JPS59127839A - Inactivation of surface of iv-v group element compound semiconductor - Google Patents

Inactivation of surface of iv-v group element compound semiconductor

Info

Publication number
JPS59127839A
JPS59127839A JP268283A JP268283A JPS59127839A JP S59127839 A JPS59127839 A JP S59127839A JP 268283 A JP268283 A JP 268283A JP 268283 A JP268283 A JP 268283A JP S59127839 A JPS59127839 A JP S59127839A
Authority
JP
Japan
Prior art keywords
semiconductor
group element
compound semiconductor
group
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP268283A
Other languages
Japanese (ja)
Inventor
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP268283A priority Critical patent/JPS59127839A/en
Publication of JPS59127839A publication Critical patent/JPS59127839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To change the degree of ionization and the position of V group element defect energy at the surface of the titled semiconductor, and to improve the control extent of surface potential by a method wherein the extremely thin second semiconductor of the V group element of a different kind from a first semiconductor is formed between the first semiconductor and an inactive film. CONSTITUTION:After a second III-V group element compound semiconductor thin film 2 constructed of V2 different from V1 is grown as a V group element on a first III-V group element compound semiconductor 1 constructed of V1 as a V group element, by depositing an insulating film 3 on the surface of the second semiconductor, the surface of the III-V group element compound semiconductor is inactivated. Moreover, thickness (d) of the second III-V group element compound semiconductor thin film is made as indicated by the formula in the figure. Provided that, at the formula, epsiloni, epsilons indicate respectively vacuum permittivity, relative permittivity of the second semiconductor, (k) is the Boltzmann constant, T is the absolute temperature, N and ni are respectively carrier concentration of the second semiconductor thin film, and (q) indicates unit electric charge. Accordingly, the position of energy of interfacially localized level can be controlled arbitrarily, and the control extent of surface potential can be changed arbitrarily.

Description

【発明の詳細な説明】 本発明は、l  Vk化合物半導体表面の不活性化法に
関するものである。I−Vk化合物半導体は、光愼龍累
子あるいはマイクロ波素子材料として大いに活用されて
いるが、Si半導体における熱酸化によるS iUz腺
のような良好な界面特性を示す表面不活性化膜は得られ
ていなム。i −v化合物半導体衆面の不活性化法とし
て酸化法と絶縁物准槓法の2棟類に大別されるが、いず
れの方法でも、表面では、V族元素が選択的に欠乏し易
いために、不活性化膜(絶縁膜)/半導体界面には、多
くのVM欠陥が存在し、それに起因するl1iIi循度
の界面局在準位が形成される。このような界面局在準位
は、通常I Q12(III 2e〜−1以上と尚密度
であるために、半導体表面の7工ルミ準位を固定して、
半導体の表面ポテンシャルを形成する。この表面ポテン
シャルは、絶縁膜上に金属電極を形成した金属/絶縁膜
/半導体(MID)ダイオードに外部電圧を印加するこ
とによって変化させることが可能であるが、^vfj度
に存在する界面局在準位のために、制御できる表面ポテ
ンシャルの範囲は限られてしまう。−例として砒化ガリ
ウム(I族がガリウム、V族が砒素)半導体について説
明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for passivating a lVk compound semiconductor surface. I-Vk compound semiconductors are widely used as microwave device materials, but surface passivation films that exhibit good interfacial properties such as SiUz glands produced by thermal oxidation in Si semiconductors have not been obtained. I haven't been able to do it. Methods for passivating large surfaces of i-v compound semiconductors are broadly divided into two types: oxidation methods and insulator deposition methods, but with either method, group V elements tend to be selectively depleted on the surface. Therefore, many VM defects exist at the passivation film (insulating film)/semiconductor interface, and a localized level at the interface with l1iIi circulation is formed due to this. Since such interface localized levels are usually dense at IQ12(III2e~-1 or higher), the 7-luminium level on the semiconductor surface is fixed,
Forms the surface potential of the semiconductor. This surface potential can be changed by applying an external voltage to a metal/insulating film/semiconductor (MID) diode with a metal electrode formed on an insulating film, but it is possible to Due to the level, the range of surface potential that can be controlled is limited. - As an example, a gallium arsenide (I group is gallium, V group is arsenic) semiconductor will be explained.

