JPS59129261A - Electrically conductive synthetic resin molding - Google Patents

Electrically conductive synthetic resin molding

Info

Publication number
JPS59129261A
JPS59129261A JP324483A JP324483A JPS59129261A JP S59129261 A JPS59129261 A JP S59129261A JP 324483 A JP324483 A JP 324483A JP 324483 A JP324483 A JP 324483A JP S59129261 A JPS59129261 A JP S59129261A
Authority
JP
Japan
Prior art keywords
synthetic resin
conductive
electrically conductive
molecular
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP324483A
Other languages
Japanese (ja)
Inventor
Hiromochi Muramatsu
弘望 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP324483A priority Critical patent/JPS59129261A/en
Publication of JPS59129261A publication Critical patent/JPS59129261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the titled molding which is lightweight and inexpensive, has desired electrical conductivity and is suitable for use as an electromagnetic shielding part, by blending a filler composed of an electrically conductive org. or inorg. high-molecular material or a low-molecular charge transfer complex with a synthetic resin base material. CONSTITUTION:At least one filler selected from among an electrically conductive org. high-molecular material (A) obtd. by doping an org. high-molecular material such as polyacetylene or poly-p-phenylene with a required quantity of an electron acceptor such as bromine or iodine or an electron donor such as Na or Li, an electrically conductive inorg. high-molecular material (B) such as -(SN)x- type inorg. high-molecular material, and a low-molecular charge transfer complex (C) such as a tetracyanoquinodimethane/tetrathiafulvalene complex is used. The filler is incorporated in a base material composed of a synthetic resin such as polyethylene or polypropylene, and the mixture is molded into the desired shape to obtain the desired electrically conductive synthetic resin molding.

Description

【発明の詳細な説明】 本苑明【よ電磁シールドを口約とりる/9電利金成樹脂
成形品に関づる。
[Detailed Description of the Invention] This invention relates to electromagnetic shielding/9 electricity molded plastic products.

従来の電磁シールj〜を「1的どした電−1’ 菰ii
”iの合成樹脂性の枠体には次のものが知られている、
7第1に枠体の母4Aを) li’i成りるプラスチッ
クスの表面に金1jlR製のj19膜を被覆したもの、
9′)2にプラスチックスのパルツク内に導電性を右り
る累(A、例えば金属、カー小ン繊庁11等を充j眞し
Iこ1つのが知られている。どころか上述の第1のしの
【31グノス1ツクス表面に金属被膜を形成するために
必然的に二次加工をづる必要があり、量産性か悪く、/
ラス升ツクスの低コス1へ畠吊産月という利点を没7i
11 L)でいる。又、表面の金属伝導層被膜は剥1ハ
11の恐れもある。一方、第2のものは電磁シールド効
果を高める必22性から電気伝導麿を、:hめる]1的
の/=め、金属やカーボン繊維の導電性物′?′fの充
j眞11を多くJ−ると、1:i1祠物質であるプラス
チックスの有するΦY ’、n”、 ’l’、l、高成
形性、i!′!ln械的強e 性ヲJf)失i−ルトい
う欠点がある。又、導電性フイーラ自体の製造1+ll
i焔が高く吊Iq性にも問題がある。
Conventional electromagnetic shield
``I's known synthetic resin frames include the following:
7 First, frame mother 4A) The surface of the plastic made of li'i is coated with a j19 film made of gold 1jlR,
9') 2) It is known that a conductive material (A, for example, a metal, carbon fiber, etc.) is added to the inside of the plastic pulp. 1. [31 Gnos] In order to form a metal film on the surface of the 1stx, secondary processing is inevitably required, which makes it difficult to mass produce.
Lose the advantage of Hatatsuri's birth month to the low cost 1 of Lasho Tsukusu 7i
11 L). Furthermore, there is a risk that the metal conductive layer coating on the surface may peel off. On the other hand, the second one uses electrically conductive materials to enhance the electromagnetic shielding effect. When the amount of 'f' is increased, ΦY ', n'', 'l', l, high formability, i!'!ln mechanical strength e of the plastic material is 1:i1. There is a drawback that the conductivity is lost.Also, the production of the conductive filler itself is
There is also a problem with high flame and hanging power.

