JPS59127375A - Manufacture of solid electrolyte battery - Google Patents

Manufacture of solid electrolyte battery

Info

Publication number
JPS59127375A
JPS59127375A JP13283A JP13283A JPS59127375A JP S59127375 A JPS59127375 A JP S59127375A JP 13283 A JP13283 A JP 13283A JP 13283 A JP13283 A JP 13283A JP S59127375 A JPS59127375 A JP S59127375A
Authority
JP
Japan
Prior art keywords
solid electrolyte
mold
negative electrode
electrolyte layer
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13283A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Shuichi Wada
秀一 和田
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP13283A priority Critical patent/JPS59127375A/en
Publication of JPS59127375A publication Critical patent/JPS59127375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase adhesion of a negative electrode with a solid electrolyte layer and improve discharge performance by placing higher fatty acid such as stearic acid or its salt on the contact surface between a mold and a negative electrode when the negative electrode is bonded with a solid electrolyte layer. CONSTITUTION:The inner surface of a side mold 12 is coated with barium stearate 14a, and Li3N-LiI powder is placed in a cavity formed with a lower mold 11 and the side mold 12, then an upper mold 13 is lowered to form a solid electrolyte layer 1. After raising the upper mold 13, mixed powder of 4pts. lead iodide and 1pts. carbonyl nickel is placed on the solid electrolyte layer 1 and pressed to form a two layer pellet comprising a positive electrode 2 and the solid electrolyte layer 1. After lowering the lower mold 11, the inner surface of the side mold 12 and a convexity 11a of the lower mold 11 are coated with barium stearate 14b, then the lower mold 11 is raised to press a lithium plate to the solid electrolyte layer 1. Thereby, a negative electrode 3 is formed. This power generating element is placed in a ceramic ring 4 of a current collecting plate 5 obtained by deposing the ceramic ring 4 in its periphery. A solid electrolyte battery is formed by sealing the current collecting plate.

Description

【発明の詳細な説明】 末完8Aはリチウムなどのアルカリ金属を負極活物質と
する固体電解質電池の製造法の改良(で係り、負極と固
体電解質層との圧着を容易にし、かつ負極と固体電解質
層との密着性を高めて放電性能の良好な固体電解質電池
を提供することを目的とする。
[Detailed Description of the Invention] Shukan 8A is an improvement in the manufacturing method of a solid electrolyte battery using an alkali metal such as lithium as a negative electrode active material. It is an object of the present invention to provide a solid electrolyte battery with good discharge performance by increasing adhesion with an electrolyte layer.

一般に固体電解質電池では正峨、固体電解質および負極
を層状に積み重ねた構造を採用しているが、負極を構成
するリチウムなどのアルカリ金属が金型への粘着性が強
く、金型に残留して短絡発生の原因になるため、従来は
負極と固体電IvI!質層との圧着は金型によらず、負
極の一方の面に集電板を当接した状態で負極の他方の面
を固体市解質層に押し付けることによって行なわれてい
た。そのため負極と固体電解質層との界面の充分な密着
性が得られず、負極の放電利用率が低下するとともに、
抑圧により負極の周縁部が固体電解質層を越えて正、5
t<11111・\流出して短絡が生じるのを防止する
ために、負1赦は電解質径より若干小さくしなければな
らず、そのため負極の充填量自体も低下して、実質的な
放電界かが非常に低下するきいう欠点があった。
Generally, solid electrolyte batteries employ a structure in which a positive electrode, a solid electrolyte, and a negative electrode are stacked in layers, but the alkali metals such as lithium that make up the negative electrode have strong adhesion to the mold and may remain on the mold. Conventionally, the negative electrode and solid-state electrode IvI! Pressure bonding with the solute layer was carried out without using a mold, by pressing the other side of the negative electrode against the solid solute layer with a current collector plate in contact with one side of the negative electrode. Therefore, sufficient adhesion at the interface between the negative electrode and the solid electrolyte layer cannot be obtained, and the discharge utilization rate of the negative electrode decreases.
Due to suppression, the periphery of the negative electrode crosses the solid electrolyte layer and becomes positive, 5
t<11111・\In order to prevent leakage and short circuit, the negative electrode must be made slightly smaller than the electrolyte diameter, so the filling amount of the negative electrode itself decreases and the actual discharge field becomes smaller. There was a drawback that the value decreased significantly.

