JPS59127587A - Control system for motor - Google Patents

Control system for motor

Info

Publication number
JPS59127587A
JPS59127587A JP57234361A JP23436182A JPS59127587A JP S59127587 A JPS59127587 A JP S59127587A JP 57234361 A JP57234361 A JP 57234361A JP 23436182 A JP23436182 A JP 23436182A JP S59127587 A JPS59127587 A JP S59127587A
Authority
JP
Japan
Prior art keywords
current
motor
normal
reverse
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57234361A
Other languages
Japanese (ja)
Inventor
Tsutomu Konishi
小西 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kikai Co Ltd
Original Assignee
Toyo Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kikai Co Ltd filed Critical Toyo Kikai Co Ltd
Priority to JP57234361A priority Critical patent/JPS59127587A/en
Publication of JPS59127587A publication Critical patent/JPS59127587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/293Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To enable to accelerate, decelerate and reversibly rotate a motor without using a normal/reverse switching judging circuit by controlling a current control loop in a stationary Leonard control by the feedback of a signal from unidirectional current detector. CONSTITUTION:A DC motor 25 is connected to normal and reverse rotation thyristor converters 23, 24 a deviation signal IaR between a speed command signal nR and a speed feedback signal nF is inputted to normal and reverse rotation current controlling operational amplifiers 18, 19, a motor current is detected by a current transformer provided at the input side of the converter 23, and the output is inputted through a rectifier 28 to the amplifiers 18, 19. Thus, the converters 22, 24 are respectively controlled through normal and reverse rotation gate pulse generators 21, 22. Accordingly, only one unidirectional converter may be enough as the current detectors 27, 28, a conversion logic judging circuit can be eliminated, thereby improving the economy and reliability.

Description

【発明の詳細な説明】 本発明は、直流電動機を加減速成は可逆運転させるため
に、電流制御系、速度制御系、ゲートパルス発生器、正
方向及び逆方向サイリスタ変換器。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a current control system, a speed control system, a gate pulse generator, and forward and reverse thyristor converters for operating a DC motor with reversible acceleration/deceleration.

直流電動機を組合せて構成した静止レオナード制御方式
に関し、特に、一方向の電流検出器を備え、正逆切換判
断回路を用い゛ずに、加減速成は可逆運転することを特
徴とするものであり、この電動機制御方式は、例え゛ば
、走行布はくの偏位修正装置、拡布装置、スカノチャー
等の布はくの仕−L処理に関する分野においても有効番
こ利用できるものである。
This invention relates to a static Leonard control system configured by combining a DC motor, and is particularly characterized in that it is equipped with a unidirectional current detector and performs reversible acceleration/deceleration without using a forward/reverse switching judgment circuit. This electric motor control method can be effectively used in fields related to fabric sheet processing such as, for example, devices for correcting the deviation of running fabric sheets, spreading devices, and sucanotures.

従来、直流電動機をIJ11減速成(ま可逆運転する場
合に、逆並列接続された2台のサイ1ノスタ変換器に直
流′電動機を接続し、常番こ2台のサイ17スタ変換器
間に定格電流の10%!度の循環′電流を7荒しておき
、いずれかのサイリスク変換器の電流を調整することに
より、加減或Cま可逆運転する万ン去力(用いられてい
る。
Conventionally, when operating a DC motor with IJ11 speed reduction (or reversible operation), the DC motor was connected to two SI 1-nostar converters connected in antiparallel, and the DC motor was normally connected between the two SI-17 converters. A circulating current of 10% of the rated current is set at 7 degrees, and by adjusting the current of one of the cyrisk converters, the power can be increased or decreased or reversibly operated (used).

しかしながら、この方法の場合(ま、常ζこ循環電流を
流しておくため、その分たけサイ17スタ変換器および
変圧器等の容滑か増加し、不経済であると共に信頼性に
欠けるという問題力Sある。
However, in this method (well, since the circulating current is constantly flowing, the size of the converter and transformer will increase accordingly, making it uneconomical and unreliable). There is power S.

