもできる。       
            (2)一方、該溶融精錬槽B
内でのチャーの流動燃焼や予備還元金属酸化物の溶融還
元に伴って発生するガスは、ガス排出口17を経て排出
するが、前述のようにその一部あるいは全部を前記乾留
・予備還元槽Aに導入し、残部は排熱回収装置を含む(
8)排ガス処理装置18に回送して処理する。この槽B
円発生のガスは、−酸化炭素、水素、窒素を主成分とす
るガスであり、空気加熱装置の熱源の−(4)部として
有効であるだけでなく、一般用の燃料ガ(5)ス、化学
工業用原料ガスとして、その価値が高い以下に本発明に
つい゛て図面で示すところの試験(6)設備による鋼鉄
製鉄の場合における操業の実施例を示す。      
             (7)(1)  粉軟鉄鉱
石の銘柄: MBR鉱石粒径: 2闘以下 、 供給量
:  740に9.’hr      (8)炭材の種
類:ワークワース炭 粒径:2間以下 、供給Wk ニー 417 kty/
hr添加物 石灰: 59に9/hr 、  砕石:11kg/hr
粒径: 1闘以下 蒸  気     32 kg/hr 上室反応温度:610°C2圧カニ 0.2 kti/
crlG下室反応温度: 1100°C、圧カニ 0.
5 kglcrJG粉鉱石予備還元率  60% 〃 予熱温度   1100°C 発生ガスJet      984 m7hr発熱量1
185 kcal/frL’ ガス成分  H2: 1%、Co:25%。
In addition, depending on the progress of the reaction in this melting and refining tank B,
For example, when char is mixed in multiple layers in the stored slag, the reaction can be accelerated by adding high-purity oxygen or supplying fluff soot.
(2) On the other hand, the melting and refining tank B
The gas generated during the fluidized combustion of the char and the melting and reduction of the pre-reduced metal oxide is discharged through the gas outlet 17, and as mentioned above, part or all of it is transferred to the carbonization/pre-reduction tank. A, and the remainder includes an exhaust heat recovery device (
8) The waste gas is sent to the exhaust gas treatment device 18 for treatment. This tank B
The generated gas is a gas whose main components are carbon oxide, hydrogen, and nitrogen, and is not only effective as a heat source for air heating equipment (4), but also as a general fuel gas (5). The following is an example of the operation of the present invention in the case of steel manufacturing using the test (6) equipment shown in the drawings.
(7) (1) Brand of powder soft iron ore: MBR ore particle size: 2 to 2 or less, supply amount: 740 to 9. 'hr (8) Type of carbon material: Warkworth Coal particle size: 2 or less, Supply Wk knee 417 kty/
hr additive lime: 59 to 9/hr, crushed stone: 11kg/hr
Particle size: 1 fight or less steam 32 kg/hr Upper chamber reaction temperature: 610°C 2 pressure crab 0.2 kti/
crlG lower chamber reaction temperature: 1100°C, pressure crab 0.
5 kglcrJG fine ore preliminary reduction rate 60% Preheating temperature 1100°C Generated gas Jet 984 m7hr calorific value 1
185 kcal/frL' Gas components H2: 1%, Co: 25%.

OH4: 1%、  002718%。OH4: 1%, 002718%.

Omen : 1% 、  N、 : 54%。Omen: 1%, N: 54%.

タール生成m   40 kg/hr 溶融精錬装置 (1)  供給空気At :  : 546m’/hr
 、 (温度:980°C(2)  槽底部吹込み羽目
からの酸素供給fit    20 、5 Nm/hr
(8)  低炭素鋼生成量: 482に9/hr(4)
 スラグ排出量: 16B ic9/llr以下に本発
明の効果を述べる。
Tar generation m 40 kg/hr Melting and refining equipment (1) Supply air At : : 546 m'/hr
(Temperature: 980°C (2) Oxygen supply from the tank bottom blowing line fit 20, 5 Nm/hr
(8) Low carbon steel production: 482 to 9/hr (4)
Slag discharge amount: 16B ic9/llr The effects of the present invention will be described below.