本発明者らはそのような事情に鑑み、負極と固体電解質
の圧着を金型で行なうことができるようにすべく種々研
究を喧ねた結果、負極と固体電解質層との圧着VC捺し
、金型と負極との接面にステアリン酸などの高級脂肪酸
またはその塩を介在させるさきは、前述の目的が容易に
達成され、負礒七固体電解質層との密着性を高めること
ができ、かつ負櫃径を固体電解質層と同径にすることが
できることを見出し、本発明を完成するにいたった。
In view of such circumstances, the inventors of the present invention have carried out various studies in order to make it possible to press-bond the negative electrode and solid electrolyte layer with a mold. By interposing a higher fatty acid such as stearic acid or a salt thereof on the contact surface between the mold and the negative electrode, the above-mentioned purpose can be easily achieved, and the adhesion with the negative solid electrolyte layer can be improved. It was discovered that the diameter of the tube can be made the same as that of the solid electrolyte layer, and the present invention was completed.

かかる本発明によれば、正極と固体7し解質層との圧着
および固体電解質層と負極との圧着を同一の金型で連続
的に行なうことができ、しかも電池としての機能を有す
る正極、固体電解質層および負極からなる発電要素の形
で金型から取り出すことができるので、固体電解質と正
極との2層成形体を金型から取り出し負極との圧着を別
工程で行なわざるを得なかった従来法に比べて工程面で
も簡略化できて有利であり、しかも負極と固体電解質層
との密着度を高くすることができるので、従来法だ比べ
て放電性能が著しく向上する。
According to the present invention, the positive electrode and the solid electrolyte layer and the solid electrolyte layer and the negative electrode can be continuously pressed together using the same mold, and the positive electrode has the function of a battery. Since it can be taken out of the mold in the form of a power generation element consisting of a solid electrolyte layer and a negative electrode, it was necessary to take out the two-layer molded body of the solid electrolyte and positive electrode from the mold and perform crimping with the negative electrode in a separate process. Compared to the conventional method, this method is advantageous in that it can be simplified in terms of process, and since the degree of adhesion between the negative electrode and the solid electrolyte layer can be increased, the discharge performance is significantly improved compared to the conventional method.

高級脂肪酸としては例えばパルミチン酸、ステアリン酸
、オレイン酸、リノール酸、リルン酸などが用いられ、
高級脂肪酸塩としてはそれらの高級脂肪酸とバリウム、
ナトリウム、リチウム、カルシウム、鉛、亜鉛などとの
塩が用いられる。
Examples of higher fatty acids used include palmitic acid, stearic acid, oleic acid, linoleic acid, and lylunic acid.
As higher fatty acid salts, these higher fatty acids and barium,
Salts with sodium, lithium, calcium, lead, zinc, etc. are used.

それらの中でも特にステアリン酸バリウムおよびステア
リン酸カルシクムが好ましい。
Among them, barium stearate and calcium stearate are particularly preferred.

つぎに本発明の実施例を図面とともに説明する。Next, embodiments of the present invention will be described with reference to the drawings.

実施例1 下型(J])、側型(6)および上型α4からなる金型
の下型αDと側型曹をセットし、側型(2)の内周面に
ステアリン酸バリウム(14a)を塗布した(′MIj
1図)。
Example 1 A lower mold αD and a side mold carbon are set in a mold consisting of a lower mold (J]), a side mold (6), and an upper mold α4, and barium stearate (14a ) was applied (′MIj
Figure 1).

Li5N−Lil粉末を下型(11)と側型@で形成さ
れるキャビディ内に入れ、上型a4を降下させて0.5
t々2(D圧力テLi5 N  Li Iを直径6WI
I!、厚さ0.2mに加圧成)[モ1−て固体電解を層
(1)を形成した(第2図)。
Put the Li5N-Lil powder into the cavity formed by the lower mold (11) and the side mold @, and lower the upper mold a4 to 0.5
t2 (D pressure te Li5 N Li I to diameter 6WI
I! A layer (1) of solid electrolyte was formed by pressurizing to a thickness of 0.2 m (Fig. 2).

