JPS59129636A - Controller of stage with freedom of six - Google Patents

Controller of stage with freedom of six

Info

Publication number
JPS59129636A
JPS59129636A JP113383A JP113383A JPS59129636A JP S59129636 A JPS59129636 A JP S59129636A JP 113383 A JP113383 A JP 113383A JP 113383 A JP113383 A JP 113383A JP S59129636 A JPS59129636 A JP S59129636A
Authority
JP
Japan
Prior art keywords
stage
wafer
feeding
sets
feeding mechanisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP113383A
Other languages
Japanese (ja)
Other versions
JPH0134746B2 (en
Inventor
Naoto Nakajima
直人 中島
Minoru Ikeda
稔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP113383A priority Critical patent/JPS59129636A/en
Publication of JPS59129636A publication Critical patent/JPS59129636A/en
Publication of JPH0134746B2 publication Critical patent/JPH0134746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/18Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for positioning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/545Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces
    • B23Q1/5462Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces with one supplementary sliding pair

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Jigs For Machine Tools (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To enable six freedoms of a stage to be controlled with high accuracy and to increase the positioning rigidity, by interposing transmitting means that allows movements other than a feeding direction so that six sets of feeding mechanisms drive independently a stage directly. CONSTITUTION:A base 41 for placing a wafer thereon fixes a pulse motor 46 for constituting a set of X-direction feeding mechanisms, two pulse motors for constituting two sets of Y-direction feeding mechanisms, and three motors 52 for constituting three sets of Z-direction feeding mechanisms. A floating pad 43 of the X-direction feeding apparatus is held on a spherical seat of a nut 44, and would not exert resistance to the vertical movement or backward or forward movement of the stage 42 or the inclination thereof about the X, Y or Z axes, but transmits the corresponding feeding in the X axis. Steel balls 48 and floating pads 49 transmit the feeding in the Z direction to the stage 42, but would not exert resistance to the inclination of the stage 42 in the horizontal plane owing to the presence of the other feeding mechanisms.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、精密な位置制御および姿勢制御を行なうステ
ージの制御装置に関するもので、立体的に設定した3軸
方向の平行移動と、該3軸回ジの回動との6自由度ン有
する制御装置に関するものである。この発明は、特、に
投洋式つェハ蕗元装置のウェハ搭載位置ぎめ機構として
好適であるが、その他に広く精密加工、精密測定等に適
用し得る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a stage control device that performs precise position control and posture control, and includes parallel movement in three-dimensionally set three-axis directions, and The present invention relates to a control device having six degrees of freedom in relation to the rotation of a rotor. The present invention is particularly suitable as a wafer mounting positioning mechanism for a pitcher-type wafer processing apparatus, but can also be widely applied to precision processing, precision measurement, etc.

〔従来技術〕[Prior art]

上に述べた6自由度を有する制御装置は、ウェハ表面に
マ゛°スク・ぞターンを焼付ける投影式露光装置にも用
いられる。同装置の操作手順においては、まず、マスク
パターンを投影光学系によってウェハ表面に投影結像さ
せる必要がある。投影光学系に要求される高解像度のマ
スクパターン乞結像する範囲は投影光学系の焦点面近傍
の範囲で、焦点面から離れるに従い急速に結像状態は劣
化する。
The above-mentioned control device having six degrees of freedom is also used in a projection exposure device that prints a mask pattern on a wafer surface. In the operating procedure of the apparatus, first, it is necessary to project and image a mask pattern onto the wafer surface using a projection optical system. The range in which a high-resolution mask pattern is imaged, which is required of a projection optical system, is a range near the focal plane of the projection optical system, and the imaging condition deteriorates rapidly as the distance from the focal plane increases.

実用上、ウェハ表面の投影光学系の焦点面からのずれ量
の許容値は±6μmであり、安定した解像度乞得るには
、ウェハ表面乞投影光学系の焦点面に高精度に位置決め
することが要求される。上記の位置ぎめ(°焦点合わせ
)の後、マスクパターンとウェハ表面に形成されている
パターンとを、ウェハを移動して高精度(±0.25μ
m)に1ね合せることが要求される。したがって、ウェ
ハ搭載装置には総計して6自由度となる位置制御機能が
必要である。
In practice, the allowable amount of deviation of the wafer surface from the focal plane of the projection optical system is ±6 μm, and in order to obtain stable resolution, it is necessary to position the wafer surface with high precision at the focal plane of the projection optical system. required. After the above positioning (°focusing), the mask pattern and the pattern formed on the wafer surface are moved to a high precision (±0.25μ).
m) is required. Therefore, the wafer mounting device requires a position control function that provides a total of six degrees of freedom.

上記の6自由度の制御は、通常の場合、水平な直交2軸
X、Yと、垂直軸Zとを設定し、これら3軸方向の平行
動と3軸回りの回動とについて行なわれ、これによって
3次元空間内における剛体の位置と姿勢とが確定される
。しかし、上記の3軸は水平、垂直な直交3軸に限定さ
れるものではなく、斜交する3軸を設定して6自由度制
御を行なうことも可能である。
The above six degrees of freedom control is usually performed by setting two horizontal orthogonal axes X, Y and a vertical axis Z, and performing parallel movements in these three axes directions and rotations around the three axes. As a result, the position and orientation of the rigid body in the three-dimensional space are determined. However, the above three axes are not limited to the horizontal, vertical, orthogonal three axes, and it is also possible to set three oblique axes to perform six degrees of freedom control.

第1図に、従来の1:1反射投影式露光装置の概要的な
正面図を示す。
FIG. 1 shows a schematic front view of a conventional 1:1 reflection projection exposure apparatus.