(1)  粉状の鉄鉱石および/または他の金[2化物
を塊成化することなしに使用できるので、塊成化のため
のエネルギーや原材料が不要であり、塊成化に伴なうN
Ox 、 SOxおよびダストの発生がない。
(1) Powdered iron ore and/or other gold [2] can be used without agglomeration, so energy and raw materials for agglomeration are not required, and the energy and raw materials associated with agglomeration are N
No Ox, SOx or dust generation.

(1)  予備還元用ガスとして、溶融精錬槽で発生ず
る高温のガスや乾留・予備還元槽の発生ガスを利用する
ので、還元ガス製造設備が不要である。
(1) Since the high-temperature gas generated in the melting and refining tank or the gas generated in the carbonization/preliminary reduction tank is used as the preliminary reduction gas, reducing gas production equipment is not required.

(8)  第1の槽で予備還元された粉状の鉄鉱石や金
・属酸化物を、そのまま第2の槽で溶融還元と酸化精錬
とを行うので、工程途中でのブリケットなどの塊成化が
不要直接精錬が可能である。
(8) Powdered iron ore and metal/metal oxides that have been pre-reduced in the first tank are melted and reduced and oxidized and refined in the second tank, so they are formed into agglomerates such as briquettes during the process. Direct smelting is possible without the need for oxidation.

(4)  炭材は一般炭など安価なもので十分であり、
強粘結炭などは一切不要である。製鉄用高炉のように強
度の高い塊コークスを必要としないこj) とは非常に
有利である。
(4) Cheap carbon materials such as steam coal are sufficient;
Strong coking coal is not required at all. It is very advantageous that it does not require high-strength lump coke unlike blast furnaces for steelmaking.

(5)乾留・予備還元槽Aの王室では、■ 炭材の乾留
・ガス化。
(5) Carbonization and preliminary reduction tank A's royal chamber is used for carbonization and gasification of carbonaceous materials.

@ 酸化物の予備還元。@Preliminary reduction of oxides.

O添加剤との混合。Mixing with O additive.

の3つの機能が同時に進行し、炭材の乾留に部分還元さ
れた金属酸化物が触媒として作用するので、乾、留反応
を円滑に進行させる利点を有しており、本発明はこの作
用をきわめて効率的に利用している。また、溶融精錬槽
Bでの円滑な溶融ならびに還元反応の進行を左右するの
は、フラックスの存在であるが、これが乾留・予備還元
槽Aの上室、王室を通じて鉱石予備還元粉やチャーと十
分混合され、予熱された状態で槽内に供給されるので反
応効率が高い。
These three functions proceed simultaneously, and the partially reduced metal oxide acts as a catalyst during the carbonization of the carbonaceous material, which has the advantage of allowing the drying and distillation reactions to proceed smoothly. It is used extremely efficiently. In addition, the presence of flux determines the smooth melting and progress of the reduction reaction in the melting and refining tank B, and this flux passes through the upper chamber of the carbonization/pre-reduction tank A and the ore pre-reduced powder and char. The reaction efficiency is high because the mixture is supplied into the tank in a preheated state.

(6)石灰などの添加物は、炭材がらの乾留ガスの脱硫
剤として、溶融精錬槽B内では易溶融の7ラツクスどし
て、また金属酸化物やチャー中の硫黄の捕集剤としての
3機能をもつものである。
(6) Additives such as lime can be used as a desulfurizing agent for carbonized gas from carbonaceous materials, as an easily melted 7 lac in melting and refining tank B, and as a scavenger for metal oxides and sulfur in char. It has three functions:

、(7)  多孔分、離板などを用いて、乾留・予備還
元槽A内を2室に分割し、500〜700°Cという液
状タールの収率の高い状態を維持して、炭材の乾予熱と
予備還元を十分に行わせ、上室、下室の機能を十分に全
うさせている。
(7) Divide the inside of the carbonization/prereduction tank A into two chambers using porous parts, separation plates, etc., maintain a high yield of liquid tar at 500 to 700°C, and reduce the carbonaceous material. Dry preheating and preliminary reduction are carried out sufficiently to ensure that the functions of the upper and lower chambers are fully fulfilled.