そこで、上記の欠点を除去するため(こ、第1図に示す
ような切換回路を用(また制御方式力く提案されている
。即ち、第1図におし為で、1cま速度市1] 51用
演算増幅回路、2は電流制御用演算増I畠回iN3.3
は符号変換回路、4及び−5は正転及び逆転用ケ−トパ
ルス発生回路、6及び7は正転及び逆転用サイリスタ変
換器、8は直流電動機、9は速度発電機、10及び11
は正転及び逆転用変流器、12及び13は電流検出回路
、]4は正逆切換判断回路、15及び16はアナログゲ
ートを夫々示すものである。
Therefore, in order to eliminate the above-mentioned drawbacks, a switching circuit as shown in Fig. 1 has been strongly proposed. ] 51 operational amplification circuit, 2 is current control calculation increase I Hatake times iN3.3
4 and -5 are code conversion circuits, 4 and -5 are gate pulse generation circuits for forward and reverse rotation, 6 and 7 are thyristor converters for forward and reverse rotation, 8 is a DC motor, 9 is a speed generator, 10 and 11
12 and 13 are current detection circuits, 4 is a forward/reverse switching judgment circuit, and 15 and 16 are analog gates, respectively.

正転及び逆転用サイリスク変換器6及び7は必ず一方の
みを運転し、速度指令信号nnの変化に対し、速度発電
機9により電動機速度の大きさ、と方向、及びサイリス
タ変換器6.7の電流の大きさを電流検出回路12.1
3により夫々検出し、これらの各々の状態を論理判断し
て、正逆切換判断回路14を用いて電動機を、加減速及
び可逆運転する方法が用いられている。
Only one of the forward and reverse thyristor converters 6 and 7 is operated, and the speed generator 9 changes the magnitude and direction of the motor speed as well as the thyristor converter 6.7 in response to changes in the speed command signal nn. Current detection circuit 12.1
3, each state is logically determined, and a forward/reverse switching judgment circuit 14 is used to accelerate/decelerate and reversibly operate the motor.

しかるに、この方法の場合は、正転用変流器10、電流
検出回路12及び逆転′相変流器[1,冨、流検出回路
J3等の正方向及び逆方向の2組の電流検出器を必要と
し、且つ速度指令信号n FL、速度検出信号時、正及
び逆方向電流検出信号Ia F及びIa Rを組合せて
論理判断し、正方向或は逆方向のサイリスク変換器6或
は7を動作させるための正逆切換判断回路14を必要と
するため、高価となると共に信頼性を低下させ、且つノ
イズ等による誤動作の可能性があるという大きな欠点を
有している。
However, in the case of this method, two sets of current detectors in the forward direction and in the reverse direction, such as a forward current transformer 10, a current detection circuit 12, and a reverse current transformer [1, 2, current detection circuit J3, etc.] are used. When the speed command signal n FL and the speed detection signal are required, the forward and reverse direction current detection signals Ia F and Ia R are combined and logically determined to operate the forward or reverse direction sirisk converter 6 or 7. Since the forward/reverse switching determination circuit 14 is required for switching the forward/reverse switching, it is expensive, reduces reliability, and has major disadvantages in that there is a possibility of malfunction due to noise or the like.

本発明は、L記の欠点を除去するために研究開発された
もので、その目的とするところは、1個の一方向電流検
出器を用い、切換判断回路を用いずに正逆両サイリスタ
変換器の運転を切換制御できる制υ11方式を提供する
にある。
The present invention has been researched and developed in order to eliminate the drawbacks listed in L, and its purpose is to convert both forward and reverse thyristors using one unidirectional current detector without using a switching judgment circuit. The purpose of the present invention is to provide a control system υ11 that can switch and control the operation of a device.

本発明は、電流制御系の動作時間か、動作開始時と動作
終了1川とて相違のあることに着眼し、サイリスタの最
大ゲート制御角においてケートパルスを禁止し、正逆サ
イリスク変換器を切換制御することにより、また、直流
電動機を加減速及び可逆制御することにより、安価で高
速動作を有する制御方式となしたものである。
The present invention focuses on the fact that there is a difference between the operating time of the current control system, at the start of operation and at the end of operation, and prohibits the gate pulse at the maximum gate control angle of the thyristor, and controls the switching of the forward and reverse thyristor converter. By doing so, and by performing acceleration/deceleration and reversible control of the DC motor, a control system that is inexpensive and has high-speed operation is achieved.