本発明は、以上の従来の欠点を改良づるために成された
しの−(djす、合成樹脂成形品の母体物v1で゛ある
プラスチックスに母体プラスチックスの利L+j 4j
J性を劣化さけることのない導電性イj賎に五分子物v
′(等を〕、r−ラ又(J、パウダー状に充填させでて
さ″る導電性合成樹脂成形品を提供リ−ることを目的と
づる3、 即し、本発明はグラスデックススから成る母体’、A 
 ′A’il  に 、 尋電性付別高分子物質、導電性無機高分子物質、又(,
1低分子電i’sj移動錯体のうら1又は2以上を充填
々Aどし−C含イ1さUたことを特徴とする導電性合成
樹脂成形品から成る。
The present invention has been made to improve the above-mentioned conventional drawbacks.
A pentamolecular substance is used as a conductive material without deteriorating the J property.
The object of the present invention is to provide a conductive synthetic resin molded product that can be filled with powder and released. A matrix consisting of ',A
'A'il also includes polymeric substances with electrical properties, conductive inorganic polymeric substances, and (,
The conductive synthetic resin molded article is characterized in that one or more of the backs of a low molecular weight electron transfer complex are filled with A and C.

本発明で使用されるプラスヂックス母体4A料に光1眞
される導電性物質は、導電性有機高分子物質、導電性Q
g(l幾高分子物質、低分子電荷移1FII(4i体、
のうちの1種又は2種以上が用いられる。ここで、導電
性有機高分子物質には、ポリアセチレン、ポリピロール
、ボリパラフ、rニレン、ボリヂ丁二1ノン、ポリバラ
フェニレンビニレン、ポリアセチレン、等の物質に臭素
(Br)、=+つ崇(1)”7のハロゲン原素、又は5
フツ化砒素(ASFs>、等の電子受容体をドープして
1−)クイfの゛ト導1ホシリ電性を示すもの、又はナ
トリウム(N、ll ) 、リチウム(L、i>等のア
ルhり金属の電子供!j体をドープしてNタイプの半導
体導電性を示Jものを使用づることかできる。
The conductive material used in the present invention, which is exposed to light on the 4A matrix material, is a conductive organic polymer material, a conductive Q
g (l geometric polymer substance, low molecular charge transfer 1 FII (4i body,
One or more of these may be used. Here, conductive organic polymer substances include substances such as polyacetylene, polypyrrole, polyparafine, r-nylene, polyvinylene vinylene, polyacetylene, and bromine (Br), “7 halogen elements, or 5
Those doped with electron acceptors such as arsenic fluoride (ASFs), which exhibit 1- It is also possible to use metals that exhibit N-type semiconductor conductivity by doping them with electrons.

これらの有機高分子物質の電気伝導率は、上述のビーパ
ン1〜濃度を変化ざUることにより絶縁体伝導率から金
属伝導率まで任意に制御づることが可能である。
The electrical conductivity of these organic polymer substances can be arbitrarily controlled from insulator conductivity to metal conductivity by changing the concentration of the above-mentioned bean.

従って、これらの導電性物質を充填されてでさた合成樹
脂成形品は導電性を有し、電磁シールド部品となり1q
る。又、導電性物Y![にはツタ【1シアニン類似47
i造のポリマーから成る金属配位高分子、ポリ−4−ビ
ニルピリジン−ヨウ素111体の電611移動11冒Δ
C1−(SN)X−型の無機高分子、テトラジノ′ノニ
1−ノジメタン(TCNQ’)−テトラチアフルバレン
(i−T 1〜)111体から成る低分子電荷移動11
1休弯を用いることができる。これらの導電性物7′1
の光暎吊を制御り゛れは合成樹脂成形品の導電率を広い
範囲で変えられる。この導電性物質はフイー−ノ状dす
るいはパウダー状、任意の形で混合りることが可能であ
る。
Therefore, synthetic resin molded products filled with these conductive substances have conductivity and become electromagnetic shielding parts.
Ru. Also, conductive material Y! [Ivy [1 Cyanine Similarity 47]
Electron 611 migration 11 influence Δ of metal coordination polymer consisting of i-structured polymer, poly-4-vinylpyridine-iodine 111 substance
C1-(SN)X-type inorganic polymer, low molecule charge transfer 11 consisting of 111 tetrazino'noni-1-nodimethane (TCNQ')-tetrathiafulvalene (i-T1~) bodies
One rest can be used. These conductive substances 7'1
By controlling the light susceptibility, the conductivity of synthetic resin molded products can be changed over a wide range. This electrically conductive material can be mixed in any desired form, such as fin-like or powder-like.