(8)  良好に混合され、予熱、予備還元された鉱石
はチャーの高温流動層中で溶融と還元が瞬時にしておこ
り、さらにまた酸素吹込みによる酸化精錬、あるいは精
錬剤吹込みによる成分調整が可能で、溶融状態の精錬金
属を製造しうる。その低木発明法は、フェロマンガン、
7エロニ゛ンケル等の合金鉄製造にも効果がある。
(8) The well-mixed, preheated, and prereduced ore undergoes instant melting and reduction in the high-temperature fluidized bed of char, and further undergoes oxidative refining by oxygen injection or composition adjustment by injecting a refining agent. It is possible to produce refined metals in the molten state. The shrub invention method is ferromanganese,
It is also effective in the production of ferroalloys such as 7-eloninkel.

(9)石炭などの炭材から、液状タール、水素や炭化水
素を含有する燃料ガス、−酸化炭素を含有する燃料ガス
など付加価値の高いエネルギーが製造できる。このよう
なエネルギーの製造と溶融金属の製造が主たるエネルギ
ーとして電気や酸素を使用せずに可能である。
(9) High value-added energy such as liquid tar, fuel gas containing hydrogen and hydrocarbons, and fuel gas containing carbon oxide can be produced from carbonaceous materials such as coal. The production of such energy and the production of molten metal is possible without using electricity or oxygen as the main energy sources.

【図面の簡単な説明】[Brief explanation of the drawing]