上型Qを引きあげ(第3図)、上記固体電解質(1)上
にヨウ化鉛4部(体積部、以下同様)とカルボニルニッ
ケル1都とからなる混合粉末50Mvを入れ、■、5t
/cIM2の圧力で加圧成形して正+6 (2)および
固体心解−IM′層(1)からなる2層ペレットとした
(第4図)。
Lift up the upper mold Q (Fig. 3), put 50Mv of a mixed powder consisting of 4 parts of lead iodide (parts by volume, hereinafter the same) and 1 part of carbonyl nickel on the solid electrolyte (1), and
The pellet was press-molded at a pressure of /cIM2 to obtain a two-layer pellet consisting of a positive +6 layer (2) and a solid-core core-IM' layer (1) (FIG. 4).

つぎに、下型Cυを下峰させ(なお下型;1])を取り
除いても固体電解質層(1)および正極(2)は径方向
外方へ広がろうとするスプリングバック現象により金型
から落下しない)、側型(6)の内周面および下型Uυ
の凸部(lla)上面にステアリン酸バリウム(14b
)を塗布しく第5図)、固体電解質層(11に厚さQ、
2Mmm、直径5屑のリチウム板を押しっけ、下型αυ
を上昇させて1.5 t/cIN2の圧力でリチウム板
を固体電解質層(1)に圧着して負極(3)とした(第
6図)。
Next, even if the lower mold Cυ is lowered (the lower mold; 1]) is removed, the solid electrolyte layer (1) and the positive electrode (2) are released from the mold due to the springback phenomenon in which they try to spread outward in the radial direction. (not fall), inner peripheral surface of side mold (6) and lower mold Uυ
barium stearate (14b) on the upper surface of the convex part (lla)
) is applied (Fig. 5), solid electrolyte layer (thickness Q at 11,
Push the lithium plate of 2 mm diameter and 5 pieces into the lower mold αυ
The lithium plate was pressed onto the solid electrolyte layer (1) at a pressure of 1.5 t/cIN2 to form a negative electrode (3) (FIG. 6).

上記のようにして作製した発電要素を、周縁部にセラミ
ック製リング(4)を溶着した集電板(5)のセラミッ
ク製リング(4)内に負極(3)側から入れ、正極(2
)上を他方の集電板(6)で覆い、該集電板(6)の周
縁部とセラミック製リング(4)を溶着して封口し第7
図に示すような固体′鐵解質電池を組み立てた。なお第
7図において、(7)は集電&(5)、(6)とセラミ
ラミ特性を第8図に曲線Aで示す。
The power generation element produced as described above is placed from the negative electrode (3) side into the ceramic ring (4) of the current collector plate (5), which has a ceramic ring (4) welded to the periphery.
) is covered with the other current collector plate (6), and the peripheral edge of the current collector plate (6) and the ceramic ring (4) are welded to seal the seventh
A solid-state iron electrolyte battery as shown in the figure was assembled. In addition, in FIG. 7, (7) is current collection & (5), (6), and the ceramic ceramic characteristics are shown by curve A in FIG.

比較例1 ステアリン酸バリウムを用力なかった点を除いては実施
例1と同様にして金型で固体電解質層と正極とを圧着し
て2層構造のペレットとしたのち金型から取り出した。
Comparative Example 1 The solid electrolyte layer and the positive electrode were pressed together in a mold to form a pellet with a two-layer structure in the same manner as in Example 1, except that barium stearate was not used, and the resulting pellet was taken out from the mold.

つぎに、一方の面に集電板を押し付けた直径5羽、厚さ
0.2Mmのリチウム板を前記2層構造のベレットの固
体電解質側に約50kg/cm2 (IJチクム板が変
形しない程度の圧力)で押し付けて発電要素を作製し、
実施例1と同型の電池を組み立てた。
Next, a lithium plate with a diameter of 5 blades and a thickness of 0.2 mm, with a current collector plate pressed against one side, was placed on the solid electrolyte side of the two-layer structure pellet at a weight of about 50 kg/cm2 (at a weight of about 50 kg/cm2 (just enough to prevent the IJ Chikum plate from deforming). pressure) to create a power generation element,
A battery of the same type as in Example 1 was assembled.

この電池を20°C,10μAの定′屯流で放電させた
ときの放電特性を第8図に曲線Bで示す。
The discharge characteristics of this battery when it was discharged at 20 DEG C. and a constant current of 10 .mu.A are shown by curve B in FIG.