以下、4(発明を実施例に基づいて更に詳しく説明覆る
Hereinafter, the invention will be explained in more detail based on 4 (Examples).

第1図は容器型の導電性合成樹脂成形品の一1M1i1
1It面斜視図である。10はポリエチレンから成るA
\光111J成形品のノラスヂックスス母体で゛ある。
Figure 1 shows a container-shaped conductive synthetic resin molded product.
1It is a perspective view of the plane. 10 is A made of polyethylene
\It is the parent material of Norasudix for the Hikari 111J molded product.

ポリエチレンでて゛きたプラスチックススI′i1体1
0に(、j4、と9電tlj物:?’i −12がフィ
ーラ状に充填されていイ)、1該導電性物V″(は、ポ
リアセチレンに過塩素酸イオン(C104)をドーピン
グして、その電気1人ン、ワ・ぐを制使II t、−’
Cいる。
Plastic soot I'i made of polyethylene 1 body 1
0 (, j4, and 9 conductive material: ?'i -12 is filled in the form of a filler), 1. The conductive material V'' (is polyacetylene doped with perchlorate ions (C104) , that electric one, wa-guwo-seishi II t,-'
There is C.

第2図【、1、ポリアセチレンに過jn素酸イΔン(C
IO4’)をドープしノζ揚合の電気化学的ドーピング
時間に対する電気伝導度の変化を示しl〔グラフである
。このグラフによれは、電気伝尋達・は半導体として1
.5X103Ω−)cm−’が+rvられることか分る
。又、第3図は、不純物を1〜−ブした導電性を有する
ポリアセチレンを母体物質のポリエチレンに混合づる混
合割合と、混合し、で(゛きた導電性合成樹脂の電気伝
導度とのjyj係を示し7.: (i+のである。ここ
でパラメータはポリアセチレンの電気伝導度である。こ
の様に〕r−ラ状のポリアセチレンの混合割合を制御覆
れば、ぞれを混合した合成樹脂の電気伝導度が容易に制
御し得ることかわかる。グラフから、ン9電・十′を1
0−”2(ン−’ Clll−7から1Ω−”cm”−
’程度まで変化ざけ1qることが分る。
Figure 2 [, 1. Polyacetylene with peroxide (C
This is a graph showing the change in electrical conductivity with respect to the electrochemical doping time in the case of doping with IO4'). According to this graph, electrical conduction is 1 as a semiconductor.
.. It can be seen that 5X103Ω-)cm-' is +rv. Figure 3 also shows the jyj relationship between the mixing ratio of conductive polyacetylene containing 1 to -5 impurities and the base material polyethylene, and the electrical conductivity of the conductive synthetic resin obtained by mixing. 7.: (i+) Here, the parameter is the electrical conductivity of polyacetylene. In this way, if the mixing ratio of r-ra-shaped polyacetylene is controlled, the electrical conductivity of the synthetic resin mixed with each It can be seen that the conductivity can be easily controlled.
0-"2(n-' Clll-7 to 1Ω-"cm"-
It can be seen that there is a change of 1q to the extent of '.

叉、シ!)電性物?・1を充填した合成樹脂から成る枠
体の外側に(,1保護層14が設(Jられている。イA
+ II等層は機械的強度を賄持覆−る任意の合成任1
11t’i物74iから構成される。
叉, shi! )Electric material?・A protective layer 14 is provided on the outside of the frame made of synthetic resin filled with A.
+ II layers are optional composite layers that provide mechanical strength.
11t'i object 74i.