石定盤1は高精度に仕上げられていて、スレッド2は石
定盤1上を左右に高精度(±0.08μm)の直線運動
を行う。スレッド2上にはウエノ1搭載装置3およびマ
スク搭載装置5が設けられ、それぞれウェハ4およびマ
スク6を搭載できるようになっている。石定盤1上には
、さらに、反射投影光学系7およびアライメントスコー
プ8が固定され、反射投影光学系7下部には高さ基準板
9が固定されている。石定盤1下方に低置している照明
光学系(図省略)により円弧スリット状に照明されるマ
スク6のマスクツやターンは、反射投影光学系7によっ
てウェハ4表面に投影結像され、スレッド2欠左右に走
行させることで、ウェハ4表面全面にマスクツヤ°ター
ン?走査露光できるようになっている。アライメントス
コープ8はウェハ4上の合せマークとマスクパターン内
の合せマークの重ね合せ状態を検出できる機能がある。
The stone surface plate 1 is finished with high precision, and the thread 2 performs linear movement left and right on the stone surface plate 1 with high precision (±0.08 μm). A wafer 1 mounting device 3 and a mask mounting device 5 are provided on the sled 2, and are capable of mounting a wafer 4 and a mask 6, respectively. Further, a reflection projection optical system 7 and an alignment scope 8 are fixed on the stone surface plate 1, and a height reference plate 9 is fixed below the reflection projection optical system 7. The masks and turns of the mask 6, which are illuminated in an arcuate slit shape by an illumination optical system (not shown) placed below the stone surface plate 1, are projected and imaged onto the surface of the wafer 4 by the reflection projection optical system 7, and the threads are projected onto the surface of the wafer 4. By running the wafer from side to side, the entire surface of the wafer 4 can be covered with a glossy turn. Scanning exposure is possible. The alignment scope 8 has a function of detecting the overlapping state of the alignment mark on the wafer 4 and the alignment mark in the mask pattern.

上に述べたウェハ搭載装置3の拡大断面図を第2図に示
−jo ウェハ搭載装置のペース11は前述のスレッド
2に固定されていて、このウェハ搭載装置ペース11の
上に鋼球16ヲ介してXYステージ12が置かれている
。上記のXYステージ12はペース1]の上面に沿った
水平面内で自由に動くことができ、2自由度を有してい
る。そしてこのXYステージ12は送゛り機構(図示省
略)に、l:り±3mmの範囲でその位置をスレッド走
行方向(Y方向)と、水平面内でこれと直交する方向(
X方向)に制御  ・されるようになっている。このX
Yステージ12には玉軸受17Y介してθステージ13
が回転可能に設けられ、さらにこのθステージBに上下
軸14が設けられている。この上下軸14は、ナツト1
9.送りネジ18.及i、t”ルスモータ加により上下
に駆動される構造で、2ステージとして作用する部材で
ある。この2ステージである上下軸14はθステージ1
3に対して回動じないように係止され、上下摺動自在に
支承されている。
An enlarged cross-sectional view of the wafer mounting device 3 described above is shown in FIG. An XY stage 12 is placed therebetween. The XY stage 12 described above can freely move within a horizontal plane along the upper surface of the pace 1 and has two degrees of freedom. Then, this XY stage 12 is attached to a feeding mechanism (not shown) so that its position is adjusted within a range of ±3 mm in the sled running direction (Y direction) and in the direction perpendicular to this in the horizontal plane (
It is designed to be controlled in the X direction). This X
The θ stage 13 is connected to the Y stage 12 via a ball bearing 17Y.
is rotatably provided, and this θ stage B is further provided with a vertical shaft 14. This vertical shaft 14 is connected to the nut 1
9. Feed screw 18. It has a structure that is driven up and down by the application of the θ stage 1 and
3 so as not to rotate, and is supported so as to be slidable up and down.

この上下軸14の上部には、ウニ/1搭載台15が置−
かれ、上下軸14上端の円錐状のくぼみと、ウェハ搭載
台15の下部球面座とをがん合させ、ウェハ搭載台15
の傾斜が自由に行なえるようになっている。
At the top of this vertical shaft 14, a sea urchin/1 mounting stand 15 is placed.
Then, the conical recess at the upper end of the vertical shaft 14 and the lower spherical seat of the wafer mounting table 15 are pressed together, and the wafer mounting table 15 is fixed.
The slope can be freely adjusted.

このように従来のウェハ搭載装置は、スレッド上に固定
されたウェハ搭載装置ペース1】上に、XYステージ1
2を設け、このXYステージ12によってθステー・ゾ
13が支持され、θステージ13によって上下軸14お
よびウェハ搭載台15ならひにウエノA4が支持された
三重構造となっていた。
In this way, the conventional wafer mounting device has an XY stage 1 mounted on the wafer mounting device PACE 1 fixed on the thread
The XY stage 12 supported the θ stay 13, and the θ stage 13 supported the vertical shaft 14 and the wafer mounting table 15, which supported the Ueno A4.

つづいて、この従来のウエノ1搭載装置の動作について
説明する。まず、第2図の状態において、ウェハ4ケウ
工ハ搭載台λ5に吸着孔22乞用いて真空吸着する。つ
づいて上下軸14ケ上昇させ、高さ基準板9のパッド1
0にウェハ4表面を押し当てるOスルト、ウェハ搭載台
15はパッド10からの反力テ傾斜を修正されて水平姿
勢になる。上記のノン゛ソド10はウェハ4の中心を重
心とする正三角形の頂点に配置され、反射投影式光学系
7の焦点面に対して規定高さく0.5mm)だけ正確に
高X、)位置に設けられているので、ウニ/14表面は
反射投影光学系7の焦点面よりも上記の規定高さだけ高
(・位置に高さと傾きが位置決めされる。この状態で真
空室21ヲ真空としてウエノ1搭載台15ケ上下軸14
に吸着固定し、さらに上下軸14ヲウエノX4およヒウ
エノ1搭載台15とともに上記の規定高さだけ下降させ
、ウェハ表面を反射投影光学系7の焦点深度内に平行移
動させていた。
Next, the operation of this conventional Ueno 1 loading device will be explained. First, in the state shown in FIG. 2, a 4-wafer wafer is vacuum-suctioned to the wafer mounting table λ5 using the suction holes 22. Next, raise the 14 vertical axes and pad 1 of the height reference plate 9.
When the surface of the wafer 4 is pressed against the surface of the wafer 4, the wafer mounting table 15 has its inclination corrected by the reaction force from the pad 10 and assumes a horizontal position. The above-mentioned non-plane 10 is placed at the apex of an equilateral triangle whose center of gravity is the center of the wafer 4, and is precisely positioned at a height of 0.5 mm) relative to the focal plane of the catoptric optical system 7. Since the surface of the sea urchin 14 is higher than the focal plane of the reflection projection optical system 7 by the above-mentioned specified height, the height and inclination are set at the position. In this state, the vacuum chamber 21 is set as a vacuum. Ueno 1 mounting table 15 vertical axes 14
The wafer surface was moved in parallel to the depth of focus of the reflection projection optical system 7 by suctioning and fixing the wafer to the vertical axis 14 and lowering it together with the wafer X4 and the wafer 1 mounting table 15 by the above specified height.