砒化ガリウム半導体表面において、V族元素の砒素が選
択的に欠乏した際、砒素欠陥に起因する界面局在準位は
半導体県制帝中の1dti′ilC子帝端から測って0
.5〜0.7eVの位置、すなわち県制帝のほぼ中央に
立直している。従ってn型尋電性の砒化ガリウムでは、
IH図に示すように、高密度の界−1局在準位の位置に
、7工ルミ準位が置屋されてし筐うため表面のバンドは
、上向きに曲がり、第1図に示した表面ポテンシャルを
生じさせる。かかる状態でMI8ダイオードを作製し、
容量対電圧特性を測定すると、第2図に示すように、正
電圧側、すなわち、絶縁膜/半導体界面に電子を蓄積さ
せる領域において著しい周波数依存性を示し、高周波に
なる程、容量の印加電圧に対する変化が小さくなる。こ
の事は、高周波になるほど、第1図に示した底面ポテン
シャルの制御が困難になることを意味し、例えばMI8
ゲート型電界効果トランジスタの特性上好ましくない。
When arsenic, a group V element, is selectively depleted on the surface of a gallium arsenide semiconductor, the localized interface level due to arsenic defects will be 0 as measured from the 1dti'ilC end of the semiconductor prefecture.
.. It has been restored to a position of 5 to 0.7 eV, approximately at the center of the prefectural system. Therefore, for n-type gallium arsenide,
As shown in the IH diagram, the 7-luminium level is placed and housed at the position of the high-density field-1 localized level, so the band on the surface curves upward, resulting in the surface shown in Figure 1. Generate potential. An MI8 diode was manufactured in such a state,
When measuring the capacitance versus voltage characteristics, as shown in Figure 2, there is a significant frequency dependence on the positive voltage side, that is, the region where electrons are accumulated at the insulating film/semiconductor interface, and the higher the frequency, the greater the applied voltage of the capacitor. The change in will be smaller. This means that the higher the frequency, the more difficult it becomes to control the bottom potential shown in Figure 1. For example, MI8
This is unfavorable due to the characteristics of gate type field effect transistors.

 ゛ 従うて本発明の目的は、従来、高密度の界面局在準位の
ために、制御できる表面ポテンシャルの範囲が一義的に
定められていたものを改良し、表面ポテンシャルの制御
範囲を拡大するI−V族化合物半導体表面の不活性化法
t−提供することである。
Therefore, the purpose of the present invention is to improve the conventional method in which the range of surface potential that can be controlled is uniquely determined due to the high density of interface localized levels, and to expand the control range of surface potential. An object of the present invention is to provide a method for passivating a surface of a group IV compound semiconductor.

本発明は、v族元素としてVlから構成されるAflの
1t−v族化合物半導体上に、vH元累としてvlとは
異なるv2から構成される第2の1−V族化付物半導体
薄膜を成長させた後、第2の半導体表面上に絶縁膜を堆
積することを特徴とする蓋−V族化合物半導体表面の不
活性化法であり、かつ、第2のI−V族化合物半導体薄
膜の厚さdがであることを特徴とする。ただし、(1)
式において、εいε8は各々、真空肪電卓、第2の半導
体の相対特電率、kはポルツマ/定数、Vは絶対tIA
度、へ、niは各々、第2の半導体薄膜のキャリア一度
、qは単位電荷である。
The present invention provides a second 1-V group compound semiconductor thin film composed of v2, which is different from vl, as a vH element, on an Afl 1t-v group compound semiconductor composed of Vl as a V group element. A method for inactivating a lid-V group compound semiconductor surface, which is characterized by depositing an insulating film on the second semiconductor surface after growth, and inactivating the second I-V group compound semiconductor thin film. It is characterized in that the thickness d is . However, (1)
In the formula, ε8 is the vacuum fat calculator, the relative special electric constant of the second semiconductor, k is Portsma/constant, and V is the absolute tIA.
degree, h, and ni are the carriers of the second semiconductor thin film, respectively, and q is the unit charge.