以上の実施例で用いられた心電・1(1物V″1てあイ
)ポリアセチレンは、特に酸素と反応して酸化し易いど
い′)欠点がある。このために、合成樹脂成形品の18
j体物υ゛r cal、酸素や水分を透過しにくいもの
が望ましい。又、1月体物質は、導電性高分子どは反1
+i> L/ではイ1らイ「い。ざらにう9電性高分子
の熱劣化4、防止づ−るために射出成形温度が低いもの
が望ましい、具体的には300℃以下のものが良い。こ
のことを元えれば母体物質は上記のポリエチレンの他に
ポリプロピレン、ポリ塩化ごニリレン等を用いることが
できる。又、保品隻層1/1は母体物′?′(と同一て
あっても、異なる物質であってもがよりない。保護層の
物質は、ポリプロピレン、−フッ素i;°i脂等の)乏
水率が低い樹脂が望ましい。保護層1/1. LJl、
プラスチックス母体10が、外部の空気雰囲気どjと触
し7ない(〕1に、プラスチックスfり体10を両側面
から完1〉に覆うのが望ましい。しかし、保11μ層1
 < t;I必り゛しも必要なものではない。。
The electrocardiogram polyacetylene used in the above examples has the disadvantage that it is particularly susceptible to oxidation by reacting with oxygen.For this reason, synthetic resin molded products are 18
It is preferable to use a material that is difficult for oxygen and moisture to pass through. In addition, the January body material is a conductive polymer, etc.
+i>L/ is not suitable for 9. Thermal deterioration of electrically conductive polymers 4. In order to prevent thermal deterioration of electrolytic polymers, low injection molding temperatures are desirable, specifically 300℃ or less. Good.Based on this, the base material can be polypropylene, polychlorinated nylylene, etc. in addition to the above-mentioned polyethylene.Also, the warranty layer 1/1 is the same as the base material '?' It doesn't matter if it is made of a different substance.The material of the protective layer is preferably a resin with a low water depletion rate (such as polypropylene, -fluorine fat, etc.).Protective layer 1/1.LJl,
It is desirable that the plastic matrix 10 completely cover the plastic matrix 10 from both sides so that it does not come in contact with the external air atmosphere.
<t;I is not necessarily necessary. .

以−[、要1)るに本発明はプラスチックスからなる母
体(23′+1に導電性有機高分子物質、又は導電性ブ
HB41.ji I!′″!1分子物Y′■、又(J、
低分子電荷移動錯体のうちの1不・l”l、たは2Jス
1を充填)IAとして金石ざけてなる導電性合成樹脂成
形品である1゜ 従って、導電性物質の電気伝導度(二J、不純物の1−
一ビング債を適当に制御覆ることにJ、り変化さぼるこ
とができる。又その導電性物質の11体への)■z人割
合を制御リ−ることにJ、って成形晶白体の4電率を任
意に制御することができる。従って電磁シールド容器ど
して任意の導電キーを右りる青電I11合成樹脂成形品
が得られる。又、母体物質かプラスチックスからなり、
それに混合りる導電1(1物″?′(が右1幾高分子物
質等からなるためにf7) 1本とイ【じみが良く、加
工性が向上する。又、l匂4J +か11指のlIl:
 !5:t ’tr屓イ1うことかなく、軽く安1+I
liで、かつ、製j告が容易であるという効果を有して
いる。
In summary, the present invention comprises a matrix made of plastics (23'+1) containing a conductive organic polymer substance or a conductive block HB41.ji I!'''!1 molecular substance Y'■, and ( J.
It is a conductive synthetic resin molded product made of gold powder as IA filled with low molecular weight charge transfer complexes such as 1"l"l or 2J. Therefore, the electrical conductivity of the conductive material (2) J, impurity 1-
J, you can skip the changes to properly control the Bing bonds. Furthermore, by controlling the proportion of the conductive substance to the 11 bodies, the 4-electricity of the formed crystalline body can be arbitrarily controlled. Therefore, it is possible to obtain a Seiden I11 synthetic resin molded product that can be used as an electromagnetic shield container to hold any conductive key. It also consists of a matrix material or plastics,
The conductive material mixed with it (1 substance"?' (right 1) is f7 because it consists of a polymeric substance, etc.) 1 and I [bleeds well and improves workability. Also, l odor 4J + or 11 Finger lIl:
! 5: It's easy to get 1 + I without any trouble.
It has the advantage of being easy to manufacture and to make a report.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る導電性合成樹脂成形品
の4?Ir成を示した一部断面斜視図である。 0′!2図は1i″Ij実Mq例に85いで使用しl(
−導電111物Y′+のドーピング時間に対づる電気伝
導度の変化9h竹を示したグラフである。第3図は同実
施例にa3い(使用した導電性物質ボリア(2ヂレンの
ポリ−1−ルン141体に夕・jづる混入割合を変化さ
けて電気伝導度の変化りる(、12子を調べたグラフで
ある。 1・・・導電性合成樹脂成形品 10・・・ダンスブーツクス/(+ (ホ′12・・・
導電1り物質 1/I・・・1尿A層 待1狛出願人  口木電装株式会社 代]I11人  ;if vl、! −、J−、入用7
1同   弁理士  j添合 修 同   弁理士  丸山明夫
FIG. 1 shows a conductive synthetic resin molded product according to an embodiment of the present invention. FIG. 3 is a partially cross-sectional perspective view showing an Ir structure. 0'! Figure 2 is used at 85 for the 1i''Ij real Mq example.
- is a graph showing the change in electrical conductivity of 9h bamboo with respect to the doping time of the conductive material Y'+. Figure 3 shows the change in electrical conductivity of the conductive material Boria (2Dylene poly-1-141) in the same Example by changing the proportion of mixture (141, 12D). This is a graph obtained by examining 1... Conductive synthetic resin molded product 10... Dance boots/(+ (Ho'12...
Conductive 1 substance 1/I...1 Urine A layer Wait 1 Koma Applicant Kuchiki Denso Co., Ltd.] I11 people; if vl,! -, J-, necessary 7
1 Patent Attorney J Soai Shudo Patent Attorney Akio Maruyama