上述の操作の後、XYステージ12を移動させたりθス
テージ13を回動させたすして、ウエノ14上に設けた
合わせマークとマスクツ2ターンの合わせマークと乞一
致させる。この状態で、スレ゛ソド2娑一旦往き側に移
動させ、その後復路を一定速度で戻る間にウェハ4の表
面全体にマスクツぞターン乞露光させ、マスクパターン
をウェハ4表面上に焼付けていた。このため以下に示す
欠点が有った。
After the above-described operation, the XY stage 12 is moved and the θ stage 13 is rotated to ensure that the alignment mark provided on the wafer 14 and the alignment mark of the mask 2 turns are aligned. In this state, the thread 2 was once moved to the forward side, and then the mask pattern was printed on the surface of the wafer 4 by exposing the entire surface of the wafer 4 one after another while returning at a constant speed. For this reason, there were the following drawbacks.

1、 ウェハ4の表面ヲノセツド10に押し当てて反射
投影光学系7の焦点面に対して平行度ケ出した後、上下
軸14(zステージ)、θステージ13およびXYステ
ージ12の3ケ所において移動もしくは回転が行なわれ
るため、この3ケ所のステージの機械的な狂いによる上
下動ならびに傾きが重畳してウェハ4表面の、反射投影
光学系7の焦点面に対する平行度および高さの位置決め
精度を損ねやすい。
1. After pressing the surface of the wafer 4 against the set 10 to achieve parallelism with the focal plane of the reflection projection optical system 7, move it at three locations: the vertical axis 14 (z stage), the θ stage 13, and the XY stage 12. Otherwise, since the stage is rotated, the vertical movement and inclination due to mechanical errors in these three stages are superimposed, impairing the positioning accuracy of the parallelism and height of the wafer 4 surface with respect to the focal plane of the catoptric projection optical system 7. Cheap.

2、ウェハ搭載装置ベース11上に、XYステージ12
、θステージ13および2ステージ14を設け、その上
にウェハ搭載台15ヲ置いているため、ウェハ搭載装置
ベース1】からウェハ搭載台15に対する総合的な位置
決め剛性が低く、ウェハ搭載台15の位置安定性が悪い
2. On the wafer mounting equipment base 11, the XY stage 12
, the θ stage 13 and the second stage 14 are provided, and the wafer mounting stage 15 is placed on top of them, so the overall positioning rigidity from the wafer mounting device base 1 to the wafer mounting stage 15 is low, and the position of the wafer mounting stage 15 is low. Poor stability.

3、XYステージ12はθステージ13、上下軸14、
及びこれらの駆動手段ビ搭載しているので、このXYス
テージ12の全体重量が大きい。従ってXYステージ1
2の全体重量が大きい。従ってXYステージの送り機構
はこれ、らの全体重量を担持したXYステージ12を駆
動制御しなければならす、微動送りの制御性7低下させ
ている。
3. The XY stage 12 has a θ stage 13, a vertical axis 14,
Since the XY stage 12 is equipped with these driving means, the overall weight of the XY stage 12 is large. Therefore, XY stage 1
2 has a large overall weight. Therefore, the XY stage feeding mechanism must drive and control the XY stage 12 that carries the entire weight of the XY stage 12, which reduces the controllability of fine movement feeding.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ステージの6自由度をそれぞれ高精度
で制御することができ、位置ぎめ剛性が高く、しかも制
御性のよいステージ制御装置を提供するにある。
An object of the present invention is to provide a stage control device that can control each of the six degrees of freedom of the stage with high precision, has high positioning rigidity, and has good controllability.

〔発明の概要〕[Summary of the invention]

本発明においては、前述した従来装置の不具合及びその
原因解析に基づき、ステージを駆動制御する6組の送り
装置を設け、これら6組の送り装置がそれぞれ互いに干
渉することなく、直接的にステージを制御し得る構成を
創作したものである。
In the present invention, based on the above-mentioned problems with the conventional device and analysis of their causes, six sets of feeding devices are provided to drive and control the stage, and these six sets of feeding devices directly drive the stage without interfering with each other. This is a creation of a configuration that can be controlled.

本発明は上記の原理に基づいて前記の目的を達成するた
め、X方向に設けた1組の送り機構と、    ゛Y方
向に設けた2組の送り機構と、Z方向に設けた3組の送
り機構とを有し、かつ、上記6組の送ジ機構のそれぞれ
とステージとの間に、轟該送り機構の送り方向の力のみ
を伝達して送り方向以外の動きを許容する伝動部材を介
装し、前記6組の送り機構がそれぞれ独立してステージ
奢直接的に駆動し得るように構成したことを特徴とする
In order to achieve the above object based on the above principle, the present invention has three sets of feeding mechanisms: one set of feeding mechanisms provided in the X direction, two sets of feeding mechanisms provided in the Y direction, and three sets of feeding mechanisms provided in the Z direction. and a transmission member that transmits only the force of the feeding mechanism in the feeding direction and allows movement in directions other than the feeding direction, between each of the six sets of feeding mechanisms and the stage. The stage is interposed so that each of the six sets of feeding mechanisms can independently drive the stage directly.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例の概要を第3図及び第4図につ
いて説明する。
Next, an outline of an embodiment of the present invention will be explained with reference to FIGS. 3 and 4.

第3図は本発明のステージ制御装置の垂直断面図、第4
図は同平面図である。
FIG. 3 is a vertical sectional view of the stage control device of the present invention, and FIG.
The figure is a plan view of the same.

本実施例は、ウェハ4を吸着保持したステージ42につ
いて水平な直交2軸X、Yおよび垂直軸2方向の位置制
御、並びに上記3軸回りの回動姿勢制御を行なうように
構成したものであるが、本発明を実施する場合、直交3
軸に限らず任意方向の3軸に関する制御を行なうように
構成することもできる。
In this embodiment, the stage 42 holding the wafer 4 by suction is configured to perform positional control in two horizontal orthogonal axes X and Y and two vertical axes, as well as rotational posture control around the three axes. However, when implementing the present invention, the orthogonal 3
It is also possible to control not only one axis but also three axes in arbitrary directions.

4]ハウエバ搭載装置のベースである。このベース4】
に1組のX方向送り機構を構成するための1個のパルス
モータ46.2組のY方向送ジ機構を構成するための2
個のパルスモータ60(第4図)、及び3組の2方向送
り機構を構成するための3個のパルスモータ52(第3
図)y!′固定する。これらのパルスモータ46 、6
0 、52の軸に、それぞれ送9ネジ45.59 、5
1ヲ置着する。上記の送すネ−)45゜59 、51に
それぞれ螺合するナツト部材44 、58 、50を、
ウェハ搭載装置ベース41 K対する回動を係止して軸
方向摺動自在に嵌合する。
4] This is the base of the Haueva-mounted device. This base 4]
1 pulse motor 46 for configuring one set of X-direction feed mechanisms; 2 pulse motors 46 for configuring two sets of Y-direction feed mechanisms
three pulse motors 60 (Fig. 4), and three pulse motors 52 (a third
Figure) y! 'Fix. These pulse motors 46, 6
0 and 52 shafts, feed screws 45.59 and 5, respectively
Place 1. Nut members 44, 58, 50 which are screwed into the above-mentioned feed nuts 45° 59, 51, respectively,
The wafer mounting device base 41 K is locked against rotation and is fitted to be slidable in the axial direction.