以下、本発明の詳細な説明する。先にも述べている様に
、不活性化膜/I−V鉄半畳体界而に存面する高密度の
界面局在準位は一政に、V族元素の欠陥に起因している
ため、該v秩冗累に対して例らかの制御t−施こすこと
によって、界面局在準位の制御と同時に、表■ボテン/
ヤルのiJu御が期待できる。ドウ(1)aw)とスミ
ス(Smi th )は、ジャーナル・オプ・バキュー
ム・サイエンス0アンド・テクノロジー17巻1028
ページ(1980年)において、拙々のI−V族化合−
半導体表面のV族欠陥のエネルギー位tt’i計算して
おり、半導体のイオン度と、V族の種類によってv#c
欠陥エネルギー位置が変化することを指摘している。
The present invention will be explained in detail below. As stated earlier, the high density of interfacial localized levels that exist in the passivation film/I-V iron semiconducting world is caused by defects in group V elements. , by applying some kind of control to the v-chip redundancy, at the same time as controlling the interface localized level, the table ■ button /
You can expect a lot of iJu control. Doe (1) aw) and Smith (Smith), Journal of Vacuum Science and Technology, Volume 17, 1028
Page (1980), the unsophisticated group I-V compound -
The energy level tt'i of group V defects on the semiconductor surface is calculated, and v#c depends on the ionicity of the semiconductor and the type of group V.
It is pointed out that the defect energy position changes.

すなわち、本発明は、第1の半導体と不活性化膜の間に
第1の半導体とはV族の種類の異なる非常に薄い第2の
半導体を形成することによってみかけ上、半導体表面の
イオン度と■族欠陥エネルギー位置を変化させ、従って
、表向ポテンシャルの制御範囲を改醤することである。
That is, the present invention reduces the apparent ionicity of the semiconductor surface by forming a very thin second semiconductor of a group V type different from that of the first semiconductor between the first semiconductor and the passivation film. The purpose is to change the energy position of group Ⅰ defects and, therefore, to change the control range of the surface potential.

そして、wJ2の5− 半導体から成る薄膜の厚さは、MI8ダイオードを形成
した際に、少なくとも半導体空乏層が第1の半導体へ達
するために、(1)式を満たす必要て゛ある。
The thickness of the thin film made of the 5-semiconductor wJ2 needs to satisfy equation (1) in order for at least the semiconductor depletion layer to reach the first semiconductor when forming the MI8 diode.

実施例として、先の従来例との比較のため、砒化ガリウ
ム半纏体について述べるが、他のI−V脹化合物半尋体
についても全<IWI休の効果が得られるのは1うまで
もない。n型纒電性のlXl0”鋤4キャリア一度の砒
化ガリウム半導体表面を3Hz 80< +fH20+
ずH2O2エツチング液で誂向エツチングを施こした後
、該砒化ガリウム上に、V族として燐から構成される燐
化インジウムガリウム、化学組成にしてIn o、4s
Gao、axk’ k(11式ヲ満たす厚さとして約1
50A成及した。 しかる後、化学気相堆積法(CVL
)法)によって二酸化シリコン膜を360℃で、約xo
ooi 堆積した。第3図は、その断面図t−&わして
おり、図において1は、第1の半導体である砒化ガリウ
ム、2は第2の半導体から成る#誂である燐化インジウ
ムガリウム、3は二酸化シリコン族である。牌化インジ
6− ラムの場合、表面のV族欠陥によって生ずる界面局在準
位は、砒化ガリウムの場合とは異なり、禁制帯内の伝導
帯領に位置するために、MISダイオードを形成した際
に、界面に電子の蓄積を誘起する表向ポテンシャルの形
成が容易に行なわれる。
As an example, a gallium arsenide semi-solid body will be described for comparison with the prior art example, but it goes without saying that the effect of total<IWI rest can be obtained with other IV expansion compound semi-solid bodies. n-type conductive lXl0'' plow 4 carriers once gallium arsenide semiconductor surface at 3Hz 80< +fH20+
After performing directed etching with H2O2 etching solution, indium gallium phosphide, which is composed of phosphorus as the V group, and has a chemical composition of Ino, 4S, is applied to the gallium arsenide.
Gao, axk' k (approximately 1 as the thickness that satisfies formula 11)
Achieved 50A. After that, chemical vapor deposition (CVL)
) method) to form a silicon dioxide film at 360°C, approximately xo
ooi deposited. Figure 3 is a cross-sectional view of the same. In the figure, 1 is gallium arsenide which is the first semiconductor, 2 is indium gallium phosphide which is the second semiconductor, and 3 is silicon dioxide. It is a tribe. In the case of indi-6-lambide, the interface localized level caused by group V defects on the surface is located in the conduction band region within the forbidden band, unlike in the case of gallium arsenide. In addition, a surface potential that induces the accumulation of electrons at the interface is easily formed.