Claims (3)

【特許請求の範囲】[Claims] (1)ゾノスブックスから成るバ1体(、’I )l’
i+に、i7孕主1イ1石(;丈11°71分子物質、
導電性無機高分子物質、又(J低分子電荷移動ffi体
のうち1又は2以上を充填4Aとして含有させlここと
を特徴とする導電(J1合成ii1’l脂成形品、。
(1) One body consisting of Zonos Books (,'I)l'
i+, i7 fertile husband 1 i 1 stone (; length 11° 71 molecular substance,
A conductive (J1 synthetic ii1'l resin molded product) characterized by containing one or more of a conductive inorganic polymer substance, or (J low molecular charge transfer ffi body) as a filling 4A.
(2)前記シ9電性イ」賎高分子物質は、ボリアロチレ
ン、ボリビ[j−ル、ポリバラフェニレン、ポツプ−[
ニレン、ポリバラフェニレンビニ[ノン、ポリシアレヂ
レンのうち1種に、不純物をi〜−ブしく: (i/ 
B 4iル物’、l′ff C+% ルコト’ti ’
I、r徴と1− ルミルミ性合成(b・1脂成形品。
(2) The above-mentioned cyanoelectronic polymeric substance includes polyalrothylene, polyvinylene, polyparaphenylene, poppy
Add impurities to one of Nilene, Polybara Phenylene Vinyl [Non, Polysia Redylene]: (i/
B 4ilthing', l'ff C+% Rukoto'ti'
I, r sign and 1-luminescent synthesis (b・1 resin molded product.
(3)前記低分子電荷移動11i体は、デ1〜ラシアノ
ニ)−ノジメクン(丁CNQ)−デトラチアフルバIノ
ン(”l−’l−1)tjj体て゛あることを特徴とす
る特許晶求の範囲第1偵記載の導電性合成樹脂成形品。 (’l ) j’l’j jjl!ブ°ラスヂックスI
」体)r3 allは、ポリ゛Y−チレン、ポリプロピ
lノン、ポリ塩化ビニリj゛ンのう’51種であること
を特徴とする特許品求の範囲第1項記載の導電性合成樹
脂成形品、。
(3) The scope of the patent application characterized in that the low-molecular charge transfer 11i isomer is a de1~lacyanoni)-nodimecune (CNQ)-detrathiafulvanone ("l-'l-1)tjj" Conductive synthetic resin molded product described in the first investigation.
Conductive synthetic resin molding according to item 1 of the scope of the patent, characterized in that r3 all is one of poly(Y-ethylene), polypropylene, and polyvinylene chloride. Goods.
JP324483A 1983-01-12 1983-01-12 Electrically conductive synthetic resin molding Pending JPS59129261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP324483A JPS59129261A (en) 1983-01-12 1983-01-12 Electrically conductive synthetic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP324483A JPS59129261A (en) 1983-01-12 1983-01-12 Electrically conductive synthetic resin molding