本実施例は以上のようにしてX方向に設けた1組の送り
機構と、Y方向に設けた2組の送り機構と、2方向に設
けた3組の送り機構とを構成しである。
As described above, this embodiment includes one set of feeding mechanisms provided in the X direction, two sets of feeding mechanisms provided in the Y direction, and three sets of feeding mechanisms provided in two directions.

ステージ42の上面に真空吸着用の空洞部55を設けて
ウェハ搭載機能を持たせる。このステージ42の自重は
、第5図について後述する浮遊パッド49及び鋼球48
ヲ介して3個のナツト部材(資)で支承する。53は上
記の自重を付勢しているバネである。
A cavity 55 for vacuum suction is provided on the upper surface of the stage 42 to provide a wafer mounting function. The weight of this stage 42 is due to the weight of the floating pad 49 and steel balls 48, which will be described later with reference to FIG.
It is supported by three nut members (materials) through it. 53 is a spring that biases the above-mentioned own weight.

上記のステージ42Y、X方向に設けたバネ47に、J
:#)、第5図について後に詳述する浮遊i9ツド43
を介してナツト部材44に押しつけて、X方向の位置ぎ
めがなされる。同様に、Y方向に設けたバネ61により
後述の浮遊・ぐラド57を介してナツト部材58に押し
つけてY方向の位置ぎめがなされる。
On the stage 42Y, the spring 47 provided in the X direction is
:#), Floating i9td 43, which will be detailed later with reference to FIG.
It is pressed against the nut member 44 via , and positioned in the X direction. Similarly, a spring 61 provided in the Y direction presses against the nut member 58 via a floating pad 57, which will be described later, to position the nut member 58 in the Y direction.

反射投影式光学系7の底面に9個の静電容量型近接セン
サ54を固定してウェハ4の表面位置を検出し、該ウェ
ハ4の上面と上記光学系7の焦点面との偏差を高精度(
±0.2μm)で非接触的に検出できるように構成する
。第4図においてウェハ4の面上に示した9個のX印5
6は上記センサ54の検出点を表わしている。
Nine capacitive proximity sensors 54 are fixed to the bottom surface of the reflective projection optical system 7 to detect the surface position of the wafer 4 and increase the deviation between the top surface of the wafer 4 and the focal plane of the optical system 7. accuracy(
±0.2 μm) so that it can be detected in a non-contact manner. Nine X marks 5 shown on the surface of the wafer 4 in FIG.
6 represents a detection point of the sensor 54.

前述の浮遊パッド49 、43の詳細を第5図について
説明する。このW[面にはY方向の送り装置に設けた浮
遊パッド57が現われていないが、本図に示したX方向
の送り装置の浮遊パッド43と同様の構成部材である。
Details of the aforementioned floating pads 49 and 43 will be explained with reference to FIG. Although the floating pad 57 provided in the Y-direction feeding device does not appear on this W[ surface, it is a component similar to the floating pad 43 of the X-direction feeding device shown in this figure.

この浮遊・やラド43は、その左端の球面をナツト44
の球面座に保持され、右端の平面をステージ42の側面
に当接せしめて送り機構の送ジ量をステージ42に伝達
している。さらに、浮動ノソツド43の両端の球面と平
面は空気軸受となっているので、ステージ42の上下動
、前後進、X、Y。
This floating Yarad 43 has its leftmost spherical surface as a nut 44.
The right end flat surface is brought into contact with the side surface of the stage 42 to transmit the feed amount of the feed mechanism to the stage 42. Furthermore, since the spherical and flat surfaces at both ends of the floating node 43 serve as air bearings, the stage 42 can move vertically, forward and backward, and in X and Y directions.

z#1回りの傾きの抵抗とならない。したがって、浮動
)七ツド43は、他の送り機構によるステージの移動の
抵抗とはならない自由度を有すると同時に、対応するX
軸方向の送り量を伝達プ゛ることかできる。
There is no resistance to the slope around z#1. Therefore, the floating seven-stage 43 has a degree of freedom that does not resist the movement of the stage by other feeding mechanisms, and at the same time has a corresponding
It is possible to transmit the feed amount in the axial direction.

Z方向送り機構のナツト部材50の上面は反射投影光学
系7の焦点面に対し精密に平行となるように作られてい
る。このナツト部材50の上面に当接する浮遊パッド4
9の下面は空気軸受となっていて、該浮遊パッド49は
ナット50上面上をほとんど抵抗なく水平運動できる上
に、鋼球48の径は十分に小さく、鋼球48とステージ
42あるいは浮遊パッド490円すい面との摩擦力はほ
とんど無視できる。したがって、鋼球48と浮遊パッド
49は、2方向の送り量をステージ42に伝達すると同
時に、他の送り機構によるステージ42の水平面内の動
きおよび傾斜の抵抗とならない。62は浮遊・七ツド4
3 、49に空気乞供給するチューブである。
The upper surface of the nut member 50 of the Z direction feeding mechanism is made to be precisely parallel to the focal plane of the reflection projection optical system 7. Floating pad 4 that comes into contact with the upper surface of this nut member 50
The lower surface of the floating pad 49 is an air bearing, and the floating pad 49 can move horizontally on the upper surface of the nut 50 with almost no resistance. The frictional force with the conical surface can be almost ignored. Therefore, the steel ball 48 and the floating pad 49 transmit the feed amount in two directions to the stage 42, and at the same time do not resist the movement and tilting of the stage 42 in the horizontal plane by other feeding mechanisms. 62 is floating/nanatsudo 4
This is a tube that supplies air to 3 and 49.

本実施例は以上のようにして、6組の送り機構のナツト
部材のそれぞれと、ステージ42との間に、各送り機構
の送り方向の力のみを伝達し、送り方向以外の1IiI
Iき乞許容する伝動部拐を介装して、前記6組の送り機
構がそれぞれ独立してステージ42を駆動し得るように
構成しである。
In this embodiment, as described above, only the force in the feeding direction of each feeding mechanism is transmitted between each of the nut members of the six feeding mechanisms and the stage 42, and
The six sets of feed mechanisms are configured to be able to drive the stage 42 independently, by interposing a transmission section that allows the transmission.