第8図に示すように、本発明による場合は従来法による
場合に比べて放電容量が大きい。これは負極と固体電解
質との密着度が高いことに基づくものと考えられる。
As shown in FIG. 8, the discharge capacity according to the present invention is larger than that according to the conventional method. This is considered to be due to the high degree of adhesion between the negative electrode and the solid electrolyte.

なお¥雄側においては、側型(2)内周面のリチウムと
の接触しない面にもステアリン酸バリウムを塗布したが
、これはステアリン酸バリウムの塗布により側型@内周
面への固体電解質粉末や正極粉末の付着ならびに上型(
13の降下、上昇に伴なう摩擦による金型の損傷を防止
しうるからである。ただし、これらの部位へのステアリ
ン酸バリウムの塗布は必ず必要とされるものではなく、
負極と金型とが接触する部位にステアリン酸バリウムが
塗布されていれば目的が達成される。なお、負極と固体
電解質層との界面、固体電解質層と正極との界面(では
ステアリン酸バリウムが付着しないようにするのが好寸
しAo ′X施雄側 ステアリン酸バリウムに代えてステアリン酸カルシクム
を用いたほかは実施例1と同様にして固体電解質電池を
製造した。放電特性は実施例1の電池と同様であった。
On the male side, barium stearate was also applied to the inner peripheral surface of the side mold (2) that did not come in contact with lithium; Adhesion of powder and cathode powder and upper mold (
This is because damage to the mold due to friction caused by the lowering and raising of the mold 13 can be prevented. However, application of barium stearate to these areas is not always necessary;
The purpose can be achieved if barium stearate is applied to the area where the negative electrode and the mold come into contact. Note that it is best to prevent barium stearate from adhering to the interface between the negative electrode and the solid electrolyte layer, and the interface between the solid electrolyte layer and the positive electrode. A solid electrolyte battery was manufactured in the same manner as in Example 1 except that the battery was used.The discharge characteristics were the same as those of the battery in Example 1.

実施例3 ステアリン酸バリウムに代えてパルミチン酸カルシクム
を用いたほかは実施例1と同様にして固体電解質電池を
製造した。放電特性は実施例1の電池と同様であった。
Example 3 A solid electrolyte battery was manufactured in the same manner as in Example 1 except that calcium palmitate was used in place of barium stearate. The discharge characteristics were similar to the battery of Example 1.

実施例4 負極としてリチウム板に代えてリチウム粉末とL l 
3 N  L r I粉末との混合物を用いたほかは実
施例1と同様にして固体電解質電池を製造した。金型へ
のリチウムの付着はなかった。なお、この実施例4では
負極構成材であるリチウムとLi5N−LiIとを粉末
状で金型に供給する関係上、正極と固体電解質層との圧
着後、金型の上下を反転させた。
Example 4 Lithium powder and lithium instead of lithium plate as negative electrode
A solid electrolyte battery was manufactured in the same manner as in Example 1 except that the mixture with 3N L r I powder was used. There was no adhesion of lithium to the mold. In this Example 4, since lithium and Li5N-LiI, which are negative electrode constituent materials, were supplied to the mold in powder form, the mold was turned upside down after the positive electrode and the solid electrolyte layer were pressed together.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の方法により固体電解質電池を製造
するときの主要工狸を模式的に示す断面図、弛1図は木
発明に係る固体電解質電池の一例を示す断面図、第8図
は木発明の方法により製造された固体電解質電池と従来
法により製造された固体電解質電池の放電特性図である
。 (1)・・・固体電解質層、 (2)・・・正極、 (
3)・・・負極、(11)・・・下型、 t12・・・
側型、 (埒・・・上型、(14a)、(14b)・・
・ステアリン酸パリクム特許出頒人 日立マクセル株式
会社 芳5図       76図 ″7t7図
Figures 1 to 6 are cross-sectional views schematically showing the main components when producing a solid electrolyte battery by the method of the present invention, Figure 1 is a cross-sectional view showing an example of the solid electrolyte battery according to the invention, and Figure 8 The figure is a discharge characteristic diagram of a solid electrolyte battery manufactured by the method of the Wood invention and a solid electrolyte battery manufactured by the conventional method. (1)...Solid electrolyte layer, (2)...Positive electrode, (
3)...Negative electrode, (11)...Lower mold, t12...
Side mold, (埒...upper mold, (14a), (14b)...
・Paricum Stearate Patent Distributor Hitachi Maxell Co., Ltd. Yoshi 5 Figure 76''7t7 Figure