第4図は、第3図の?llv″ltiを用いてMidダ
イオード金作製した時の、外部印〃口電圧に対する、半
導体のバンド構造の変化金示したものである。第4図に
おいて11% 12は各々、第1の半導体である砒化ガ
リウムと第2の半導体である燐化インジウムガリウムの
バンド構造である。砒化ガリウムと燐化インジウムガリ
ウムとは、互いにv族元素が異なるために、価電子帯の
バンド不連続の方が伝導帯のバンド不連続より大きいた
めに、第4図のようなバンド構造となっている。第4図
(alは、正電圧を印加した場合で、燐化インジウムガ
リウム半導体表面の■族欠陥が伝導帯辺くに存在するた
めに、容易に電子14が界面に蓄積される。第4図(b
lは、電圧を印加していない状態である。第4図(C)
は負電圧全印加した場合で、絶縁膜と12との界面およ
び12と11との価電子帯バンド不連続による界面に正
孔15が誘起される。第5図は、第4図に示した界面電
荷の挙動を谷童−電圧特性にまとめた結果を示している
が、明らかに正電圧側、つまり電子の蓄積領域での周波
数分散が小さくなっており、第2図に示したように、従
来の、碩化ガリウムに直做絶縁膜を形成した場合と比較
して者しく改善された。
Is Figure 4 the same as Figure 3? This figure shows the change in the band structure of the semiconductor with respect to the external applied voltage when a Mid diode was fabricated using llv''lti. In Fig. 4, 11% and 12 are the first semiconductor, respectively. This is the band structure of gallium arsenide and indium gallium phosphide, which is the second semiconductor.Since gallium arsenide and indium gallium phosphide contain different group V elements, the band discontinuity in the valence band is closer to the conduction band. Since the band discontinuity is larger than that of the band discontinuity, the band structure is as shown in Figure 4. Since the electrons 14 are located nearby, the electrons 14 are easily accumulated at the interface.
1 is a state in which no voltage is applied. Figure 4 (C)
is the case where the full negative voltage is applied, and holes 15 are induced at the interface between the insulating film and 12 and at the interface between 12 and 11 due to the valence band discontinuity. Figure 5 shows the results of the interfacial charge behavior shown in Figure 4 summarized in terms of Tando-voltage characteristics, and it is clear that the frequency dispersion on the positive voltage side, that is, in the electron accumulation region, is smaller. As shown in FIG. 2, this is a significant improvement compared to the conventional case where a direct insulating film is formed on gallium oxide.