次に、上述のように構成したステージ制御装置の使用方
法について説明する。本実施例は自動制御装置(図示せ
ず)を設けてセンサや作動機器を電気的に自動操作して
次のように作動せしめる。
Next, a method of using the stage control device configured as described above will be explained. In this embodiment, an automatic control device (not shown) is provided to electrically and automatically operate the sensors and actuating devices as follows.

まず、ウェハ4はステージ42上面に真空吸着される。First, the wafer 4 is vacuum-adsorbed onto the upper surface of the stage 42.

つついて、静電容量型近接センサー54によジウエハ4
表面に非接触で該表面の、反射投影光学系7の焦点面か
らのずれ量が、格子状に配された9点の検出点56につ
いて検出される。その後、この9点のずれ量から、ウエ
ノ14の表面の近似平面と、反射投影光学系70伴点面
との間のずれと傾キを求める。つづいて、3個の7ヤル
スモーク52を回転させてナツト部材50ヲ適宜上下さ
ぞ、ステージ42馨上下動および傾斜させて前記のずれ
と傾きを補正する。このとき、浮動・七゛ソド43,5
’Nま前述のように、その両端の、球面および平面を空
気軸受面としているので、ステージ42の上下動および
傾きの抵抗とならず、また、鋼球48も径が十分小さい
ため、ステージ42の傾きの抵抗とはならない。
The capacitive proximity sensor 54 detects the wafer 4.
The amount of deviation of the surface from the focal plane of the reflection projection optical system 7 is detected at nine detection points 56 arranged in a grid without contacting the surface. Thereafter, the deviation and inclination between the approximate plane of the surface of the Ueno 14 and the node plane of the catoptric projection optical system 70 are determined from the deviation amounts of these nine points. Subsequently, the three 7-bar smokes 52 are rotated to move the nut member 50 up and down as appropriate, and to move the stage 42 up and down and tilt it to correct the above-mentioned deviation and inclination. At this time, floating 7゛ Sodo 43,5
As mentioned above, since the spherical and flat surfaces at both ends serve as air bearing surfaces, there is no resistance to the vertical movement and tilting of the stage 42, and since the steel ball 48 has a sufficiently small diameter, the stage 42 It is not the resistance of the slope.

その後、再度センサー54によりウェハ4表面の、焦点
面からのずれ量が検出され、ウェハ4表面の近似平面が
十分高精度に該焦点面に一致していることを確認する動
作が行なわれる。ここで、もしウェハ4表面の近似平面
が該焦点面に一致していない場合、再度ステージ42の
高さおよび傾きの補正ならびにずれ量検出が繰返される
。以上のように、ウェハ4は、その近似平面が反射投影
式光学系7の焦点面に一致するように、高さ及び傾きを
位置ぎめされる。即ち、Z軸方向の平行移動の位置と、
X、Y軸回りの回動姿勢との3自由度が位置ぎめされる
。このとき、3個の鋼球48の中心点によって決められ
る平面はウェハ4表面の傾きを補正する補正平面となる
Thereafter, the sensor 54 again detects the amount of deviation of the surface of the wafer 4 from the focal plane, and an operation is performed to confirm that the approximate plane of the surface of the wafer 4 coincides with the focal plane with sufficiently high accuracy. Here, if the approximate plane of the surface of the wafer 4 does not match the focal plane, the correction of the height and inclination of the stage 42 and the detection of the amount of deviation are repeated again. As described above, the height and inclination of the wafer 4 are positioned so that its approximate plane coincides with the focal plane of the catoptric optical system 7. That is, the position of parallel movement in the Z-axis direction,
Three degrees of freedom including rotational posture around the X and Y axes are positioned. At this time, the plane determined by the center points of the three steel balls 48 becomes a correction plane for correcting the inclination of the surface of the wafer 4.

つづいて、ウェハ4上に設けた合せマークとマスクツ9
ターン内の合せマークラ、ハルスモータ46゜60によ
りナツト部材44 、58 ’Y適宜送って一致させる
動作が行なわれる。このとき、浮動パッド49はその下
面乞空気軸受面としているのでステージ42移動の抵抗
とはならず、浮遊ノ9ツド43 、57も両端の球面お
まひ平面ケ空気軸受面としているためステージ42の移
動1回転の抵抗とはならない。また、ステージ42を支
えている鋼球48ば、浮遊パッド49あるいはステージ
420円錐面と揺動、或いは回転することなく、固定の
状態でステージ42と共に浮遊・ゼット49に支持され
て、反射投影光学系7の焦点面と精密に平行なナット部
材50上面を移動する。
Next, the alignment mark provided on the wafer 4 and the mask 9
The alignment mark cra in the turn and the Hals motor 46.degree. 60 move the nut members 44, 58'Y appropriately to bring them into alignment. At this time, the floating pad 49 does not act as a resistance to the movement of the stage 42 because its lower surface is an air bearing surface, and the floating pads 43 and 57 are also spherical and flat at both ends, so the stage 42 It does not provide resistance for one rotation of movement. In addition, the steel ball 48 supporting the stage 42 does not swing or rotate with the floating pad 49 or the conical surface of the stage 420, but is supported by the floating jet 49 together with the stage 42 in a fixed state, and the reflected projection optical The upper surface of the nut member 50 is moved precisely parallel to the focal plane of the system 7.

この場合、1!i密に負えばナツト部材50の上面と焦
点面との平行度の狂いによって上下方向の狂いを生じる
が、本実施例のようにナツト部材刃の上面ケ高精度で焦
点面と平行に仕上げてふ−くと、サブミクロンオーダー
の位置ぎめについても上記の上下方向の狂いは無視する
ことができる程度に微小である。
In this case, 1! If the nut member 50 is loaded tightly, the top surface of the nut member 50 and the focal plane will be out of parallel with each other, resulting in vertical deviation, but as in this embodiment, the top surface of the nut member blade is finished with high precision to be parallel to the focal plane. As a matter of fact, even for positioning on the order of submicrons, the above-mentioned deviation in the vertical direction is so small that it can be ignored.