以下、図面を参考にしながら、本発明の一実施例につい
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第2図は、本発明の基原的な構成を示すもので、同図に
お−いて、17は速度制御用演算増幅回路で、速度指令
信号nRと速度検出信号時の偏差信号Iaユを作るもの
であり、この信号I a aは電流指令信号となる。1
8及び19は正転及び逆転電流制御用演算増幅回路、2
0は符号変4fJ!回路を夫々示す。
FIG. 2 shows the basic configuration of the present invention. In the figure, 17 is an operational amplifier circuit for speed control, which outputs the speed command signal nR and the deviation signal Ia at the time of the speed detection signal. This signal Iaa becomes a current command signal. 1
8 and 19 are operational amplifier circuits for forward and reverse rotation current control, 2
0 is sign change 4fJ! The circuits are shown respectively.

而して、上記回路I8或は19は電流指令信号’ ” 
Itと電流帰還信号I a Fの偏差信号を作り、この
信号が正転成は逆転用ゲートパルス発生器21或は22
に支えられる。該ゲートパルス発生器21或は22は適
当な電源位相α、或はα1にゲートパルスGPF或はG
Pユを発生し、正転成は逆転用サイリスタ変換器お或は
24を動作させて、その正或は逆の出力電比が直流電動
機25に印加される。電動機速度は速度発電機26によ
り検出され、電動機電流は交流変流器n及び整流回路2
8から成る電流検出回路により検出され、夫々帰還信号
n、及びI、を作る。
Therefore, the circuit I8 or 19 receives the current command signal.
A deviation signal is generated between It and the current feedback signal I a F, and when this signal is in the forward direction, it is controlled by the reverse gate pulse generator 21 or 22.
Supported by The gate pulse generator 21 or 22 generates a gate pulse GPF or G at a suitable power supply phase α or α1.
When generating a forward rotation, the reverse rotation thyristor converter or 24 is operated, and its forward or reverse output electric ratio is applied to the DC motor 25. The motor speed is detected by a speed generator 26, and the motor current is detected by an AC current transformer n and a rectifier circuit 2.
8 and generates feedback signals n and I, respectively.

この回路において、正転及び逆転側電流制御系の応答を
図示すると第3図のようになる。同図において、電流指
令信号I、lユに対し、正転成は逆転用サイリスタ変換
器電流の応答はITF或は■TRとなり、このときの時
間特性は次式を満足するようになっている。
In this circuit, the responses of the forward and reverse current control systems are illustrated in FIG. 3. In the figure, the response of the thyristor converter current for forward and reverse rotation to current command signals I and I is ITF or -TR, and the time characteristics at this time satisfy the following equation.

tDr 〉tD+ この場合、サイリスク変換器23或は24に支えられる
ゲートパルスGP、或はGPItは第3図の下部のよっ
てあり、このため該変換器23或は24か同時に動作す
ることはなく、無循環電流切換が可能となっている。
tDr>tD+ In this case, the gate pulse GP or GPIt supported by the Sirisk converter 23 or 24 is as shown in the lower part of FIG. 3, so that the converter 23 or 24 does not operate at the same time. Non-circulating current switching is possible.

この結果、この実施例によれは、電流検出回路は一方向
のものが1個ですみ、切換論理判断回路も不要となり、
実験の結果、正常に動作することが確認できた。
As a result, this embodiment requires only one current detection circuit in one direction, and eliminates the need for a switching logic judgment circuit.
As a result of the experiment, it was confirmed that it works normally.

以上詳述したように、本発明によれば、電流検出回路が
1個ですみ、且つ切換論理判断回路が不要であるため、
経済的であると共に信頼性が皆しく向上され、ノイズに
よる判断回路の誤動作の問題をも完全に解決できる特長
を汀する。
As detailed above, according to the present invention, only one current detection circuit is required and a switching logic judgment circuit is not required.
It has the advantage of being economical, improving reliability, and completely solving the problem of malfunction of the judgment circuit due to noise.