以上のように、本発明のI−V族化合物半導体表面の不
活性化法によれば、界面局在準位のエネルギー位tft
任意に制御することかり詣であるため、表面ポテンシャ
ルの制御範囲を任意に変化させることができるという利
点を有するために、例えばMID型電界効果トランジス
タ等の素子に工業的価値が高い。
As described above, according to the method for inactivating the surface of a group IV compound semiconductor of the present invention, the energy level tft of the localized interface level
Since it is possible to arbitrarily control the surface potential, it has the advantage of being able to arbitrarily change the control range of the surface potential, and therefore has high industrial value in devices such as MID field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、絶縁膜と半導体との界面に、界面局在準位の
存在する場合の半導体のバンド図を示している。第2図
は、砒化ガリウム半導体上に不油性化膜を形成したMI
8ダイオードの容量−電圧特性である。第3図は本発明
による表面不活性化法であり、lは第10I−V族化合
物半導体基板、2は1とはV族元素の異なる第20厘〜
■族化合物半導体の薄膜、3は絶&tmである。wJ4
図は、第3図の構成を用いたMISダイオードに外部電
圧を印加したときの半導体のバンド図を示していて、1
1% 12は谷々、第lの半導体と第2の半導体のバン
ド図、14.15は各々、電子と止孔である。第5図は
、第3図のW成金用いたMISダイオードの容菫−電圧
特性である。 1(理人弁理上内原  晋 9− 第1図 82図 第3図 第4図 手続補正書(自発) 特許庁長官 殿 1、事件の表示   昭和58年 特許 願第2682
号2、発明の名称   1−V族化合物半導体表面の不
活性化法3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 4、代理人 〒108  東京都港区芝五丁目37番8号 住人三田
ビル5、補正の対象 明細書の発明の詳細な説明の楠 6、補正の内容 1)明細書第5頁1行目の「度、8は単位電荷である。 」を「度、真性キャリア濃度=I)は単位電荷である。 」と補正する。 2)明細書簡6頁3行目の1必要であ」を脇要があ」と
補正する。 3)明細書簡7頁1行目の「ラムの場合」を「ラムガリ
ウムの場合」と補正する。 4)同17行目の「欠陥が伝導帯」を「欠陥に起因する
界面局在準位が伝導帯」と補正する。 185−
FIG. 1 shows a band diagram of a semiconductor when an interface localized level exists at the interface between an insulating film and a semiconductor. Figure 2 shows MI with an oil-resistant film formed on a gallium arsenide semiconductor.
This is the capacitance-voltage characteristic of 8 diodes. FIG. 3 shows the surface passivation method according to the present invention, where l is a 10th IV-V compound semiconductor substrate, 2 is a 20th to
Thin films of group Ⅰ compound semiconductors, 3 is an absolute &tm. wJ4
The figure shows the band diagram of the semiconductor when an external voltage is applied to the MIS diode using the configuration shown in FIG.
1% 12 is a valley, the band diagram of the 1st semiconductor and the 2nd semiconductor, 14.15 is an electron and a hole, respectively. FIG. 5 shows the violet-voltage characteristics of the MIS diode using the W alloy shown in FIG. 1 (Patent Attorney Susumu Kamiuchihara 9- Figure 1, 82, Figure 3, Figure 4, Procedural amendment (spontaneous) Commissioner of the Japan Patent Office 1, Indication of the case 1982 Patent Application No. 2682
No. 2, Title of the invention 1-Method for inactivating the surface of a group V compound semiconductor 3, Relationship to the amended case Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo, Agent: 108 Tokyo, Japan Resident Mita Building 5, 37-8 Shiba 5-chome, Minato-ku, Kusunoki 6, Detailed description of the invention in the specification subject to amendment, Contents of amendment 1) ``Degree, 8 is unit charge'' on page 5, line 1 of the specification. '' is corrected as ``degree, intrinsic carrier concentration = I) is a unit charge.''. 2) In the third line of page 6 of the letter of specification, amend ``1 is necessary'' to ``There is a side note.'' 3) "In the case of rum" in the first line of page 7 of the letter of specification is amended to "in the case of ram gallium." 4) Correct "the defect is the conduction band" in the 17th line to "the interface localized level caused by the defect is the conduction band". 185-