このようにして、1組の送り機構を構成しているパルス
モータ46によるステージ42のX方向の位置ぎめと、
2組の送り機構乞構成しギいる2個のノ4ルスモータ6
0の同期回転によるステージ42のY方向位置ぎめとが
行なわれる。そして、この操作と併行して上記2個のパ
ルスモータ60の差動によジステージ乾の2軸回りの回
動が行なわれる。
In this way, the stage 42 is positioned in the X direction by the pulse motor 46 that constitutes one set of feeding mechanisms, and
Two sets of four-wheel motors 6 constitute two sets of feed mechanisms.
The stage 42 is positioned in the Y direction by synchronous rotation of zero. In parallel with this operation, the stage roller is rotated about two axes by differential operation of the two pulse motors 60.

以上説明゛したように、6組の送!l1機構がそれぞれ
独立に、かつ直接的にステージ42ヲ押動して6自由度
の制御を行なうので位置ぎめ剛性が高い。
As explained above, 6 sets of shipping! Since the l1 mechanisms independently and directly push the stage 42 to control six degrees of freedom, positioning rigidity is high.

!*、スy−シ42は送ジ機構を担持していないので軽
量であり、従って制御性を妨げない。
! *Since the slider 42 does not carry a feeding mechanism, it is lightweight and therefore does not hinder controllability.

その上、本実施例はウェハ表面に対して非接触的に位置
検出を行1でうので、ウェハ表面を傷っけたり汚損した
りする虞れが無い。
Moreover, since this embodiment performs position detection on the wafer surface in a non-contact manner in step 1, there is no risk of damaging or staining the wafer surface.

第5図の実施例1において、水平方向の位置決めに鋼球
48と浮遊パッド49から成る伝達機構を用い、垂直方
向に浮遊パッド43から成る伝達機構を用いでも前述の
効果と全く同じ効果が得られる。
In the first embodiment shown in FIG. 5, the same effect as described above can be obtained by using a transmission mechanism consisting of a steel ball 48 and a floating pad 49 for positioning in the horizontal direction, and using a transmission mechanism consisting of a floating pad 43 in the vertical direction. It will be done.

第6図は上記と異なる実施例を示す垂直断面図で、ステ
ージ42に固定された軸63をガイドとして、   ゛
ボールブツシュ64は該軸方向に転勤可能となっている
。さらに、ボールブツシュ64には外周を球面としたフ
ォロアー65が組合され、ナツト部材刃らの送り量を伝
達すると共に、上下動2前後進。
FIG. 6 is a vertical sectional view showing a different embodiment from the above, in which a ball bush 64 is movable in the direction of the shaft 63 fixed to the stage 42 as a guide. Furthermore, a follower 65 having a spherical outer periphery is combined with the ball bush 64, and transmits the amount of feed from the nut member blades, as well as vertically moving back and forth two times.

回動、傾斜(2方向)の5つのステージ42の動きの抵
抗とならない自由度を有する伝達機構夕構成している。
The transmission mechanism is configured to have a degree of freedom that does not create resistance to the movement of the five stages 42, including rotation and tilting (in two directions).

マタ、ボールブツシュ64とフォロアー65の組合せを
用いる代りに、軸方向の直接運動と軸の回りの回転運動
が可能な軸受構成のフォロアー7用いても同一の効果が
得られる。
Instead of using the combination of the ball bush 64 and the follower 65, the same effect can be obtained by using the follower 7 having a bearing structure that allows direct movement in the axial direction and rotational movement around the axis.

またieラッド7および環状のボール列68ならひに傾
斜パッド69は、前記実施例における空気軸受付きの浮
遊パッド49を環状のビール列手段68で置き換えたも
ので、上記の空気軸受付浮遊・ぐラドと同様の自由度を
有する伝達機構を構成するのは明白であり、前例と同様
の作用、効果がある。
In addition, the ie rad 7 and the annular ball row 68 and the tilted pad 69 are obtained by replacing the floating pad 49 with an air bearing in the above embodiment with an annular beer row means 68. It is obvious that it constitutes a transmission mechanism having the same degree of freedom as the RAD, and has the same functions and effects as the previous example.

第7図は更に異なる実施例を示す。本実施例はステージ
42に同定した軸72の中央部に球面座72aを形成し
てフォロアー73を傾動2回動自在に支承して、上側に
おけるボールブツシュ64と同様に上下方向の相対運動
をフリーにしである。本例においても7オロアー73の
外周を球面に形成する。
FIG. 7 shows a further different embodiment. In this embodiment, a spherical seat 72a is formed in the center of the shaft 72 identified on the stage 42, and the follower 73 is supported so as to be tiltable and rotatable twice, thereby freeing relative movement in the vertical direction like the ball bush 64 on the upper side. It is. Also in this example, the outer periphery of the 7-orer 73 is formed into a spherical surface.