Claims (1)

【特許請求の範囲】 1、 アルカリ金属を負極活物質とする負極と固体電解
質とを圧着する工程を経る固体電解質電池の製造におい
て、負極と金型との接面に高級脂肪酸または高級脂肪酸
塩を介在させて固体電+l+(d 質と負極とを圧着す
ることを特徴とする固体電解質電池の製造法。 2、 アルカリ金属がリチウムである特許請求の範囲第
1項記)戒の固体電解質電池の製造法。 3、高級脂肪酸がパルミチン酸、ステアリン酸、オレイ
ン酸、リノール酸捷たはリルン酸である特許請求の範囲
第1項または第2項記載の固体電解質電池の製造法。 4 高級脂肪酸塩が高級脂肪酸とパリクム、ナトリウム
、リチウム、カルシタム、細首たは亜鉛との塩である特
許請求の範囲第1項または第2項記載の固体電解質電池
め製造法。 5、 高級脂肪酸塩がステアリン酸バリウムである特許
請求の範囲第1項または第2項記載の固体電解質電池の
製造法。 6、 高級脂肪酸塩がステアリン酸カルシウムである特
許請求の範囲第1項または第2項記載の固体電解質電池
の製造法。
[Claims] 1. In the production of a solid electrolyte battery through the process of press-bonding a negative electrode containing an alkali metal as a negative electrode active material and a solid electrolyte, higher fatty acids or higher fatty acid salts are added to the contact surface between the negative electrode and the mold. 2. A method for manufacturing a solid electrolyte battery characterized by compressing a solid electrode and a negative electrode by interposing the solid electrolyte battery. Manufacturing method. 3. The method for producing a solid electrolyte battery according to claim 1 or 2, wherein the higher fatty acid is palmitic acid, stearic acid, oleic acid, linoleic acid, or lylunic acid. 4. The method for producing a solid electrolyte battery according to claim 1 or 2, wherein the higher fatty acid salt is a salt of a higher fatty acid and palicum, sodium, lithium, calcitam, fine neck, or zinc. 5. The method for producing a solid electrolyte battery according to claim 1 or 2, wherein the higher fatty acid salt is barium stearate. 6. The method for producing a solid electrolyte battery according to claim 1 or 2, wherein the higher fatty acid salt is calcium stearate.
JP13283A 1983-01-04 1983-01-04 Manufacture of solid electrolyte battery Pending JPS59127375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13283A JPS59127375A (en) 1983-01-04 1983-01-04 Manufacture of solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13283A JPS59127375A (en) 1983-01-04 1983-01-04 Manufacture of solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59127375A true JPS59127375A (en) 1984-07-23

Family

ID=11465500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13283A Pending JPS59127375A (en) 1983-01-04 1983-01-04 Manufacture of solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59127375A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482628A (en) * 1977-11-25 1979-07-02 Mallory & Co Inc P R Solid cell and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482628A (en) * 1977-11-25 1979-07-02 Mallory & Co Inc P R Solid cell and method of producing same

Similar Documents

Publication Publication Date Title
US6436156B1 (en) Zinc/air cell
CN1156038C (en) Betteries
CN1240154C (en) Electrochemical element electrode and battery using such electrode
CN101405896A (en) Zinc/air cell
US4209479A (en) Means for improving manufacture of solid state cells
JPS6161230B2 (en)
JPH07320987A (en) Electrode structure
US3925102A (en) Divalent silver oxide cell having a unipotential discharge level
JP4617105B2 (en) Coin-type all-solid-state battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JPS59127375A (en) Manufacture of solid electrolyte battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP2608561B2 (en) Stacked battery
JP2005129497A (en) Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
JPS6310864B2 (en)
JPS5889772A (en) Production method of button type air cell
JPS591334Y2 (en) sealed battery
JPH0124853Y2 (en)
JPH0821425B2 (en) Method for manufacturing flat lithium secondary battery
JPS5852617Y2 (en) silver oxide battery
JP2001068070A (en) Button cell
JPH0636773A (en) Manufacture of flat organic electrolyte battery
JPS59143282A (en) Production process for button-type air cell
JPS60246566A (en) Manufacture of button-shaped alkali battery
JPS5882469A (en) Manufacture of nonaqueous electrolyte battery