また、電動磯容限の如何にかかわらす本方式を適用でき
るもので、特に、大型機を循環電流方式で可逆運転する
場合に較べて多大の経済的効果かある。
Furthermore, this system can be applied regardless of the capacity of the electric rock, and has a great economical effect, especially compared to the case where a large machine is operated reversibly using the circulating current system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の切換判断一方式による構成図、第2図は
本発明の一実施例を示す概略構成図、第3図はその電流
制御系の応答及びゲートパルスの説明図である。 1・速度制御用演算増幅回路、2−電流制御用演算増幅
回路、3・符号変換回路、4および5・正転および逆転
用ゲートパルス発生回路、6および7−サイリスタ変換
器、8・・直流電鉤機、9 速度発電機、10および1
1 ・電流検出要素、12および13  電流検出回路
、14 ・切換判断回路、15および16  アナログ
ゲート回路、17・・・速度制御用演算増幅回路、18
および19  正転および逆転電流制御用演算増幅回路
、20  符号変換回路、21および22・ケート/マ
ルス発生回路、23および24  サイリスク変換器、
5 直流電動機、26  速度発電機、27  電流検
出要素、28・電流検出回路。 第1図 → 第3図 6、、i       ・
FIG. 1 is a block diagram of a conventional switching judgment method, FIG. 2 is a schematic block diagram showing an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the response of the current control system and gate pulses. 1. Operational amplifier circuit for speed control, 2. Operational amplifier circuit for current control, 3. Sign conversion circuit, 4 and 5. Gate pulse generation circuit for forward and reverse rotation, 6 and 7. Thyristor converter, 8. DC current. hook machine, 9 speed generator, 10 and 1
1 - Current detection element, 12 and 13 Current detection circuit, 14 - Switching judgment circuit, 15 and 16 Analog gate circuit, 17... Speed control operational amplifier circuit, 18
and 19 operational amplifier circuit for forward and reverse current control, 20 sign conversion circuit, 21 and 22 Kate/Mars generation circuit, 23 and 24 Cyrisk converter,
5 DC motor, 26 Speed generator, 27 Current detection element, 28 Current detection circuit. Figure 1 → Figure 3 6,, i ・

Claims (1)

【特許請求の範囲】 静止レオナード制御において、一方電流検出器。 電流制御ループ、速度制御ループを備え、正逆切換判断
回路を用いずに加減速成は可逆運転することを特徴とす
る電動機制御方式。
[Claims] In stationary Leonard control, a one-way current detector. A motor control system that is equipped with a current control loop and a speed control loop, and is characterized by reversible acceleration/deceleration operation without using a forward/reverse switching judgment circuit.
JP57234361A 1982-12-29 1982-12-29 Control system for motor Pending JPS59127587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57234361A JPS59127587A (en) 1982-12-29 1982-12-29 Control system for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234361A JPS59127587A (en) 1982-12-29 1982-12-29 Control system for motor

Publications (1)

Publication Number Publication Date
JPS59127587A true JPS59127587A (en) 1984-07-23

Family

ID=16969795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234361A Pending JPS59127587A (en) 1982-12-29 1982-12-29 Control system for motor

Country Status (1)

Country Link
JP (1) JPS59127587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218394A (en) * 1985-03-22 1986-09-27 Toyo Kikai Kk Operation control system of motor
JPS61244289A (en) * 1985-04-19 1986-10-30 Toyo Kikai Kk Switching control system for thyristor converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218394A (en) * 1985-03-22 1986-09-27 Toyo Kikai Kk Operation control system of motor
JPS61244289A (en) * 1985-04-19 1986-10-30 Toyo Kikai Kk Switching control system for thyristor converter

Similar Documents

Publication Publication Date Title
KR920013869A (en) Parallel operation control device of AC output converter
US7560884B2 (en) Electronic braking and energy recycling system associated with DC brushless motor
US3678355A (en) Control for three phase a.c. motor
US4262241A (en) Control system for commutatorless motor driven through frequency converter
JPS59127587A (en) Control system for motor
US3401325A (en) Speed regulating system providing slowdown control for a motor having a unidirectional converter armature supply
JPH023208B2 (en)
KR860007147A (en) Control device of AC elevator
JPS5815492A (en) Control of pulse width control transducer
JPS59226681A (en) Rectifier for driving motor of digital control type
US3826928A (en) Variable pulse width generator employing flip-flop in combination with integrator-differentiator network
US3932771A (en) Control for three phase A.C. motor
JPS58107083A (en) Driving regenerative converting power supply device
JPH0337394B2 (en)
JPS6149691A (en) Pwm control system of induction motor
JPS60187276A (en) Load drive device
JPS6316316Y2 (en)
JPS6162383A (en) Reversible operation system for motor
JPH043599Y2 (en)
JPH03289384A (en) Inverter controller
JPS61218394A (en) Operation control system of motor
JPS5830241B2 (en) ozone generator
JP2619390B2 (en) Induction motor speed control device
JPS591076B2 (en) Induction motor control device
JPS61244289A (en) Switching control system for thyristor converter