また、本実施例は2方向の送り機構として柱状ピエゾ素
子75ヲ用い、両端の金具74を介してステージ42と
調整ネジ76との間に介装しである。このように構成°
しても、柱状ピエゾ素子75ば、2方向以外の動きを許
容し、かつ、その印字電圧に比例した伸縮をして2方向
の送り機能を果たすので、前記の実施例と同様に作用す
る。
Further, in this embodiment, a columnar piezo element 75 is used as a two-direction feeding mechanism, and is interposed between the stage 42 and the adjustment screw 76 via metal fittings 74 at both ends. Configure like this °
However, since the columnar piezo element 75 allows movement in directions other than two directions, expands and contracts in proportion to the printing voltage, and performs the two-direction feeding function, it functions in the same manner as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明のステージ制御装置は、X方
向に設けた1組の送り機構と、Y方向に設けた2組の送
り機構と、2方向に設けた3組の送9機構と乞有し、か
つ、上記6組の送り機構のそれぞれとステージとの間に
、轟該送り機構の送り方向の力のみを伝達して送り方向
以外の動きを許容する徂動部材を介装し、前記6絹の送
り機構がそれぞれ独立してステージを直接的に駆動し得
るように構成することにより、ステージの6自由度をそ
れぞれ高精度で制御することができ、位置ぎめの剛性が
高く、しかも制御性が良いという優れた実用的効果を奏
する。
As detailed above, the stage control device of the present invention includes one set of feed mechanisms provided in the X direction, two sets of feed mechanisms provided in the Y direction, and three sets of feed mechanisms provided in the two directions. A moving member is interposed between each of the six sets of feeding mechanisms and the stage to transmit only the force of the feeding mechanism in the feeding direction and to allow movement in directions other than the feeding direction. By configuring each of the six silk feeding mechanisms to be able to directly drive the stage independently, each of the six degrees of freedom of the stage can be controlled with high precision, and the rigidity of positioning is high. Moreover, it has an excellent practical effect of good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反射投影式ウェハ露光装置の概要的な正面図、
第2図は従来のウェハ搭載装置の垂直断面図、第3図乃
至第5図は本発明のステージ制御装置の一実格例乞示し
、第3図は垂直断面図、第4図は平面図、第5図は部分
拡大断面図である。 第6図及び第7図はそれぞれ上記と異なる実施例の部分
拡大断面図である。 4・・・ウェハ、7・・・反射投影式光学系、4]・・
・ウェハ搭載装置ベース、42・・・ステージ、43・
・・浮遊ノJ’ツド、44・・・ナツト部材、45・・
・送ジネジ、46・・・パルスモータ−147・・・バ
ネ、48・・・鋼球、49・・・浮遊パッド、50・・
・ナツト部材、51・・・送ジネジ、52・・・パルス
モータ、53・・・バネ、54・・・静電容量型近接セ
ンサー、55・・・空洞部、56・・・検出点、57・
・・浮遊パッド、58・・・ナツト部材、59・・・送
りネジ、60・・・パルスモータ、61・・・バネ、6
2・・・チューブ、63・・・軸、64・・・ポールブ
ツシコ、65・・・フォロアー、66・・・ナツト、6
7・・・パッド、68・・・ビール列手段、69・・・
傾g+パッド、70・・・鋼球、7]・・・ナツト、7
2・・・軸、73・・・フォロアー、74・・・金具、
75・・・柱状ピエゾ累子、76・・・調整ネジ。 代理人弁理士  秋 本  正  実 第3図 第4図 怜5図 第6図 第7図
Figure 1 is a schematic front view of a reflection projection type wafer exposure apparatus.
FIG. 2 is a vertical sectional view of a conventional wafer mounting device, FIGS. 3 to 5 show an actual example of the stage control device of the present invention, FIG. 3 is a vertical sectional view, and FIG. 4 is a plan view. , FIG. 5 is a partially enlarged sectional view. FIGS. 6 and 7 are partially enlarged cross-sectional views of embodiments different from those described above. 4...Wafer, 7...Reflection projection optical system, 4]...
・Wafer mounting equipment base, 42...stage, 43・
・・Floating J'd, 44・・Nut member, 45・・
・Feed screw, 46...Pulse motor-147...Spring, 48...Steel ball, 49...Floating pad, 50...
- Nut member, 51... Feed screw, 52... Pulse motor, 53... Spring, 54... Capacitive proximity sensor, 55... Cavity, 56... Detection point, 57・
...Floating pad, 58...Nut member, 59...Feed screw, 60...Pulse motor, 61...Spring, 6
2...Tube, 63...Shaft, 64...Pole pusher, 65...Follower, 66...Nut, 6
7... Pad, 68... Beer row means, 69...
Tilt g + pad, 70...Steel ball, 7]...Nut, 7
2...Axis, 73...Follower, 74...Metal fittings,
75... Column piezo resistor, 76... Adjustment screw. Representative Patent Attorney Tadashi Akimoto Figure 3, Figure 4, Rei, Figure 5, Figure 6, Figure 7

Claims (1)

【特許請求の範囲】[Claims] X方向に設けた1組の送り機構と、Y方向に設けた2組
の送り機構と、2方向に設けた3組の送り機構と乞有し
、かつ、上記6組の送り機構のそれぞれとステージとの
間に、各送り機構の送ジ方向の力のみを伝達して送り方
向以外の動きを許容する伝動部相乞介装し、前記6組の
送り機構がそれぞれ独立してステージを直接的に駆動し
得るように構成したこと乞特徴とする、6自由度を有す
るステージの制御装置。
One set of feed mechanisms provided in the X direction, two sets of feed mechanisms provided in the Y direction, and three sets of feed mechanisms provided in two directions, and each of the six sets of feed mechanisms described above. A transmission unit is interposed between the stage and the feed mechanism that transmits only the force in the feed direction and allows movement in directions other than the feed direction, and each of the six sets of feed mechanisms independently directly connects the stage. A control device for a stage having six degrees of freedom, characterized in that it is configured so as to be able to be driven automatically.
JP113383A 1983-01-10 1983-01-10 Controller of stage with freedom of six Granted JPS59129636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP113383A JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP113383A JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63320646A Division JPH029550A (en) 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage

Publications (2)

Publication Number Publication Date
JPS59129636A true JPS59129636A (en) 1984-07-26
JPH0134746B2 JPH0134746B2 (en) 1989-07-20

Family

ID=11492940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP113383A Granted JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Country Status (1)