Publications (1)

Publication Number Publication Date
JPS59129261A true JPS59129261A (en) 1984-07-25

Family

ID=11552040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP324483A Pending JPS59129261A (en) 1983-01-12 1983-01-12 Electrically conductive synthetic resin molding

Country Status (1)

Country Link
JP (1) JPS59129261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058744A1 (en) * 2011-10-18 2013-04-25 Empire Technology Development Llc Barriers and films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058744A1 (en) * 2011-10-18 2013-04-25 Empire Technology Development Llc Barriers and films
CN103827189A (en) * 2011-10-18 2014-05-28 英派尔科技开发有限公司 Barriers and films
JP2014528510A (en) * 2011-10-18 2014-10-27 エンパイア テクノロジー ディベロップメント エルエルシー Barrier and film
US9260574B2 (en) 2011-10-18 2016-02-16 Empire Technology Development Llc Barriers and films

Similar Documents

Publication Publication Date Title
Rovira Bis (ethylenethio) tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs)
Kim Ladder polymers as new polymeric conductors
Shacklette et al. Electrical and optical properties of highly conducting charge-transfer complexes of poly (p-phenylene)
Dai Intelligent macromolecules for smart devices: from materials synthesis to device applications
JPH10506747A (en) Electrochemical light emitting device
GB1578447A (en) Polymeric compositions for electron multiplier tubes and their manufacture
Singh et al. Modulating performance and stability of inorganic lead-free perovskite solar cells via lewis-pair mediation
Ribierre et al. Hybrid organic–inorganic liquid bistable memory devices
JPS6050381B2 (en) Electrically conductive poly(phenylene) composition
KR20120035841A (en) Transparent electrode comprising doped graphene, process for preparing the same, and display device and solar cell comprising the electrode
Vasilopoulou et al. Perovskite flash memory with a single-layer nanofloating gate
Yuan et al. Robust and low-power-consumption black phosphorus–graphene artificial synaptic devices
De Queiroz et al. Resistive‐type humidity sensors based on PVP–Co and PVP–I2 complexes
JPS59129261A (en) Electrically conductive synthetic resin molding
Li et al. High on/off ratio organic resistive switching memory based on carbazolyl dicyanobenzene and a polymer composite
Murgunde et al. Biologically active nanocomposite of DNA-PbS nanoparticles: a new material for non-volatile memory devices
EP0031444A2 (en) Electronically conductive organic thermoplastic composition
JPS59199755A (en) Electroconductive polymer composition
Karmakar et al. Exploration of a wide bandgap semiconducting supramolecular Mg (II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing
ES2613546A1 (en) A procedure for obtaining an organic N-type semiconductor by means of uv-vis irradiation (Machine-translation by Google Translate, not legally binding)
Sephra et al. Nanoelectronics devices (field-effect transistors, electrochromic devices, light-emitting diodes, dielectrics, neurotransmitters)
Li et al. Effects of the nanowire length on large second-order nonlinear optical responses: a theoretical investigation of the thinnest doped beryllium nanowires with IR and UV working wavebands
FR2475278A1 (en) CONDUCTIVE DEVICE USING CONDUCTIVE POLYMER COMPOSITIONS
He et al. Unveiling the Valence State of Interstitial Bromine on Charge Carrier Lifetime in CH3NH3PbBr3 by Quantum Dynamics Simulation
JP3083184B2 (en) Photovoltaic organic photoelectric conversion device