Claims (1)

【特許請求の範囲】 1−V族化合物半導体表面に、当該1−V族化合物半導
体を構成するV族元素とは異なる種類のV族元素を含ん
で構成されるI −V族化合物半導体薄膜を なる厚さdで形成した後、この半導体薄膜表面上に絶縁
膜を形成することを特徴とするI−V族化合物半導体表
面の不活性化法。
[Claims] A group I-V compound semiconductor thin film containing a group V element different from the group V elements constituting the group 1-V compound semiconductor is formed on the surface of a group 1-V compound semiconductor. 1. A method for inactivating a surface of a group IV compound semiconductor, which comprises forming an insulating film on the surface of a semiconductor thin film after forming the semiconductor thin film to a thickness d.
JP268283A 1983-01-11 1983-01-11 Inactivation of surface of iv-v group element compound semiconductor Pending JPS59127839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP268283A JPS59127839A (en) 1983-01-11 1983-01-11 Inactivation of surface of iv-v group element compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP268283A JPS59127839A (en) 1983-01-11 1983-01-11 Inactivation of surface of iv-v group element compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59127839A true JPS59127839A (en) 1984-07-23

Family

ID=11536061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP268283A Pending JPS59127839A (en) 1983-01-11 1983-01-11 Inactivation of surface of iv-v group element compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59127839A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129886A (en) * 1978-01-13 1979-10-08 Western Electric Co Semiconductor
JPS5723280A (en) * 1980-07-18 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Field effect type light detector
JPS57211238A (en) * 1981-06-22 1982-12-25 Nec Corp Semiconductor device
JPS59119869A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129886A (en) * 1978-01-13 1979-10-08 Western Electric Co Semiconductor
JPS5723280A (en) * 1980-07-18 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Field effect type light detector
JPS57211238A (en) * 1981-06-22 1982-12-25 Nec Corp Semiconductor device
JPS59119869A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US4291327A (en) MOS Devices
Yang et al. Deep-level defect characteristics in pentacene organic thin films
Karabulut Barrier height modification in Au/Ti/n-GaAs devices with a HfO 2 interfacial layer formed by atomic layer deposition
EP3062351B1 (en) Field-effect transistor
JP2018152410A (en) Semiconductor device and electric apparatus
WO1980000521A1 (en) Self-terminating thermal oxidation of al-containing group iii-v compound layers
Fujisawa Type conversion of InSb from p to n by ion bombardment and laser irradiation
Kınacı et al. Negative capacitance phenomena in Au/SrTiO3/p-Si heterojunction structure
US4696828A (en) Passivation of InP by plasma deposited phosphorus
JPS59127839A (en) Inactivation of surface of iv-v group element compound semiconductor
Favennec et al. Al/Al2O3/InP MIS structures
Ebeoğlu Current–voltage characteristics of Au/GaN/GaAs structure
Reddy et al. Influence of series resistance and interface state density on electrical characteristics of Ru/Ni/n-GaN Schottky structure
Okamoto et al. Electrical characteristics of Ge-based metal-insulator-semiconductor devices with Ge3N4 dielectrics formed by plasma nitridation
Irokawa et al. Gate-Bias-Induced Threshold Voltage Shifts in GaN FATFETs
CN210668387U (en) Thyristor
Sawada et al. Anodic Al2O3/InP interface for application to enhancement MISFETs
CN110828562A (en) Thyristor and manufacturing method thereof
Kawanago et al. Electrical characterization of directly deposited La-Sc oxides complex for gate insulator application
Liu et al. Threshold Voltage Engineering of Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Different Doping Concentration of In Situ Cl− Doped Al2O3
GB1271832A (en) Improvements in and relating semiconductor devices
Huang et al. Impact of forming gas annealing on ZnO-TFTs
Watanabe et al. Gate Stack Technology for Advanced GaN-Based Mos Devices
US2963630A (en) Surface treatment of semiconductive devices
Schmolla Positive drift effect of BN-InP enhancement n-channel MISFET