Country Link
JP (1) JPS59129636A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299038A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Stage for positioning
JPS62288311A (en) * 1986-06-05 1987-12-15 Isuzu Motors Ltd Pent roof type direct injection type internal combustion engine
JPS6335991U (en) * 1986-08-25 1988-03-08
JPS63193089A (en) * 1987-02-06 1988-08-10 株式会社日立製作所 Freedom-degree fine adjustment device
FR2614225A1 (en) * 1987-04-27 1988-10-28 Framatome Sa DEVICE FOR ADJUSTING THE WORKING POSITION OF A MACHINE FOR MACHINING A CHAMFER AND USE OF THIS DEVICE.
JPS63166977U (en) * 1987-04-18 1988-10-31
JPS6471640A (en) * 1987-09-14 1989-03-16 Matsushita Electric Ind Co Ltd One-stage six-degree of freedom accurate positioning table
JPH01250891A (en) * 1988-03-31 1989-10-05 Toshiba Corp Plane positioning device
JPH02139146A (en) * 1988-11-15 1990-05-29 Matsushita Electric Ind Co Ltd Positioning table of one step six degrees of freedom
WO1991006396A2 (en) * 1989-10-24 1991-05-16 Lk Limited Determination of spacial relationships
JPH03224006A (en) * 1990-01-30 1991-10-03 Matsushita Electric Ind Co Ltd Numerical controller
JPH03110399U (en) * 1990-02-28 1991-11-12
JPH05506959A (en) * 1990-10-22 1993-10-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Dual mode Z stage
JPH09317767A (en) * 1996-05-28 1997-12-09 Nippon Seiko Kk Positioning device
JP2000271825A (en) * 1999-03-25 2000-10-03 Hirata Corp Article carrying and assembling device and method therefor
JP2003062733A (en) * 2001-08-27 2003-03-05 Sumitomo Heavy Ind Ltd Stage apparatus
JP2006210659A (en) * 2005-01-28 2006-08-10 Psc Kk Gas control rotary moving device and a gas control actuator
JP2006309654A (en) * 2005-05-02 2006-11-09 Psc Kk Gas-controlled rotating and moving apparatus and gas-controlled actuator
JP2006334728A (en) * 2005-06-02 2006-12-14 Yaskawa Electric Corp Substrate sucking device, substrate supporting body and substrate carrier device
JP2007054953A (en) * 2006-11-21 2007-03-08 Nsk Ltd Positioning device
EP0908719B1 (en) * 1997-10-07 2007-05-30 Hitachi Construction Machinery Co., Ltd. Stage unit used for sample positioning and scanning probe microscope with such a stage unit
CN108127452A (en) * 2017-12-04 2018-06-08 广东开放大学(广东理工职业学院) A kind of fixture for inclined-plane part processing
JP2018115904A (en) * 2017-01-17 2018-07-26 株式会社エヌエステイー Resolver characteristic measurement method, and measurement device
JPWO2019049233A1 (en) * 2017-09-06 2020-08-20 ホリゾン・インターナショナル株式会社 Cutting machine
JP2020126126A (en) * 2019-02-04 2020-08-20 キヤノン株式会社 Stage device and minute manipulation equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
JP2005028202A (en) * 2003-07-07 2005-02-03 Hitachi Industries Co Ltd Table parallelism adjusting device and dispenser using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526618B2 (en) * 1985-10-25 1993-04-16 Hitachi Ltd
JPS6299038A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Stage for positioning
JPS62288311A (en) * 1986-06-05 1987-12-15 Isuzu Motors Ltd Pent roof type direct injection type internal combustion engine
JPS6335991U (en) * 1986-08-25 1988-03-08
JPS63193089A (en) * 1987-02-06 1988-08-10 株式会社日立製作所 Freedom-degree fine adjustment device
JPS63166977U (en) * 1987-04-18 1988-10-31
EP0289389A1 (en) * 1987-04-27 1988-11-02 Framatome Position-adjusting apparatus for a chamfering device, and use of this apparatus
US4824301A (en) * 1987-04-27 1989-04-25 Framatome Device for adjusting the working position of a machine for producing a chamfer
FR2614225A1 (en) * 1987-04-27 1988-10-28 Framatome Sa DEVICE FOR ADJUSTING THE WORKING POSITION OF A MACHINE FOR MACHINING A CHAMFER AND USE OF THIS DEVICE.
JPS6471640A (en) * 1987-09-14 1989-03-16 Matsushita Electric Ind Co Ltd One-stage six-degree of freedom accurate positioning table
JPH01250891A (en) * 1988-03-31 1989-10-05 Toshiba Corp Plane positioning device
JPH02139146A (en) * 1988-11-15 1990-05-29 Matsushita Electric Ind Co Ltd Positioning table of one step six degrees of freedom
WO1991006396A2 (en) * 1989-10-24 1991-05-16 Lk Limited Determination of spacial relationships
WO1991006396A3 (en) * 1989-10-24 1991-07-25 Lk Ltd Determination of spacial relationships
JPH03224006A (en) * 1990-01-30 1991-10-03 Matsushita Electric Ind Co Ltd Numerical controller
JPH03110399U (en) * 1990-02-28 1991-11-12
JPH05506959A (en) * 1990-10-22 1993-10-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Dual mode Z stage
JPH09317767A (en) * 1996-05-28 1997-12-09 Nippon Seiko Kk Positioning device
EP0908719B1 (en) * 1997-10-07 2007-05-30 Hitachi Construction Machinery Co., Ltd. Stage unit used for sample positioning and scanning probe microscope with such a stage unit
JP2000271825A (en) * 1999-03-25 2000-10-03 Hirata Corp Article carrying and assembling device and method therefor
JP2003062733A (en) * 2001-08-27 2003-03-05 Sumitomo Heavy Ind Ltd Stage apparatus
JP2006210659A (en) * 2005-01-28 2006-08-10 Psc Kk Gas control rotary moving device and a gas control actuator
JP2006309654A (en) * 2005-05-02 2006-11-09 Psc Kk Gas-controlled rotating and moving apparatus and gas-controlled actuator
JP2006334728A (en) * 2005-06-02 2006-12-14 Yaskawa Electric Corp Substrate sucking device, substrate supporting body and substrate carrier device
JP4574453B2 (en) * 2005-06-02 2010-11-04 株式会社安川電機 Substrate adsorption device, substrate support and substrate transfer device
JP2007054953A (en) * 2006-11-21 2007-03-08 Nsk Ltd Positioning device
JP2018115904A (en) * 2017-01-17 2018-07-26 株式会社エヌエステイー Resolver characteristic measurement method, and measurement device
JPWO2019049233A1 (en) * 2017-09-06 2020-08-20 ホリゾン・インターナショナル株式会社 Cutting machine
CN108127452A (en) * 2017-12-04 2018-06-08 广东开放大学(广东理工职业学院) A kind of fixture for inclined-plane part processing
CN108127452B (en) * 2017-12-04 2023-12-12 广东开放大学(广东理工职业学院) Clamp for machining inclined surface part
JP2020126126A (en) * 2019-02-04 2020-08-20 キヤノン株式会社 Stage device and minute manipulation equipment

Also Published As

Publication number Publication date
JPH0134746B2 (en) 1989-07-20

Similar Documents

Publication Publication Date Title
JPS59129636A (en) Controller of stage with freedom of six
EP0327949B1 (en) Alignment stage device
US8104752B2 (en) Integrated large XY rotary positioning table with virtual center of rotation
JPH029550A (en) Driving device for six-degree-freedom fine moving stage
EP0027570B1 (en) Apparatus for prealignment of a wafer
JPS6052025A (en) Lithographic device
KR100434567B1 (en) Projective exposing apparatus and method
JPH0257333B2 (en)
JPH0685033A (en) Positioning device provided with two parallel actuating manipulators and optical lithographic apparatus provided with above positioning device
GB2568243A (en) Planarity alignment of stencils and workpieces
US6628391B2 (en) Method for aligning two objects
JP2824463B2 (en) Precision three-dimensional shape measuring device
JPH09293773A (en) Alignment device and exposure device
TW201203440A (en) Supporting device and light exposure device
JPS62152632A (en) Table device
JP2020003213A (en) X-ray CT system for measurement
JP2006100590A (en) Proximity aligner
JPH0536582A (en) Positioning stage apparatus
JPH0454369B2 (en)
JPH1064786A (en) Moving stage
JP4487688B2 (en) Step-type proximity exposure system
JPS6144429Y2 (en)
JP4507362B2 (en) X-ray inspection equipment
JPH0232359Y2 (en)
JPH09275064A (en) Alignment method/device for substrate