図面の第1図およびwIPZ図は、いずれも本発明の好
適実施例を示す精錬装置の断面図である。 A・・・乾留・予備還元槽 B・・・溶融精錬槽1・・
・多孔分離板    2・・・炭材供給口3・・・金属
酸化物供給口 4・・・添加物供給口5・・・発生ガス
排出口  6・・・セパレーター7・・・精製装置  
   8・・・ガス導入口9・・・予備還元生成物排出
口 10・・・輸送管 11・・・予備還元生成物導入口 12・・・制御装置     13・・・空気加熱器1
4・・・空気供給口    15・・・溶融金属排出口
16・・・溶融スラグ排出口 17・・・発生ガス排出口  18・・・ガス処理装置
19・・・溶融金属溜り   20・・・溶融スラグ溜
り21・・・槽底部の精錬気体・剤の吹込み口28・・
・槽側部の精錬気体・剤の吹込み口。 第1図 第2図
Both FIG. 1 and the wIPZ diagram of the drawings are cross-sectional views of a refining apparatus showing a preferred embodiment of the present invention. A... Carbonization/preliminary reduction tank B... Melting and refining tank 1...
・Porous separator plate 2...Carbon material supply port 3...Metal oxide supply port 4...Additive supply port 5...Generated gas discharge port 6...Separator 7...Purification device
8...Gas inlet 9...Preliminary reduction product outlet 10...Transport pipe 11...Preliminary reduction product inlet 12...Control device 13...Air heater 1
4... Air supply port 15... Molten metal discharge port 16... Molten slag discharge port 17... Generated gas discharge port 18... Gas processing device 19... Molten metal reservoir 20... Melting Slag reservoir 21... Refining gas/agent injection port 28 at the bottom of the tank...
- Inlet for refining gas and agent on the side of the tank. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 L 鉄鉱石等の金属酸化物を流動層形式の第1の槽内に
、炭材ならびに反応助勢剤とともに粉状で装入し、油槽
下部から高温の還元性ガスを導入し、主として上部域で
は炭材乾留反応を、また下部域では該金属酸化物の流動
化予備還元反応を起させて、チャー、フラックスおよび
金属酸化物からなる混合粒を生成させ、 次に、第1の屑で生成した混合粒を溶融たて型炉である
第2℃槽に移送させ、当該槽ではまず槽側部から導入す
る支燃性ガスと前記チャーとの間で起る燃焼反応によっ
て還元と溶融を行わせて溶融金属と溶融スラグとを生成
させ、 引き続き当該第2の槽の槽底に溜った溶融金属に対して
は、酸素含有気体を単独または精錬剤とともに吹込んで
酸化精錬を行なわせ々精錬金属を出湯するようにしたこ
とを特徴とする金属酸化物の直接精錬法。 乞 鉄鉱石等の金属酸化物を流動層形式の第1の槽内に
、炭材ならびに反応助勢剤とともに粉状で装入し、該槽
下部から高温の還元性ガスを導入し、主として上部域で
は炭材乾留反応を、また下部域では該金属酸化物の流動
化予備還元反応を起させて、チャー、7ラツクスおよび
金属酸化物からなる混合粒を生成させ、 次に、第1の層で生成した混合粒を溶融たて型炉である
第2の槽に移送させ、当該槽ではまず槽側部から導入す
る支燃性ガスと前記チャーとの間で起る燃焼反応によっ
て還元と溶融を行わせて溶融金属と溶融スラグとを生成
させ、 引き続き当該第2の槽の槽底に溜った溶融金属に対して
は、搬送気体を介して精錬剤を吹込んで成分調整の精錬
を行なわせ、精錬金属を出湯するようにしたことを特徴
とする金属酸化物の直接精錬法。 & 装入炭材の乾留化ならびに装入金属酸化物の予熱・
予備還元化をもたらす上室と、予備還元金属酸化物とチ
ャーおよびフラックスの混合粒を生成させる流動層を構
成する下室とからなる乾留予備還元槽と、その乾留予備
還元槽と輸送管を介して互いに2連通し、槽側部には支
燃性ガス導入口を有し、溶融金属滞溜城に臨む槽底部あ
るいはその近傍に精錬気体剤の吹込み羽目を有し、該支
燃性ガス導入による溶融還元反応と精錬気体等導入によ
る精錬反応とによって前記乾留予備還元種生成の混合粒
を還元、溶融、精錬してスラグと精錬金属とを分離生成
させる溶融精錬槽とで構成される金属酸化物の直接精錬
装置。
[Scope of Claims] L A metal oxide such as iron ore is charged in the form of powder together with a carbon material and a reaction promoter into a fluidized bed type first tank, and a high-temperature reducing gas is introduced from the bottom of the oil tank. The carbonaceous carbonization reaction is mainly carried out in the upper region, and the fluidization pre-reduction reaction of the metal oxide is caused in the lower region to produce mixed grains consisting of char, flux and metal oxide. The mixed grains generated from the scraps in step 1 are transferred to the second °C tank, which is a vertical melting furnace. Reduction and melting are performed to produce molten metal and molten slag, and subsequently, the molten metal accumulated at the bottom of the second tank is oxidized and refined by blowing oxygen-containing gas alone or together with a refining agent. A direct refining method for metal oxides, which is characterized in that the refined metal is tapped out as the process progresses. Metal oxides such as iron ore are charged in the form of powder together with carbonaceous material and a reaction promoter into a first fluidized bed type tank, and a high temperature reducing gas is introduced from the bottom of the tank, mainly in the upper region. In the first layer, a carbonaceous carbonization reaction is caused, and in the lower region, a fluidization pre-reduction reaction of the metal oxide is caused to produce mixed grains consisting of char, 7 lux, and metal oxide. The generated mixed grains are transferred to a second tank, which is a vertical melting furnace, and in this tank, reduction and melting are first performed by a combustion reaction that occurs between the combustion-supporting gas introduced from the side of the tank and the char. to produce molten metal and molten slag, and then to the molten metal accumulated at the bottom of the second tank, a refining agent is blown into it via a carrier gas to perform refining to adjust the composition. A direct refining method for metal oxides characterized by tapping the refined metal. & Carbonization of charged carbonaceous materials and preheating of charged metal oxides.
A carbonization pre-reduction tank consisting of an upper chamber for pre-reduction and a lower chamber constituting a fluidized bed for producing mixed particles of pre-reduced metal oxide, char and flux, and a carbonization pre-reduction tank and a transport pipe. The tank has a combustion-supporting gas inlet on the side, and has a refining gas injection port at or near the bottom of the tank facing the molten metal retention castle, and the combustion-supporting gas A melting and refining tank that reduces, melts, and refines the mixed grains produced by carbonization prereduced species through a melting reduction reaction by introduction and a refining reaction by introducing refining gas, etc., and separates and produces slag and refined metal. Direct smelting equipment for oxides.
JP542283A 1983-01-17 1983-01-17 Method and device for direct refining of metallic oxide Granted JPS59129707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP542283A JPS59129707A (en) 1983-01-17 1983-01-17 Method and device for direct refining of metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP542283A JPS59129707A (en) 1983-01-17 1983-01-17 Method and device for direct refining of metallic oxide

Publications (2)

Publication Number Publication Date
JPS59129707A true JPS59129707A (en) 1984-07-26
JPH037723B2 JPH037723B2 (en) 1991-02-04

Family

ID=11610722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP542283A Granted JPS59129707A (en) 1983-01-17 1983-01-17 Method and device for direct refining of metallic oxide

Country Status (1)

Country Link
JP (1) JPS59129707A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220806A (en) * 1985-07-18 1987-01-29 Kobe Steel Ltd Iron making method by melt reduction of iron ore in two-stages blowing
JPS6220808A (en) * 1985-07-18 1987-01-29 Kobe Steel Ltd Iron making method by melt reduction of iron ore in two-stages blowing
JPS62227008A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp Melt reduction method for iron ore
JPS62228415A (en) * 1986-03-31 1987-10-07 Nippon Kokan Kk <Nkk> Manufacture of pig iron
JPS62230923A (en) * 1986-04-01 1987-10-09 Kobe Steel Ltd Manufacture of iron by smelting and reduction
JPS63213613A (en) * 1987-03-02 1988-09-06 Kobe Steel Ltd Combining type direct iron making method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220806A (en) * 1985-07-18 1987-01-29 Kobe Steel Ltd Iron making method by melt reduction of iron ore in two-stages blowing
JPS6220808A (en) * 1985-07-18 1987-01-29 Kobe Steel Ltd Iron making method by melt reduction of iron ore in two-stages blowing
JPS62227008A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp Melt reduction method for iron ore
JPS62228415A (en) * 1986-03-31 1987-10-07 Nippon Kokan Kk <Nkk> Manufacture of pig iron
JPS62230923A (en) * 1986-04-01 1987-10-09 Kobe Steel Ltd Manufacture of iron by smelting and reduction
JPS63213613A (en) * 1987-03-02 1988-09-06 Kobe Steel Ltd Combining type direct iron making method

Also Published As

Publication number Publication date
JPH037723B2 (en) 1991-02-04

Similar Documents

Publication Publication Date Title
EP0063924B2 (en) Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
US8764875B2 (en) Method and apparatus for coproduction of pig iron and high quality syngas
US4946498A (en) Process for the production of steel from fine ore hot briquetted after fluidized bed reduction
JP3007571B2 (en) A method for increasing the effectiveness of smelting reduction.
CA1050765A (en) Method for making steel
RU2450057C2 (en) Method and device to reduce metal-containing material to reduction product
AU716931B2 (en) Direct reduction of metal oxide agglomerates
US4380469A (en) Process and apparatus for continuously reducing and melting metal oxides and/or pre-reduced metallic materials
WO2008122527A2 (en) Method and device for preparing a reducing agent for use in a metal making process, metal making process and metal making apparatus using said device
JPS59129707A (en) Method and device for direct refining of metallic oxide
US6582492B1 (en) Method for producing melt iron
JPH079015B2 (en) Smelting reduction method for iron ore
US5558696A (en) Method of direct steel making from liquid iron
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPS5928605B2 (en) Metal oxide smelting method and device
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
US5429658A (en) Method of making iron from oily steel and iron ferrous waste
JPS63216934A (en) Fluidized-bed reducing method for chromium ore or the like
CN114921602B (en) Ultrashort flow steelmaking device system
JPS63213613A (en) Combining type direct iron making method
KR850000802B1 (en) Process for continuosly reducing and melting metal oxides and pre-reduced metallic materials
CN116867912A (en) Effluent gas recovery in direct reduction processes
KR20240090372A (en) How to reduce the carbon footprint of operating a metallurgical plant for pig iron production
JP2600229B2 (en) Smelting reduction method and equipment
JPH0426713A (en) Smelting reduction iron-making method